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Abstract: For a stationary linear process with independent and identically dis-

tributed innovations, the paper addresses asymptotic properties of partial sums

of nonlinear functional applied to the process when an unknown parameter is esti-

mated. General representations are established under the condition that the innova-

tion coefficients are either summable or regularly varying with index in (−1,−1/2).

The usefulness of the representations is demonstrated through the derivation of

limiting distributions for several common examples such as kurtosis, the sign test,

and the absolute deviation from the mean.
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1. Introduction

Let {Xt, t ≥ 1} be a linear process defined by Xt = µ +
∑∞

i=1 aiεt−i, where

the εi are independent and identically distributed random variables having mean

0 and at least finite second moment, and where the coefficients ai are either

summable or regularly varying i−βL(i) with index −β in (−1,−1/2). The pro-

cess {Xt} is said to be short-memory in the former case and long-memory in

the latter; in both cases {Xt} may violate the strong mixing property (Andrew

(1984); Rosenblatt (1961)) and may not belong to the class of weakly depen-

dent stationary sequences (Bradley (1986)). The present paper investigates the

asymptotic behavior of partial sums of non-linear functions applied to Xt when

there is another estimated parameter involved. For a large class of Borel func-

tions K(x, y), including polynomials and indicator functions I(x ≤ y), we de-

velop general representations for Tn(θn) ≡ n−1 ∑n
t=1K(Xt, θn), where θn is an

estimator for some unknown parameter θ of Xt, and then use the representations
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to derive limiting laws. Two typical examples of Tn(·) are the sample variance

n−1 ∑n
t=1(Xt−µn)2 and the empirical distribution evaluated at the sample mean,

Fn(µn), where Fn(·) = n−1 ∑n
t=1 I(Xt ≤ ·) and µn = n−1 ∑n

t=1Xt. The quantity

Fn(µn) is often used as a modified sign test statistic in testing the hypothesis

that the distribution is symmetric about its unknown mean (Gastwirth (1971)).

Let F (·) be the marginal distribution function of the stationary linear process

{Xt, t ≥ 1}. For the function K(· , ·), define Tn(·) = n−1 ∑n
t=1K(Xt, ·) and

K∞(x, y) =
∫
K(x + u, y)dF (u). When Xt is short-memory, the representation

we obtain is similar to that of i.i.d. or weakly dependent sequences (Ralescu and

Puri (1984), Sen (1972)), which basically leads to the Central Limit Theorem.

For long-memory Xt, however, the representation has richer structures than in

the short-memory case and the class of limiting distributions derived from the

representation is also broader. It turns out that the form ofK∞(· , ·) plays a major

role in studying Tn(θn) and determining what type of limit theorem emerges.

We use the two examples above to illustrate some interesting features of the

representation in the long-memory setting. Choose K(x, y) = (x − y)2. Denote

by Tn(µn) the sample variance and K(i,j)
∞ (· , ·) the (i, j)-th partial derivative of

K∞(· , ·). We let Ȳn,1 = µn − µ. Since K(0,1)
∞ (0, µ) = 0 and K

(0,2)
∞ (0, µ) =

−K(1,1)
∞ (0, µ) = 2, we can rewrite the sample variance as

Tn(µn) = Tn(µ) +
2∑

j=1

K(0,j)
∞ (0, µ)

(µn − µ)j

j!
+K(1,1)

∞ (0, µ)Ȳn,1(µn − µ). (1.1)

In the third term on the right-hand side of (1.1), we deliberately use Ȳn,1(µn−µ)
instead of (µn − µ)2 to emphasis that Ȳn,1 is a quantity which arises from ex-

panding Tn(µ) and need not in general be equal to the deviation of the parameter

estimation from its true value, µn−µ in the sample variance case. Unlike weakly

dependent or short-memory sequences, both the second and third term on the

right-hand side of (1.1) contribute to the limiting distribution as does the first

term Tn(µ). Each of the three terms plays a different role in the asymptotic

behavior of Tn(µn). In fact, the message of relation (1.1) is that Tn(µn) consists

of three parts: the functional Tn(µ) with the true parameter µ, the Taylor ex-

pansion of K∞(0, µn) at µ that concerns the estimation deviation µn − µ, and

the cross-product term Ȳn,1(µn−µ) describing the interrelation between the pre-

ceding two. It is this observation that leads to the representation (3.1) in Section
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3. The cross-product term in (1.1) is of crucial importance in the presence of

long memory. To shed more light on this we turn to the example of the em-

pirical distribution at the sample mean, Fn(µn). Under the assumption of weak

dependence, e.g., strong mixing, one has the standard form of representation

Fn(µn) = Fn(µ) + f(µ)(µn − µ) +Rn (1.2)

with an almost sure bound specified for the remainder term Rn (Ralescu and

Puri (1984), Sen (1972)) and where f(·) is the probability density function of Xt.

The situation is more subtle if the underlying sequence {Xi} is of long memory.

As shown in Ho and Hsing (1996), Fn(µ) = F (µ) − f(µ)(µn − µ) + R′
n where

R′
n = o((Var (µn))1/2) with probability one. When this expression for Fn(µ)

is plugged into (1.2), there is cancellation in the linear term (µn − µ). Thus

the remainder terms Rn and R′
n need further expansion. Relation (1.1) hints

that higher order expansion of F (µn) and Fn(µ) about µ only provides partial

information about the asymptotic behavior of Fn(µn). The cross-product term

has to be taken into consideration in order to draw a complete picture of Fn(µn).

An immediate implication of the cancellation effect is that the testing power of

Fn(µn) dominates that of Fn(µ) (µ known), which strikingly contrasts with the

traditional weak dependence cases. Further details will be elaborated in Example

B of Section 4.

The rest of the paper is summarized as follows. Section 2 presents notation

and technical conditions. In Section 3, the representations for the long-memory

and short-memory cases are discussed in Theorems 3.1 and 3.2, respectively.

In Section 4, limiting distributions are derived for three specific examples of

kurtosis, sign test, and the absolute deviation from the mean to demonstrate the

usefulness of the representations. In the last example, the case where the robust

M -estimator is used for the location estimates is also discussed. Proofs are given

in the Appendix.

2. Notation and Preliminaries

In the sequel we assume Eε21 = 1. Define Yn,0 = n and, for r ≥ 1,

Yn,r =
n∑

t=1

∑
1≤j1<···<jr<∞

r∏
s=1

ajsεt−js and Ȳn,r = n−1Yn,r.
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If ai = i−βL(i) for some β ∈ (1/2, 1) and r is any positive integer such that

r(2β − 1) < 1, then the process {∑1≤j1<···<jr<∞
∏r

s=1 ajsεt−js : t ≥ 1} also has

long memory, and

σ2
n,r ≡ Var (Yn,r) ≈ n2−r(2β−1)L2r(n). (2.1)

(The notation ≈ signifies asymptotic proportionality.) It is also known that if

r(2β−1) < 1 and Eε2r1 <∞, then nr(β−1/2)−1L−r(n)Yn,r converges as n→ ∞ in

distribution to Zr which can be represented by the multiple Wiener-Ito integral

Zr =
∫
−∞<u1<···<ur<1

∫ { ∫ 1

0

r∏
j=1

[(v − uj)+]−βdv
}
dB(u1) · · · dB(ur), (2.2)

with B denoting standard Brownian motion (Surgalis (1983)). On the other

hand, if r(2β − 1) > 1 then σ2
n,r ≈ n and n−1/2Yn,r obeys a central limit

theorem (Giraitis (1985) and Ho and Hsing (1997)). Define Xt,0 = µ and

Xt,j = µ +
∑

1≤i≤j aiεt−i, and X̃t,j = Xt − Xt,j , 1 ≤ j ≤ ∞. Here Xt,∞ = Xt

and X̃t,∞ = 0. Let Fj , F̃j and Gj be the distribution functions of X1,j , X̃1,j

and ajε1, respectively. For j ≥ 0, define Kj(x, y) =
∫
K(x + u, y)dFj(u), and

K
(i,j)
∞ (x, y) = d(i,j)

dxidyj

∫
K(x + u, y)dF (u) whenever they are well-defined. Note

that K0(X̃t,0, ·) = K(Xt, ·) and K(0,0)
∞ (0, ·) = EK(Xt, ·).

3. Representations and Limit Laws

Let θn be a consistent estimate of some unknown parameter θ associated

with Xt. We establish for both long-memory and short-memory cases that, for

some J ≥ 1,

Tn(θn) = Tn(θ) +
J∑

i=1

K(0,i)
∞ (0, θ)

(θn − θ)i

i!

+
J−1∑
j=1

Ȳn,j


J−j∑
j′=1

K(j,j′)
∞ (0, θ)

(θn − θ)j
′

j′!


 +Rn,J , (3.1)

and provide an upper bound (in probability) for |Rn,J | (see Theorems 3.1 and

3.2). Note that (1.1) is a special case of (3.1) with J = 2 and, because K(x, y) =

(x− y)2, Rn,2 = 0. To make use of (3.1), it is necessary that a bound for |θn − θ|
be specified. For this purpose, we assume
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(A1) |θn − θ| = Op(
√

Var (Ȳn,1)) and θ belongs to a compact set of R.

Remark 1. When the linear process Xt =
∑∞

i=0 aiεt−i is short-memory, i.e.,∑ |ai| <∞, (A1) holds for most estimators in practice since Var (Ȳn,1) = O(1/n).

For long-memory {Xt}, it is well known that the variances of many common

estimators, such as maximum likelihood estimators, moment estimators and some

robust estimators (see Beran (1994)), are dominated by that of Ȳn,1, which is

asymptotically proportional to n−(2β−1)L2(n) (see (2.1)).

The next assumption provides, in addition to some regularity conditions, two

types of functions the paper focuses on, indicator functions and functions that

behave like polynomials after being smoothed.

(A2) Eε81 <∞, EK2(X1, θ) <∞, and K(x, y) satisfies one of the following two

conditions.

1. K(x, y) is the indicator function I(x ≤ y). For some positive integer J the dis-

tribution function of ε1 is J +3 times differentiable with bounded, continuous

and integrable derivatives.

2. For a positive integer J , the partial derivatives K(t,s)
1 (x, y) of K1(x, y) of order

0 ≤ t + s ≤ J + 3 are continuous on R × (θ − ε, θ + ε) for some ε > 0, and∑J
p=0 |K(p+1,0)

∞ (0, y)| �= 0 for all y in (θ − ε, θ + ε). For all 0 ≤ t+ s ≤ J + 3,

|K(t,s)
1 (x, y)| ≤ U(x, y) where U(x, y) is a two-variable polynomial of degreeM

and Eεmax{8,4M}
1 <∞. For certain α ∈ [1, 2] and a positive function V (x, y)

such that EV 2(X1, θ) <∞,

|K(x, y1) −K(x, y2)| ≤ |y1 − y2|α/2V (x, θ) (3.3)

for all (x, yi) in R× (θ − ε, θ + ε), i = 1, 2.

Remark 2. (1) The two types of functions in (A2) cover most of the interesting

cases in the literature. Later in Section 4 we consider three examples: a polyno-

mial a(x − y)4 + b(x − y)2 + c of degree 4; the absolute value function |x − y|;
the indicator function I(x ≤ y). The first two are of type 2 in (A2). (2) The

functions described in (A2) all satisfy the following technical properties. Let B
be the set of all sequences b̃ = {b1, b2, . . . , }, where bi = ai except for finitely

many i’s in which bi equals one of the three values: 0, ai+1, or ai + ai+1. For

each b̃ ∈ B, define Xb̃ =
∑∞

i=1 biεi. For 0 ≤ t + s ≤ J + 3 and λ ≥ 0, define
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K
(t,s)
1,λ (x, y1, y2) = sup|u|≤λ |K(t,s)

1 (x + u, y1) − K
(t,s)
1 (x + u, y2)|, y1 and y2 in I.

Then

E[K(t,s)
1,λ (Xb̃, y1, y2)]4 ≤ C|y1 − y2|4. (3.4)

Moreover, for all 0 ≤ t+ s ≤ J +3 and y in I = (θ− ε, θ+ ε), we have from (3.4)

that

K
(t,s)
j+1 (x, y) =

∫
K

(t,s)
j (x+ u, y)dGj+1(u). (3.5)

This can be proved by the argument used in Lemma 2.1 of Ho and Hsing (1997).

For all y1 and y2 in I,

E[K(X1, y1)−K(X1, y2)]2 ≤ C · |y1 − y2|α, (3.6)

where the α values for the three examples mentioned above are 2, 2, and 1,

respectively. In addition, the random variable supy∈I |
∑n

t=1[K(Xt, y)−K(Xt, θ)]|
can be approximated by maxy∈Pn |∑n

t=1[K(Xt, y)−K(Xt, θ)]| for a set of properly

designed partitions {Pn} of I. This is guaranteed for functions of type 2 by (3.3)

and for the indicator functions by the simple fact that I(x ≤ y1) − I(x ≤ y2) =

I(y2 < x ≤ y1), y2 < y1. (3) From K∞(x, y) =
∫
K1(x+ u, y)dF̃1(u) and K1(· , ·)

being smooth by (3.5), it follows that K∞(· , ·) has continuous partial derivatives

of order J + 3 in R× I. Thus K(t,s)
∞ (0, y) is well-defined for 1 ≤ t+ s) ≤ J + 3.

(4) A trivial extension of the functions in (A2) is their linear combinations.

We now formulate our two main theorems as follows.

Theorem 3.1. Let ai = i−βL(i) with β ∈ (1/2, 1) and L∗(n) = max{L(n), 1}.
Assume (A1) and (A2). Then (3.1) holds and the remainder term Rn,J satisfies,

as n→ ∞,

(i) |Rn,J | = op(n−J(β−1/2)−τ ) for any τ < β − 1/2 if 2β − 1 ≤ (J + 1)−1, or

τ < −J(β− 1/2)+min{(J +1)(β− 1/2), 1/2+α(β − 1/2)/2} if (J +1)−1 <

2β − 1 < J−1, or

(ii) |Rn,J | = op(n−(1/2+α(β−1/2)/2)+δ ) for any δ > 0 if J−1 ≤ 2β − 1.

Theorem 3.2. Suppose
∑

i |ai| <∞ and Eε41 <∞. Assume (A1) and (A2) with

J = 1. Then (3.1) holds with J = 1 and Rn,1 = op(n−(1/2+α/4)+δ) for any δ > 0.

Remark 3. (1) Suppose in Theorem 3.2 that K(x, y) = I(x ≤ y), θ = µ and

θn = n−1 ∑n
t=1Xt. Let F (·) be the distribution function of Xt with density

f(·). Define Ut = I(Xt ≤ µ) + f(µ)(Xt − µ). It follows by Theorem 4.1 of Ho
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and Hsing (1997) that
√
n(Tn(θn) − F (θ)) is asymptotically N(0, c2) with c2 =∑∞

m=−∞ r(m), where r(m) = cov(Ut, Ut+m). As pointed out in Remark 2-(1), α

is 1. Hence the main factor appearing in Rn,1 is n−3/4, which is consistent with

the previous findings in the literature (see, for example, Sen (1972) and Ralescu

and Puri (1984)). The novelty of Theorem 3.2 lies in that the linearity of Xt is

fully exploited so that the representation and its resulting central limit theorem

can be achieved without imposing conventional types of mixing conditions. With

the same K(· , ·), θ and θn, a broader class of limiting laws will be obtained later

in Example B of Section 4 for long-memory Xt as an application of Theorem

3.1. (2) The expression of Rn,J in Theorem 3.1 suggests the following. When

{Xt} is long-memory, the influence the regularity index α of (3.6) has on the

rate of Rn,J decreases as the dependence increases (i.e., β is closer to 1/2 ).

In fact, the rate becomes independent of α for two out of the three cases in

Theorem 3.1−(i), 2β − 1 ≤ (J + 1)−1 or 2β − 1 > (J + 1)−1 and (J + 1)(β −
1/2) − 1/2 ≤ α(β − 1/2)/2. If 2β − 1 > J−1 as in Theorem 3.1−(ii), the

influence of α on the error rate is always present. This interesting phenomenon is

supported by the following observation made in Ho and Hsing (1997). There are

two possibilities for the asymptotic distribution of the partial sums Tn(y, θ) ≡∑n
t=1{K(Xt, y) −K(Xt, θ)}, central limit theorem (

√
n rate) and the non-central

limit theorem (non-
√
n rate). In the former case, the limiting variance involves

the quantity E{K(X1, y)−K(X1, θ)}2 = C|y−θ|α and thus the regularity index

α has influence on Tn(y, θ) as y approaches θ; in the latter case, Tn(y, θ) is

asymptotically equivalent to {K(J,0)
∞ (0, y)−K(J,0)

∞ (0, θ)}Ȳn,J for a certain positive

integer J , and the smooth function K
(J,0)
∞ (0, y) instead of the function K(· , ·)

itself determines the behavior of Tn(y, θ) when y is very close to θ. One can of

course find some extreme examples without the above property. Theorems 3.1

and 3.2 of the paper will collapse if K∞(· , ·) has some irregularity properties such

as discontinuity in the second coordinate at θ. In that case, there is probably

not much one can say about the asymptotics of Tn(θn).

The bounds that we obtain for |Rn,J | in Theorems 3.1 and 3.2 are far from

sharp but they serve our main goal sufficiently well as to understand the structure

of the representation and to use the representation to obtain limiting distribu-

tions.
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4. Examples

When {Xt} is long-memory, there are three steps in using Theorem 3.1 to

derive the asymptotic distribution of Tn(θn)−EK(Xt, θ). We first replace Tn(θ)

in (3.1) by its martingale expansion (Theorem 3.1, Ho and Hsing (1997); see

(A.1) in the Appendix) and obtain

Tn(θn) =
J∑

r=0

K(r,0)
∞ (0, θ)Ȳn,r +

J∑
i=1

K(0,i)
∞ (0, θ)

(θn − θ)i

i!

+
J−1∑
j=1

Ȳn,j


J−j∑
j′=1

K(j,j′)
∞ (0, θ)

(θn − θ)j
′

j′!


 + Sn,J(θ) +Rn,J , (4.1)

where Sn,J(θ)=Tn(θ)−∑J
r=0K

(r,0)
∞ (0, θ)Ȳn,r and satisfies Var (Sn,j(θ))≤C(n−1∨

n−(J+1)(2β−1)+ζ) for some universal constant C and any ζ > 0. Second, we need

to figure out the joint limiting distribution of (Ȳn,j, (θn − θ)i) for all positive

integers 1 ≤ i, j ≤ J . Note here that the two components, Ȳn,j and (θn − θ)i,

may marginally obey different types of limit theorems. The third step is to

compute the values of K(i,j)
∞ (0, θ) for all 1 ≤ i, j ≤ J and, bearing in mind the

possibility of cancellation of terms on the right-hand side of (4.1), then decide

the normalization factor for Tn(θn). In the second step, the asymptotic distri-

bution of (Ȳn,j, (θn − θ)i) can be characterized for two important cases: either

θn can be written as a smooth function (such as a polynomial) plus a negligi-

ble residual term H(Ȳn,1, . . . , Ȳn,j) + op(1) in terms of Ȳn,j’s, or it can be suffi-

ciently well approximated by an estimator having such an expression. Examples

that have been widely discussed in the literature are sample average estimators

θn = n−1 ∑n
t=1G(Xt) (Ho and Hsing (1997)) and U -statistics (Ho and Hsing

(1996)) for the former case, and some robust estimators for the latter (Koul and

Surgalis (1997)). There are circumstances in which precise knowledge of the

asymptotic distribution of (Ȳn,j, (θn − θ)i) is not absolutely necessary. One such

example of interest is the maximal likelihood estimator θn of parameters θ (such

as the memory parameter or the innovation variance) of the spectral density of

{Xt} (Fox and Taqqu (1987), and Giraitis and Surgalis (1990)). It is known that

the convergence rate of the MLE θn is θn−θ = Op(n−1/2). Then all terms on the

righthand side of (4.1) involving the power of (θn − θ) become negligible if the

normalization factor of Tn(θ) is {nβ−1/2L−1(n)}J with J(2β − 1) < 1, meaning
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that the deviation θn − θ plays no role in the limiting distribution of Tn(θ). If

J(2β−1) > 1, then we still have to deal with (Ȳn,j, (θn− θ)i) to fulfill the second

step. Finding the asymptotic joint distribution of Ȳn,j and the MLE θn is itself

a challenging problem of independent interest. Its statistical relevance however

is not clear especially under our setting based on nonlinear functions. For the

third step, it can be seen that there are numerous cases involved in determining

precisely which terms contribute to the limiting distribution. This and the dis-

cussion above on the second step both indicate that in order to apply Theorem

3.1 to deriving limits, the task would very much be of case-by-case nature. The

present paper thus will not seek for a general rule derived from (4.1) to classify

the limiting distributions. We instead demonstrate the usefulness of the repre-

sentation (4.1) through a more direct approach by developing the asymptotic

distributions for three very practical examples. The first example, Example A,

treats sample kurtosis as a representative case of general moment estimators. The

second example, Example B, deals with a modified sign test a common nonpara-

metric testing method. The case of estimated scale parameter is discussed in a

remark to Example B. In Examples A and B only sample averages are considered

for the estimated parameters. Example C focuses on estimation of the absolute

deviation from the mean and allows for the robust M -estimation of location.

The following lemma collects some known results that are needed for later

discussion.

Lemma 4.1. Assume ai = i−βL(i), Eε(2p)∨8
1 < ∞, and p−1 > (2β − 1) >

(p+ 1)−1. Set an,j = nj(β−1/2)L−j(n).

(i) Let j1, . . . , jm be distinctive positive integers that are not greater than p. Then

(an,j1Ȳn,j1, . . . , an,jmȲn,jm) d→ (Zj1, . . . , Zjm), where the Zi’s are defined in

(2.2).

(ii) Let K(· , ·) belong to the class of functions defined in (A2). Then Sn,q(θ) =

Op(n−q(β−1/2)Lq(n)) for 1 ≤ q ≤ p, and n1/2Sn,p(θ)
d→ N(0, w2), where

w2 =
∑∞

�=−∞ cov(X(p)
t , X

(p)
t+�) with X

(p)
t = K(Xt, θ) − EK(Xt , θ) −∑

1≤j1 < ···<jr <∞
∏p

s=1 ajsεt−js .

Part (i) of Lemma 4.1 is contained in Avram and Taqqu (1987), and part

(ii) in Theorems 3.1 and 3.2 of Ho and Hsing (1997). Note here that in order to
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have the central limit theorem in Lemma 4.1-(ii) one needs the 9-approximation

property, E{K(X1, θ) − K(X1,�, θ)}2 → 0 as 9 → ∞, which is satisfied by the

functions in (A2).

In Examples A, B and C, we let Xt = µ +
∑∞

i=1 aiεt−i and the coefficient

ai = i−βL(i) with 1/2 < β < 1, and assume that E(ε8t ) <∞ and the probability

density functions f(·) and g(·) ofXt and εt, respectively, are sufficiently smooth so

that (A2) is assured for some J . Recall that µn = n−1 ∑n
t=1Xt and µn−µ = Ȳn,1.

Example A. Denote the i-th central moment µ(i) and their usual estimates by

µ(i) = E(X1 − µ)i, i ≥ 2, and µ(i)
n = n−1 ∑n

t=1(Xt − µn)i, respectively. We now

apply Theorem 3.1 to derive the limiting distribution of the kurtosis estimator

κ̂ ≡ µ
(4)
n /(µ(2)

n )2. Write

κ̂−κ=n−1
n∑

t=1

{[
(Xt−µn)4−µ(4)

]
/(µ(2))2−(µ(4)/(µ(2))3)

[
(Xt−µn)2−µ(2)

]}

+Op

(
|µ(2)

n − µ(2)|
[
|µ(2)

n − µ(2)|+ |µ(4)
n − µ(4)|

])
.

Thus the functionalK(· , ·) to be considered is, by neglecting Op(|µ(2)
n −µ(2)|(|µ(2)

n −
µ(2)|+|µ(4)

n −µ(4)|),

K(x, y) = [(x− y)4 − µ(4)]/(µ(2))2 − (µ(4)/(µ(2))3)[(x − y)2 − µ(2)]

with the sample mean µn being the estimated parameter, i.e., the representation

(4.1) is applied to Tn(µn) = n−1 ∑n
t=1K(Xt, µn) instead of to κ̂− κ directly. By

straight forward computations, K(1,0)
∞ (0, µ) = −K(0,1)

∞ (0, µ) = 4µ(3)/(µ(2))2 and

K
(0,2)
∞ (0, µ) = K

(2,0)
∞ (0, µ) = −K(1,1)

∞ (0, µ) = 12(µ(2))−1 − 2µ(4)(µ(2))−3. Then

(4.1) (with J = 2) is, after canceling the linear terms,

Tn(µn)

= Sn,1(µ) +
{[

12(µ(2))−1 − 2µ(4)(µ(2))−3
]
(µn − µ)2/2

}

−
{
12(µ(2))−1 − 2µ(4)(µ(2))−3

}
Ȳn,1(µn − µ) +Rn,2

=
{
2(µ(2))−1(6 − µ(4)/(µ(2)

n )2)Ȳn,2
}

+
{
(µ(2))−1(6 − µ(4)/(µ(2)

n )2)(µn − µ)2
}

−
{
2µ(2))−1(6 − µ(4)/(µ(2)

n )2)Ȳn,1 · (µn − µ)
}

+ Sn,2(µ) +Rn,2. (4.2)

Suppose 2(2β − 1) < 1. In view of the right side of the second identity in (4.2),
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it follows by Theorem 3.1−(i) and Lemma 4.1 that

n2β−1L−2(n) (κ̂− κ) d→ (µ(2))−1
(
6 − µ(4)/(µ(2))2

) (
2Z2 − Z2

1

)
,

since n2β−1L−2(n)(Sn,2(µ)+Rn,2)=op(1) and n2β−1L−2(n)Ȳn,2 and n2β−1L−2(n)

×Ȳn,1(µn−µ) converge in distribution to Z2 and Z2
1 , respectively. If 2(2β−1) > 1,

then a central limit theorem holds. In fact, on the right side of the first identity in

(4.2), only Sn,1(µ) = Tn(µ)−4(µ(3)/(µ(2))2)Ȳn,1 contributes to the limit as all the

terms Rn,2, (µn−µ)2 and Ȳn,(µn−µ) are negligible. Therefore, Theorem 3.1−(ii)

and Lemma 4.1−(ii) imply n1/2 (κ̂−κ) = n−1/2 ∑n
t=1([(Xt−µ)4−µ(4)]/(µ(2))2

−(µ(4)/(µ(2)
n )3)[(Xt−µ)2−µ(2)].−4(µ(3)/(µ(2))2)(Xt−µ))+op(1), which converges

in distribution to N(0, w2
1), where w2

1 =
∑∞

j=−∞ cov(X ′
t,X

′
t+j) with

X ′
t ≡ (Xt−µ)4/(µ(2))2− (µ(4)/(µ(2)

n )3)[(Xt−µ)2−µ(2)]−4(µ(3)/(µ(2))2)(Xt−µ).

Example B. We focus on the modified sign test statistics described in the In-

troduction. The functional is K(x, y) = I(x ≤ y) and the estimated parameter is

the sample mean µn. Assume that f ′(µ) = 0 and f ′′(µ) �= 0. Following Example

A, we first obtain K(0,1)
∞ (0, µ) = −K(1,0)

∞ (0, µ) = f(µ), K(i,j)
∞ (0, µ) = f ′(µ) = 0

if i + j = 2, and K(0,3)
∞ (0, µ) = −K(1,2)

∞ (0, µ) = K
(2,1)
∞ (0, µ) = f ′′(µ). From (4.1)

with J = 3, we have

Fn(µn)− F (µ) = f ′′(µ){−(µn − µ)3

3
− Ȳn,3 + Ȳn,2(µn − µ)} + Sn,3(µ) +Rn,3

= Sn,2(µ) − f ′′(µ)(µn − µ)3/3 + f ′′(µ)Ȳn,2(µn − µ) +Rn,3

As a result of Theorem 3.1 and Lemma 4.1,

n3(β−1/2)L−3(n){Fn(µn) − F (µ)}
= n3(β−1/2)L−3(n)f ′′(µ){−(µn − µ)3

3
− Ȳn,3 + Ȳn,2(µn − µ)} + op(1)

d→ f ′′(µ)(−Z3
1/3 − Z3 + Z1Z2)

if 3(2β − 1) < 1, and n1/2{Fn(µn) − F (µ)} = n1/2Sn,2(µ) + op(1)
d→ N(0, w2

2)

if 3(2β − 1) > 1, where w2
2 =

∑∞
j=−∞ cov(X ′′

t ,X
′′
t+j) with X ′′

t = I(Xt ≤ µ) +

f(µ)(Xt − µ). The purpose of assuming f ′(µ) = 0 above is merely to include

the Gaussian case. When f ′(µ) �= 0, a similar procedure also applies and the
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limiting distribution could of course be different. If µn = µ, the norming factor

for Fn(µ) − F (µ) is nβ−1/2L−1(n) instead of n3(β−1/2)L−3(n) or n1/2 (Corollary

3.3, Ho and Hsing (1996)), implying that the testing power of Fn(µn) dominates

that of Fn(µ).

Remark 4. From (4.1) and the two previous examples, it is clear by now that if

the sample mean µn is the estimated parameter involved in the functional K(· , ·)
and K∞(x, µ) = G(x − µ) holds for some smooth G(·) such that G′(−µ) �= 0,

then K
(1,0)
∞ (0, µ) = −K(0,1)

∞ (0, µ) causes cancellation in the linear terms. We

now present a case where the linear terms will not be cancelled and the asymp-

totic normality with non-root n normalization can be achieved. We modify the

functional considered in Example B by changing the sample mean to a scale

parameter estimate. Specifically, we consider K(Xt, θn) = I(Xt
θn

≤ c) where

θn = {n−1 ∑n
t=1(Xt − µn)2}1/2. Similar to Example B, K∞(x, θ) = F (cθ − x),

K
(1,0)
∞ (0, θ) = −f(cθ) and K

(0,1)
∞ (0, θ) = cf(cθ). By (4.1) (with J = 1) and

Theorem 3.1, Tn(θn) ≡ n−1 ∑n
t=1K(Xt, θn) = n−1 ∑n

t=1K(Xt, θ) + cf(cθ)(θn −
θ) + Rn,1 = −f(cθ)Ȳn,1 + op(n−(β−1/2)L(n)), since both n−1 ∑n

t=1K(Xt, θ) +

f(cθ)Ȳn,1 and (θn−θ) are of order Op(n−(2β−1)L2(n)). Hence, by Lemma 4.1−(i),

nβ−1/2L−1(n) (Tn(θn) − F (cθ)) d→ −f(cθ) · Z1.

Example C. We investigate asymptotic distributions of the sample absolute

deviation n−1 ∑n
t=1 |Xt − θn|. We first consider the case where the robust M -

estimator is adopted to play the role of the location estimate θn. To define the

M -estimator, let ψ be a real-valued function of bounded variation such that

ψ(x) = −ψ(−x) and λ(x) ≡ Eψ(X1 − x) is smooth, λ(µ) = 0. The M -estimator

θn of µ corresponding to ψ is θn = argmin {|∑n
t=1 ψ(Xt − x)|}. Assume that the

probability density function f is symmetric about its mean µ and is sufficiently

smooth, so that f (k)(y + µ) = (−1)kf (k)(−y + µ) holds for a suitable positive

integer k.

In order to describe the asymptotic behavior of θn − µ, we need a result

obtained by Koul and Surgalis. Suppose (k∗ + 1)−1 < 2β − 1 < (k∗)−1 and let

Aj(x) be the j-th Appell polynomial and Qj(x) be a the polynomial of degree j

defined by their recursive relation (see (1.8) and (1.13) of Koul Surgalis (1997),
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respectively). Define

Vt = ψ(Xt − µ)−
k∗∑
j=1

(−1)j

j!
Aj(Xt − µ).

Koul and Surgalis ((1997) Theorem 1.1) show that under appropriate conditions

on the marginal distribution of innovation ε1,

θn − µn =
k∗∑
j=2

n−j(β−1/2)Lj(n)Qn,j + n−1/2Wn, (4.3)

where Qn,j
d→ Qj(Z1,. . . ,Zj) and Wn

d→ N(0, w2), with w2 =
∑∞

j=−∞cov(Vt, Vt+j).

The functionalK(·, ·) corresponding to the sample absolute deviation isK(Xt, θ)=

|Xt − θ|. Assume K∞(x, y) ≡ ∫ |u + x − y|f(u)du is smooth and K(i,j)
∞ (x, y) =∫ |u + x − y|(−1)if (i+j)(u)du holds. It is straight forward that K(0,1)
∞ (0, µ) =

K
(1,0)
∞ (0, µ) = 0 and K

(2,0)
∞ (0, µ) = K

(0,2)
∞ (x, y) = −K(1,1)

∞ (0, µ) = 2
∫ ∞
0 |u −

µ|f (2)(u)du. Therefore,

Tn(θn)

= Tn(µ) + (K(0,2)
∞ (0, µ)/2)

{
(θn − µn)2 + (µn − µ)2 − 2(θn − µn)(µn − µ)

}

+K(1,1)
∞ (0, µ)Ȳn,1 {(θn − µn) + (µn − µ)} +Rn,2

=
{
K(2,0)

∞ (0, µ)Ȳn,2 + [(K(0,2)
∞ (0, µ)/2)(µn − µ)2 +K(1,1)

∞ (0, µ)Ȳn,1(µn − µ)]
}

+
{
(K(0,2)

∞ (0, µ)/2)[(θn−µn)2−2(θn−µn)(µn−µ)]+K(1,1)
∞ (0, µ)Ȳn,1(θn−µn)

}

+Sn,2(µ) +Rn,2. (4.4)

Suppose 2(2β − 1) < 1. We concentrate on the second identity of (4.4). From

Lemma 4.1 and (4.3), it follows that only the first term on the right side account

for the limiting distribution,

n2β−1L−2(n)[Tn(θn) −E|X1 − µ|)] d→ K(0,2)
∞ (0, µ)(Z2 − Z2

1/2).

If 2(2β − 1) > 1, by examining the first identity of (4.4), Lemma 4.1 and (4.3)

imply that n1/2[Tn(θn)−E|X1−µ|] d→ N(0, w2
2), where w2

2 =
∑∞

j=−∞ cov(|Xt−
µ|, |Xt+j − µ|). If the sample mean µn is used for the estimated location θn, the

same limit distributions will be obtained. In other words, when estimating the

absolute deviation from the mean it makes no differences whether the location
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is estimated by an M -estimator or the sample mean. These two approaches are

equally efficient in the sense of the first order approximation.

Appendix

The principal idea of the proof is to use {Ȳn,r, r ≥ 0} to expand Tn(y) as

Tn(y) = n−1
n∑

t=1

K(Xt, y)

= n−1
n∑

t=1

J∑
p=0

K(p,0)
∞ (0, y)

∑
1≤j1<···<jp<∞

p∏
s=1

ajsεt−js + Sn,J(y)

=
J∑

p=0

K(p,0)
∞ (0, y)Ȳn,p + Sn,J(y), (A.1)

so that the magnitude of |Sn,J(y)| can be estimated effectively by using arguments

of Ho and Hsing (1997) with the help of the technical properties listed in Remark

2-(2). If Xt is standard Gaussian then for each y,

K(Xt, y) =
∞∑
r=0

hr(y)
r!

Hr(Xt),

where K(r,0)
∞ (0, ·) = EK(Xt, ·)Hr(Xt) and Hr(·) is the r-th Hermite polynomial

(Remark 2 in Ho and Hsing (1997)). Under the circumstances that Xt has long

memory, the random processes {∑1≤j1<···<jp<∞
∏r

s=1 ajsεt−js} and {Hp(Xt)} can

be regarded as equivalent in the sense that their covariance functions are both

asymptotically O(k−p(2β−1) L2p(k)), and the two partial sums
∑n

t=1Hp(Xt) and

Yn,p converge to the same limiting distribution with the same norming factor

up to a positive constant (Avram and Taqqu (1987), and Ho and Hsing (1997)).

Therefore it is natural to interpret the martingale expansion in the second identity

of (A.1) as the discrete version of Wiener-Ito’s expansion of K(Xt, ·), which

provides a useful tool for dealing with partial sums
∑n

t=1K(Xt, ·) when Xt is not

Gaussian ( for Wiener-Ito expansion of functionals of Gaussian sequences, see

Major (1981) ). Recall some notation and definitions. Let Xt,0 = µ and, 1 ≤ j ≤
∞,Xt,j = µ+

∑
1≤i≤j aiεt−i, X̃t,j = Xt−Xt,j, andKj(x, y) =

∫
K(x+u, y)dFj(u),

where Fj is the distribution of X1,j . When j = ∞, Xt,∞ = Xt, X̃t,∞ = 0, and
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K∞(x, y) = EK(x+X1, y). Take

Ȳn,p = n−1
n∑

t=1

∑
1≤j1<···<jp<∞

p∏
s=1

ajsεt−js ,

Tn(y) = n−1
n∑

t=1

K(Xt, y) =
J∑

p=0

K(p,0)
∞ (0, y)Ȳn,p + Sn,J(y),

where Sn,J(y) = Tn(y) − ∑J
p=0K

(p,0)
∞ (0, y)Ȳn,p. Based on the orthogonal expan-

sion

K(Xt, y) −K∞(0, y) =
∞∑
j=1

{Kj−1(X̃t,j−1, y) −Kj(X̃t,j , y)},

we can write (cf. Ho and Hsing (1997), pp.1644-1646)

Sn,J(y)=Z
(1)
n,1(y)+

J−1∑
p=1

{Z(p+1)
n,1 (y)−Z(p)

n,1(y)}+Z(J)
n,2 (y)+Zn,3(y)+Z

(J)
n,4 (y), (A.2)

where one has

nZ
(1)
n,1(y) =

n∑
t=1

∞∑
j=2

[Kj−1(X̃t,j−1, y)−Kj(X̃t,j , y) − ajεt−jK
(1,0)
j−1 (X̃t,j , y)],

n{Z(p+1)
n,1 (y)−Z(p)

n,1(y)} =
n∑

t=1

∑
2≤j1≤···≤jp+1<∞

(
p∏

s=1

ajsεt−js)×[K(p,0)
jp+1−1(X̃t,jp+1−1, y)−

−K(p,0)
jp+1

(X̃t,jp+1, y) − ajp+1εt−jp+1K
(p+1,0)
jp+1

(X̃t,jp+1 , y)],

nZ
(J)
n,2 (y)=

n∑
t=1

∑
2≤j1<···<j

J
<∞

(
J∏

s=1

ajsεt−js){K(J,0)
j
J

(X̃t,j
J
, y)−K(J,0)

∞ (0, y)}, (A.3)

nZn,3(y) =
n∑

t=1

{K(Xt, y) −K1(X̃t,1, y)},

nZ
(J)
n,4 (y) = −

J∑
p=1

K(p,0)
∞ (0, y)

n∑
t=1

∑
1=j1<j2<···<jp<∞+1

(
p∏

s=1

ajsεt−js).

On the righthand side of (A.2) only Zn,3 contains the original function K(· , ·)
which may not be smooth, and the functions involved in the remaining terms are

all smooth.
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Sketch proof of Theorem 3.1. Define

Gn={Tn(θn)−K∞(0, θn)}−{Tn(θ)−K∞(0, θ)}−
J−1∑
j=1

Ȳn,j

{J−j∑
j′=1

K(j,j′)
∞ (0, θ)

(θn−θ)j′
j′!

}
,

(A.4)

Gn(y, θ)={Tn(y)−K∞(0, y)}−{Tn(θ)−K∞(0, θ)}−
J−1∑
j=1

Ȳn,j

{J−j∑
j′=1

K(j,j′)
∞ (0, θ)

(y−θ)j′
j′!

}
.

In view of (A.1), we furthermore express Gn(y, θ) as

Gn(y, θ) =
J−1∑
j=1

Ȳn,jK
(j,J−j+1)
∞ (0, θ)(y∗ − θ)J−j+1/(J − j + 1)!

+Ȳn,J{K(J,0)
∞ (0, y) −K(J,0)

∞ (0, θ)} + {Sn,J(y)− Sn,J(θ)}
≡ An(y, θ) +Bn(y, θ) + Cn(y, θ) (A.5)

where |y∗ − θ| ≤ |y − θ|. Define In = [θ −Dn, θ +Dn] with a positive sequence

Dn = {EȲ 2
n,1}1/2. Clearly, Gn ≤ supy∈In

|Gn(y, θ)| conditionally on θn ∈ In.

The major part of the proof is to bound supy∈In
|Gn(y, θ)|. We first concentrate

on type 2 functions. Our plan is to bound supy∈In
|Cn(y, θ)| for (i) and (ii),

and then to handle the two parts separately to bound supy∈In
|An(y, θ)| and

supy∈In
|Bn(y, θ)|. For the first step, we combine the results of Theorem 3.1 of

Ho and Hsing(1997) and the “chaining argument” (see Dehling and Taqqu (1989)

and Ho and Hsing (1996)) and sketch the proof as follows. The main part of the

chaining argument is to create a dominating measure on the interval In and then,

based upon this measure, to construct a family of appropriate partitions of the

interval In. For any function h(·) on R, let h̃(x, y) = h(y) − h(x). Define

Λ(u) =
J∑

p=0

∫ u

θ−Dn

|K(p+1,0)
∞ (0, v)|dv, u ∈ In.

For m = 1, . . . ,M , let ui(m) = inf{u ∈ In : Λ(u) ≥ Λ(θ + Dn)i/2m}, m =

0, 1, . . . , 2m. For y ∈ In, let m(y) be the integer between 0 to 2m such that

um(y)(m) ≤ y < um(y)+1(m). Thus,

Sn,j(y)− Sn,j(θ) =
M−1∑
m=0

S̃n,j(um(y)(m), u(m+1)(y)(m+ 1)) + S̃n,j(um(y)(y), y).
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Furthermore, by (3.3),

P (sup
y∈In

|Sn,j(y) − Sn,j(θ)| > b)

≤ P (sup
y∈In

|
M−1∑
m=0

S̃n,j(um(y)(m), u(m+1)(y)(m+ 1))| > b/2)

+P (sup
y∈In

C(uM(y)+1(M) − uM(y)(M))α/2[n−1
n∑

t=1

V (Xt, θ)] > b/4)

+P (sup
y∈In

J∑
p=0

|K(p,0)
∞ (0, y) −K(p,0)

∞ (0, uM(y)(M))||Ȳn,p| > b/4)

≡ Pn,1(b) + Pn,2(b) + Pn,3(b).

Note that |uM(y)+1(M)−uM(y)(M)|≤C ·Dn2−M since Λ′(y)=
∑J

p=0 |K(p+1,0)
∞ (0, y)|

is bounded away from zero on a small enough neighborhood In of θ. Then, by

Chebyshev’s inequality, Pn,2(b) + Pn,3(b) ≤ C · (b−1 + b−2) · 2−Mα/2 Similarly,

Pn,1(b) ≤
M−1∑
m=0

b−2(m+ 3)4
2m+1−1∑

i=0

Var (S̃n,j(ui(m), ui(m+ 1))). From expression

(A.2), it follows that for each m = 0, 1, . . . ,M − 1

Var (S̃n,j(ui(m), ui(m+ 1)))

≤ C · [Var (Z̃(1)
n,1(ui(m), ui(m+ 1)))

+
J−1∑
p=1

Var (Z̃(p+1)
n,1 (ui(m), ui(m+ 1)) − Z̃

(p)
n,1(ui(m), ui(m+ 1)))

+Var (Z̃(J)
n,2 (ui(m), ui(m+ 1)) + Var (Z̃n,3(ui(m), ui(m+ 1)))

+Var (Z̃J
n,4(ui(m), ui(m+ 1)))]

≡ Vn,m,i,1 + V ′
n,m,i,1 + Vn,m,i,2 + Vn,m,i,3 + Vn,m,i,4.

We now evaluate these variances with a slight refinement of the argument used

in Theorem 3.1 of Ho and Hsing(1997), mainly replacing K(·) by K(·, ui(m)) −
K(·, ui(m + 1)) and retaining the increments ui(m + 1) − ui(m). Note first

that both Zn,3 and Zn,4 are sums of orthogonal random variables. Since 0 <

ui(m+ 1) − ui(m) ≤ C ·Dn2−m,

Vn,m,i,4 ≤ C · n−1
J∑

p=1

{K(p,0)
∞ (0, ui(m)) −K(p,0)

∞ (0, ui(m+ 1))}2
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≤ C · (Dn2−m)2n−1, (A.6)

Vn,m,i,3 ≤ C · (Dn2−m)αn−1, (A.7)

where the presence of α is due to property (3.6). By Lemmas 6.1 and 6.2−(i) of

Ho and Hsing (1997), we have

Vn,m,i,1 + V ′
n,m,i,1 ≤ C · dnn−1 (A.8)

(cf. (6.12) and (6.13) of Ho and Hsing (1997)), where the use of the two lemmas

is justified by property (3.4). The term dn is, for appropriate Xb̄ (see Remark

2−(2)), dn = {E[K(t,0)
1,λ (Xb̄, ui(m+1), ui(m+1))]4}1/2 ≤ C ·(ui(m+1)−ui(m))2 ≤

C · (Dn2−m)2. Similarly,

Vn,m,i,2 ≤ C · (Dn2−m)2 max{n−1, n−(J+1)(2β−1)+ζ} (A.9)

for any ζ > 0 (cf. (6.15) of Ho and Hsing (1997)). Then

Pn,1(b) ≤
M−1∑
m=0

b−2(m+ 3)4
2m+1−1∑

i=0

Var (S̃n,j(ui(m), ui(m+ 1)))

≤ C(D2
n max{n−1, n−(J+1)(2β−1)+ζ}+Dα

nn
−1[1+I(α=1) log2 n]). (A.10)

Choose M = log2 n
c′ with sufficiently large c′ > 4β/α such that 2−Mα/2 =

o(n−1−(2β−1)) and, as a result, Pn,2(b) + Pn,3(b) is dominated by the bound in

the last inequality of (A.10). Note that we arrive at (A.6), (A.7), (A.8), and

(A.9) without any restriction on J(2β − 1). Thus (A.10) holds for both parts (i)

and (ii). We now prove part (i). By (2.1),

sup
y∈In

|An(y, θ)| + sup
y∈In

|Bn(y, θ)| = Op({n−(β−1/2)L(n)}J+1). (A.11)

Comparing the two bounds on the righthand side of (A.10) and (A.11), we have

supy∈In
|Gn(y, θ)| = op(n−J(β−1/2)−τ ) for any τ < β− 1/2 if (J +1)(2β − 1) ≤ 1,

and τ < −J(β−1/2)+min{(J+1)(β−1/2), 1/2+α(β−1/2)/2} if (J+1)(2β−1) >

1. Applying Taylor’s expansion toK∞(0, θn)−K∞(0, θ) in (A.4) up to the (J+1)-

th term, we see from (3.1) that Rn,J = Gn +K
(0,J+1)
∞ (0, θ∗)(θn − θ)J+1/(J + 1)!

Since |θn − θ|J+1 is of the same order as the bound on the right side of (A.11),

the representation (3.1) in part (i) holds. To prove part (ii) we follow the same

steps as in part (i) but adopt a different upper bound for supy∈In
|Gn(y, θ)|.
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First, supy∈In
|Bn(y, θ)| = op(n−1/2−(β−1/2)+δ) for any δ > 0, since J(2β − 1) ≥

1 implies Ȳn,J = op(n−1/2+δ). Next, we aim to bound supy∈In
|Cn(y, θ)| and

supy∈In
|An(y, θ)|. As noted before, (A.6), (A.7), (A.8), and (A.9) hold whether

J(2β − 1) is greater than one or not. Now that the current case assumes J(2β −
1) ≥ 1, the upper bound on the righthand side of (A.10) is C ·Dα

nn
−1+δ. Hence

sup
y∈In

|Cn(y, θ)| = op(n−(1/2+α(β−1/2)/2)+δ). (A.12)

To bound supy∈In
|An(y, θ)|, we first note that for any j, 2 ≤ j ≤ J − 1,

|Ȳn,j|DJ−j+1
n = op(n−(J+1)(β−1/2)+δ) if j(2β − 1) < 1, and |Ȳn,j|DJ−j+1

n =

op(n−1/2−(J−j+1)(β−1/2)+δ) if j(2β − 1) ≥ 1. Since J(2β − 1) ≥ 1, it is clear

that for 1 ≤ α ≤ 2,

max{−(J+1)(β−1/2),−1/2−(J−j+1)(β−1/2)}<−1/2−(β−1/2)<−1/2−α(β−1/2)/2.

Hence supy∈In
|An(y, θ)| = op(n−(1/2+(β−1/2))+δ), which is dominated by the

bound in 2pt (A.12) for supy∈In
|Cn(y, θ)|. Therefore, supy∈In

|Gn(y, θ)| =

op(n−(1/2+α(β−1/2)/2)+δ ), and, from the identity Rn,J = Gn+K(0,J+1)
∞ (0, θ∗)(θn−

θ)J+1/(J +1)!, part (ii) follows. For the case of the indicator function, the proof

is almost the same, but simpler (see Remark 2-(2)) and omitted (part (i) is

essentially done in Ho and Hsing (1996)).

Proof of Theorem 3.2. The argument is almost the same as in the part (ii)

of Theorem 3.1. Because of the assumption
∑

i |ai| <∞, only a few changes are

made: J is identically one (hence An(y, θ) in (A.5) vanishes), Dn = n−1/2, and

|Ȳn,1| = op(n−1/2+δ).
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