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Abstract: It is well-know that for heavy-tailed distributions the bootstrap can lead

to inconsistent estimation of the distribution of the sample mean; and that this

difficulty may be overcome by using the so-called “subsample bootstrap”, where

the size of a bootstrap resample is an order of magnitude smaller than that of the

sample. Naturally, one might ask whether, as in classical problems, the bootstrap

applied to heavy-tailed distributions produces more accurate approximations to

the distribution of the sample mean than do asymptotic methods. We show that,

generally speaking, it does not. In an important class of problems, the subsample

bootstrap performs more poorly than asymptotic methods, even if the subsample

size is chosen optimally. A technique related to Richardson extrapolation, effec-

tively a cross between the subsample bootstrap and asymptotic methods, performs

better than either approach in some, but not all, circumstances.
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1. Introduction

When a sampling distribution has heavy tails, the usual form of the bootstrap
fails to consistently estimate the distribution of the sample mean. The reason
is that in the case of heavy-tailed distributions, the size of the sample mean
is determined by the values of a small number of extreme order statistics; and
the usual bootstrap does not consistently estimate the distributions of extreme
values. Athreya (1987) showed that this problem may be alleviated by employing
the “subsample bootstrap”, where resamples have a size which is an order of
magnitude smaller than that of the original sample.

This result does not, however, indicate whether the “subsample bootstrap”
provides a more accurate estimate of the true distribution of the mean than do
more standard, asymptotic methods. In the present paper we address this issue,
by developing second-order theory describing the subsample bootstrap in the
context of heavy-tailed distributions. We show that the bootstrap is not second-
order accurate, in that it fails to correct for the first term describing departure
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from the limit distribution. Worse than this, even when the subsample size
is chosen optimally, the error between the subsample bootstrap approximation
and the true distribution is often an order of magnitude larger than that of
an asymptotic approximation. Therefore, while neither the bootstrap nor the
asymptotic approximation succeeds in capturing the first term in an Edgeworth-
type expansion of error, the asymptotic approach is considerably more accurate.

These results are admittedly for a percentile, non-pivotal version of the boot-
strap. However, in the case of heavy-tailed distributions where the tail exponent
is unknown, a pivotal approximation to the distribution of the sample mean can-
not be achieved simply by correcting for scale, and so pivoting is not nearly as
attractive as it is in more conventional settings. We do suggest a two-parameter
approach to pivoting, but point out that while it does provide one-term Edge-
worth correction it is computationally expensive, and its properties depend inti-
mately on the context to which it is applied.

On the other hand, we show that a hybrid approach, based quite literally on a
mixture of asymptotic and subsample bootstrap methods, can produce improved
performance. This method is applicable in a wide variety of settings, where the
subsample bootstrap is used in order to overcome problems of inconsistency of
standard bootstrap methods. (In this context, see Huang, Sen and Shao (1996).)
The main requirement is that the second-order correction supplied by the sub-
sample bootstrap be accurate except for a known or estimable factor c(m,n),
depending on both subsample size m and sample size n. (If c(m,n) represents
the amount by which the second-order term in the subsample bootstrap should
be multiplied in order to equal the true second-order term, then it generally con-
verges to zero as n increases.) The proportions in which the two approximations
should be mixed depend only on c(m,n). Applications include, for example, es-
timation of the distribution of an estimate of an extremal eigenvalue of a matrix,
when one or more eigenvalues are tied for that value. Bickel and Yahav (1988)
were apparently the first to use the method in a bootstrap setting. The “m out
of n” bootstrap has been studied by, for example, Beran and Srivastava (1985),
Hall (1990a), Wu (1990), Mammen (1992), Politis and Romano (1992, 1994),
Politis, Romano and You (1993), Bickel, Götze and van Zwet (1994) and authors
cited therein, usually in the context of applications where the classical form of
the bootstrap does not produce consistency.

In addition to the pioneering work of Athreya (1987), first-order properties
of the subsample bootstrap for heavy-tailed distributions have been studied by
Giné and Zinn (1989), Knight (1989) and Hall (1990b). Arcones and Giné (1989,
1992) have investigated related issues, including consistency of both distribution
and moment estimators based on the bootstrap, for sums from quite general
distributions; and Deheuvels, Mason and Shorack (1993) have addressed the



BOOTSTRAP FOR HEAVY-TAILED DISTRIBUTIONS 889

influence of extremes on the bootstrap. Asymptotic expansions of the distribution
of a mean when the sampling distribution lies in the domain of normal attraction
of a stable law have been developed by Cramér (1962, 1963), Zolotarev (1962)
and Hall (1981). Our main result on bootstrap methods, Theorem 2.2, applies
to a subset of each of the contexts described by these authors.

Section 2 will describe our main theoretical results, and Section 3 will sum-
marize a simulation study which, for moderate sample sizes, illustrates our the-
oretical conclusions. Proofs of results in Section 2 are outlined in Section 4.

2. Main Results

2.1. Introduction and summary

Let Y, Y1, Y2, . . . denote independent and indentically distributed random
variables in the domain of normal attraction of a symmetric stable law H =
H(·|α, a), with exponent α and scale parameter a, where 0 < α < 2, α �= 1 and
a > 0. Then H has characteristic function exp(−a|t|α), and a may be chosen so
that the distribution of Sn = n−1/α ∑

j≤n(Yj − µ) converges to H, where µ = 0
if 0 < α < 1 and µ = E(Y ) if 1 < α < 2. We wish to estimate the distribution
function Gn of Sn.

The asymptotic approach to this problem is to estimate H, and so the per-
formance of the asymptotic estimator depends at least in part on the rate of
convergence of Gn to H. This is perhaps best expressed in terms of a short Edge-
worth expansion, Gn = Hn + o(δn) as n→ ∞, where {δn} denotes a sequence of
positive constants decreasing to zero and Hn is an Edgeworth expansion of which
the first term is H. The rate of convergence of the asymptotic approximation
will not be faster than the order of Hn −H. Expansions have been developed by
Cramér (1962, 1963) and Zolotarev (1962), for example.

Bootstrap methods offer an alternative way of approximating Gn, and take
different forms in the cases α < 1 and α > 1. To describe them, let X =
{Y1, . . . , Yn} denote the first n of the variables Yj introduced two paragraphs
earlier, and let Y ∗

1 , Y
∗
2 , . . . be random variables obtained by sampling randomly

with replacement from X . Define Z∗
i = Y ∗

i when α < 1, and Z∗
i = Y ∗

i − Ȳ when
α > 1, where Ȳ = n−1 ∑

j≤n Yj. Put S∗
m = m−1/α ∑

j≤mZ∗
j and write Ĝm for

the distribution function of S∗
m conditional on X . Then Ĝm is the percentile

bootstrap estimator of Gm. It shares the limit, H, of Gn if and only if m = m(n)
diverges in such a way that m/n→ 0 as n→ ∞.

Subsection 2.2 describes the relative performance of asymptotic and boot-
strap approximations, pointing out that the former is usually preferable. This is
the central conclusion of our paper. A hybrid approach which can, on occasion,
perform better than either asymptotic or Edgeworth methods, is also discussed
in subsection 2.2.
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The theoretical results that underpin these conclusions are introduced in
subsections 2.3 and 2.4. Subsection 2.3 develops a typical Edgeworth expansion
Hn. For the sake of brevity, only the case α > 1 is be treated there. (Results and
proofs for α < 1 are very similar, but that case does not feature in our comparison
of bootstrap and asymptotic methods in subsection 2.3.) Approximation theory
for Ĝm is developed in subsection 2.4. There we treat both the cases α < 1 and
α > 1, since there are significant technical differences between them.

2.2. Practical implications

For the sake of definiteness we assume that the sampling distribution arises as
an inverse power of a continuous distribution. That is, Y1, . . . , Yn are distributed
as Y = (sgnX)|X|−1/α, 1 < α < 2, where X has a continuous distribution. The
practical problem which we shall address is that of estimating the distribution of
Ȳ −µ; in effect, of estimating Gn. We show that, (a) even for optimal choice of m,
the subsample bootstrap is outperformed by a relatively simple asymptotic ap-
proximation in which Hill’s (1975) method is employed to estimate the unknowns
α and a; and (b) the asymptotic approximation approach can, on occasion, be
improved by combining it with the bootstrap.

We begin by describing the asymptotic method, which we claim produces
an approximation to Gn that is in error by terms of order ξn = n1−(2/α) ∨
(n−2/5 log n). Provided that the distribution function F of X has three contin-
uous derivatives in a neighbourhood of the origin, P (|Y | > y) = 2y−αF ′(0) +
1
3y

−3αF ′′′(0) + o(y−3α) as y → ∞. In this circumstance, a technique based on
extreme value theory (Hill (1975)) may be used to develop very simple estimators
of α and F ′(0), with convergence rates n−2/5 and n−2/5 log n respectively (Hall
(1982), Csörgő, Deheuvels and Mason (1985)). Faster rates may be achieved
using more sophisticated approaches, but generally, a convergence rate of n−1/2

cannot be achieved without parametric knowledge.
The distribution of Sn = n−1/α ∑

j≤n(Yj − µ) converges to H(·|α, a), with
characteristic function exp(−a|t|α), where

a = a1 = 2F ′(0)
∫ ∞

0
x−α sinxdx = 2F ′(0)π/{Γ(α) sin(απ/2)} > 0. (2.1)

Substituting the estimators just above into this formula we obtain an estimator
of a that converges at rate n−2/5 log n. Therefore, the estimator Ĥ = H(·|α̂, â)
of H = H(·|α, a) is in error by terms of size n−2/5 log n. In Theorem 2.1 we shall
point out that Gn −H is of size n1−(2/α). It follows that if we take Ĥ to be our
approximation to Gn then the error is of size ξn. This result continues to hold if
the norming exponent 1/α, in n1/α, is estimated as well — substituting α̂ for α
there produces another error term of order ξn.
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Next we note that in the same setting, and for optimal choice of m, the
bootstrap suffers an error of size ηn = n−(α−1)(2−α)/α, which is of larger order
than ξn. In subsection 2.4 we shall argue that the bootstrap fails to correct for the
first term in an Edgeworth expansion of Gn, and in fact adds its own error from
the same source, of size m1−(2/α). There is additionally an error of (mn−1)1−(1/α)

arising from the bootstrap approximation of Gm by Ĝm; see (2.15). The over-all
error is minimized by choosing m so that these two quantities are of the same
order, which entails m � nα−1 and gives an over-all error of size ηn.

There is an alternative bootstrap method, which mixes both the techniques
discussed above. It is based on “correcting” Ĝm so as to make the first term
in its Edgeworth expansion coincide with that of Gn. Specifically, let α̂ and â

denote the Hill estimators of α and a, write Ĥ = H(·|α̂, â) for the asymptotic
approximation, and put

G̃n = {1 − (mn−1)(2/α̂)−1}Ĥ + (mn−1)(2/α̂)−1Ĝm. (2.2)

This is motivated by an Edgeworth expansion, Gn(x) = H(x) + n1−(2/α)A1(x)+
smaller order terms, which we shall give in Theorem 2.1. In view of this expan-
sion, if H and Gm (rather than Gn) were known, a “Richardson extrapolation”
argument would suggest

{1 − (mn−1)(2/α)−1}H + (mn−1)(2/α)−1Gm (2.3)

as an approximation to Gn. Replacing α,H and Gm in this formula by their
estimators we obtain the estimator at (2.2).

The dominant terms in G̃n −Gn are of sizes n−2/5 log n, arising from the ap-
proximation ofH by Ĥ, and (mn−1)(2/α)−1{(mn−1)1−(1/α)+(m−1/α∨m2−(4/α))},
coming from the approximation of Gm by Ĝm. This suggests taking m ≈ n1−(1/α)

for α ≤ 3/2 and m ≈ n(α−1)/(3−α) for α > 3/2, which produces an over-all error
rate of n−2/5 log n when α ≤ 4−√

6 = 1.55 and n−2(2−α)/α(3−α) when α > 4−√
6.

In the range 10/7 < α < 2 this improves on the performance of the straight
asymptotic approximation method, discussed earlier.

This hybrid or mixture approach is new in the context of the bootstrap for
heavy-tailed means, but has been used before in other settings. In its general
form it involves approximating an unknown distribution, Ψ say, by two others
that are known, Ψ0 and Ψ1. If

Ψ = Ψ0 + εψ + o(ε) and Ψ1 = Ψ0 + δψ + o(δ)

for known constants ε and δ, and an unknown function ψ, then

{1 − (ε/δ)}Ψ0 + (ε/δ)Ψ1 (2.4)
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is often a better approximation to Ψ1 than was Ψ0. In our work the roles of
Ψ,Ψ1,Ψ0, ε, and δ are played by Gn, Gm,H, n

1−(2/α) and m1−(2/α), respectively;
and (2.4) is equivalent to (2.3). Further examples include the case where Ψ is the
distribution of a sum of independent random variables with finite, nonzero third
moment, and Ψ0,Ψ1 are standard normal and chi-squared distribution functions,
respectively. There, ε/δ is proportional to the ratio of two different skewnesses
(with that for Ψ estimated from data, if its true value is not known). In an appli-
cation (to the Studentized bootstrap) of the efficient simulation method proposed
by Bickel and Yahav (1988), Ψ0 would be as before, and Ψ1 would be a Monte
Carlo distribution function approximation obtained using bootstrap samples of
smaller size than the original sample. In this case the smaller resample size is
not necessarily employed because the bootstrap fails when the full sample size
is used, but because resampling with a smaller resample is less computationally
expensive. However, any application of the bootstrap where smaller resamples
are necessary for consistency, such as the context studied in this paper, is a po-
tential problem to which to apply the hybrid method. Beyond the bootstrap,
Booth and Hall (1993) have employed the technique in the context of jackknife
estimation of a distribution function.

If both the parameters α and a are unknown then there is no simple analogue
of the percentile-t bootstrap, which has found favour in more classical problems
concerning the bootstrap (e.g. Hall (1988)). One approach to pivoting would
be as follows. Let α̂, â denote estimators of α, a, and consider boostrapping
T = H{n1−(1/α̂)(Ȳ − µ)|α̂, â} instead of Ȳ − µ or Ȳ . Since the asymptotic
distribution of T does not depend on unknowns — it is the uniform distribution
on the interval (0, 1) — then this approach will correct for the first term in an
Edgeworth expansion. However, it is time consuming to implement.

2.3. Properties of the unconditional distribution

In the case 1 < α < 2 we use a simple motivating example, involving a
distribution expressible as a negative power of a continuous random variable X
(compare Hall (1981)). More general Edgeworth expansions will be discussd in
Remark 2.3.

Put Y = (sgnX)|X|−1/α, where 1 < α < 2, and let µ = E(Y ) and Z = Y −µ.
Assume that

for 1 < α ≤ 4/3 the distribution function F of X has two derivatives in
a neighbourhood of the origin, and F ′′ satisfies a Lipschitz condition
of order ε > 0; that for 4/3 < α < 2, F has one derivative in a
neighbourhood of the origin, and F ′ satisfies a Lipschitz condition of
order (4/α) − 2 + ε for some ε > 0; and that F ′(0) > 0. (2.5)
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This condition is satisified if F has three bounded derivatives in a neighbourhood
of the origin, and F ′(0) > 0. Define a = a1 as in (2.1),

a′2 =
∫ ∞

0
x{P (|Y | > x) − 2F ′(0)x−α}dx,

a3 =

{
F ′′(0)

∫ ∞
0 x−2α(1 − cos x)dx if 1 < α ≤ 4/3

0 if 4/3 < α < 2,

a2 = a′2 − 1
2µ

2. Let L = Aj , B1, B2 denote the real-valued functions whose re-
spective Fourier-Stieltjes transforms,

∫ ∞
−∞ eitxdL(x), are given by (1/j!)(−a2t

2)j

exp(−a1|t|α), ia1µ(sgn t)|t|α+1 exp(−a1|t|α), −(1
2a

2
1+ia3 sgn t)|t|2α exp(−a1|t|α).

In this notation, A0 = H, the distribution function of the limiting stable law.
Write Gn for the distribution function of Sn = n−1/α ∑

j≤n Zj.

Theorem 2.1. Under condition (2.5),

Gn(x) =
2∑

j=0

nj{1−(2/α)}Aj(x)+n−1/αB1(x)+n−1B2(x)+o(n−1+n2−(4/α)) (2.6)

uniformly in x as n→ ∞.

Remark 2.1. Rate of convergence
The rate of convergence in this limit theorem can be made slower than n−ε,

for any given ε > 0, by choosing α sufficiently close to 2; note the presence of the
term in n1−(2/α) in the expansion

Hn(x) =
2∑

j=0

nj{1−(2/α)}Aj(x) + n−1/αB1(x) + n−1B2(x),

representing the non-remainder portion of the right-hand side of (2.6). If follows
that an asymptotic approximation to the distribution function Gn, such as that
suggested in subsection 2.1, may be in error by more than order n−ε regardless
of the accuracy with which we may estimate the unknowns α and a.

Remark 2.2. Short Edgeworth expansions
If µ �= 0 then a simplified three-term version of formula (2.6) may be ex-

pressed as

Gn(x) =



A0(x) + n1−(2/α)A1(x)
+n−1/αB1(x) + o(n−1/α) if 1 < α < 3/2

A0(x) + n−1/3A1(x)
+n−2/3{A2(x) +B1(x)} + o(n−2/3) if α = 3/2

A0(x) + n1−(2/α)A1(x)
+n2−(4/α)A2(x) + o(n2−(4/α)) if 3/2 < α < 2.
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However, shoule µ vanish then so does B1, and these formulae should be replaced
by

Gn(x) =



A0(x) + n1−(2/α)A1(x)
+n−1B2(x) + o(n−1) if 1 < α < 4/3

A0(x) + n1−(2/α)A1(x)
+n−1{A2(x) +B2(x)} + o(n−1) if α = 4/3

A0(x) + n1−(2/α)A1(x)
+n2−(4/α)A2(x) + o(n2−(4/α)) if 4/3 < α < 2.

Remark 2.3. More general Edgeworth expansions
Expansions in general contexts are easily derived using arguments similar to

those employed to establish Theorem 2.1. For example, suppose independent and
identically distributed random variables Zj have common characteristic function
ψ; let πn be a complex-valued function such that the inverse Fourier-Stieltjes
transform Hn of exp(−a|t|α)πn(t) is real-valued; and assume that

lim
t→0

|t|−α{1 − ψ(t)} = a > 0, sup
|t|>ε

|ψ(t)| < 1, (2.7)

πn(0) = 1, sup
−∞<t<∞

(1 + |t|)−C1 |πn(t)| ≤ C2 <∞, (2.8)∫
|t|≤nξ

|t|−1|ψ(t/n1/α)n − exp(−a|t|α)πn(t)|dt = o(δn) (2.9)

as n → ∞, for all ε > 0 and some ξ > 0, where a, C1, C2, δn are positive and
δn → 0. (A candidate for Hn— and hence πn — is noted in Remark 2.1, but of
course there are other possibiliteis.) Then for all K > 0, the distribution function
Gn of n−1/α ∑

j≤n Zj satisfies

Gn(x) = P (Sn ≤ x) = Hn(x) + o(δn) +O(n−K) (2.10)

uniformly in x. Condition (2.5) serves to ensure that (2.7)-(2.9) hold with a = a1,
δn = n−1 +n2−(4/α) and πn given by (4.5) (see Section 4). In the next subsection
we shall assume a very slightly stronger version of (2.9): for some ξ, C > 0,∫

|t|≤nξ
|t|−1|ψ(t/n1/α)n − exp(−a|t|α)πn(t)|2 exp(C|t|α)dt = o(δ2n), (2.11)

which again follows form (2.5).

2.4. Properties of the conditional distribution

In this subsection we shall develop theory describing the bootstrap distri-
bution function Ĝm, introduced in subsection 2.1. Our context will be the
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general one discussed in Remark 2.3. Thus, we write Hn for a real-valued
function (an Edgeworth expansion of Gn) whose Fourier-Stieltjes transform is
exp(−a|t|α)πn(t).

Define Z̄ = n−1 ∑
j≤nZj , H̃m = Hm if 0 < α < 1, and H̃m(x) = Hm(x +

m1−(1/α)Z̄) if 1 < α < 2. In both cases put

Mm(x) = mn−1
n∑

j=1

{Hm(x−m−1/αZj) − EHm(x−m−1/αZj)}.

As we shall show in Remarks 2.4-2.6, H̃m −Hm and Mm together represent the
dominant contributions to the error, Ĝm −Gm, of the bootstrap approximation.

Let {cn} denote any increasing sequence of constants such that
∑

n≥2

(ncn log n)−1 <∞. For example, we might take cn = (log n)ε for arbitrary ε > 0.

Theorem 2.2. Assume (2.7), (2.8) and (2.11) hold, and that mn−1(log n)2 +
m−ε log n→ 0 for all ε > 0. Then

Ĝm(x) = H̃m(x) +Mm(x) + o(δm)

+


O[mn−1 log n+ {(mn)−1 log n}1/2] if 0 < α < 1

O[(mn−1)2−(2/α)(cn log n)2/α

+{(mn)−1 log n}1/2] if 1 < α < 2

(2.12)

with probability one, and

Ĝm(x) = H̃m(x) +Mm(x) + op(δm)

+

{
Op{mn−1 + (mn)−1/2} if 0 < α < 1
Op{(mn−1)2−(2/α) + (mn)−1/2} if 1 < α < 2.

(2.13)

We shall prove only (2.12), in Section 3, since a derivation of (2.13) is similar
but simpler.

By (2.10) and either (2.12) or (2.13),

Ĝm −Gm = H̃m −Hm +Mm + remainder terms. (2.14)

In the remarks below we show that the remainder terms in (2.14) are genuinely
negligible relative to H̃m −Hm and Mm. The remarks will also derive the orders
of H̃m −Hm and Mm, showing that

Ĝm(x) −Gm(x) =


(mn−1)1−(1/α)H ′(x)Sn

+op{δm + (mn−1)1−(1/α)} if 1 < α < 2,

(mn−1)1/2Nn(x)
+op{δm + (mn−1)1/2} if 0 < α < 1,

(2.15)



896 PETER HALL AND BING-YI JING

where the distribution of Sn converges to H, and Nn(x) is asymptotically Nor-
mally distributed with zero mean and variance σ(x)2 > 0.

Remark 2.4. Size of H̃m −Hm

When 1 < α < 2 the bootstrap involves centring at the sample mean, and
the term H̃m −Hm in (2.14) represents the dominant portion of the error aris-
ing from that part of the operation. By simple Taylor expansion, H̃m − Hm ∼
(mn−1)1−(1/α)H ′Sn, where Sn = n−1/α ∑

j≤n(Yj −µ) converges in distribution to
the stable law H as n → ∞. Furthermore, (cn log n)−1Sn → 0 with probability
one if and only if

∑
n≥2(ncn log n)−1 <∞ (see Petrov (1975), pp.273-274). There-

fore, H̃m−Hm is of precise size (mn−1)1−(1/α) in probability, and of smaller order
than (mn−1)1−(1/α)(log n)ε, for each ε > 0, with probability 1. Furthermore, the
terms in (mn−1)2−(2/α)(log n)2c2n and (mn−1)2−(2/α) in (2.12) and (2.13) are of
smaller order than H̃m −Hm.

When 0 < α < 1 the bootstrap does not involve any centring, and so H̃m −
Hm vanishes.

Remark 2.5. Size of Mm

We claim that Mm is of size (mn−1)1/2 in probability and (mn−1 log log n)1/2

almost surely. To appreciate why, note that for each x,

m−1nE{Mm(x)2} → σ(x)2 = b

∫ ∞

−∞
{H(x+ y) −H(x)}2|y|−(α+1)dy,

where b > 0 is such thatH ′(y) ∼ b|y|−(α+1) as |y| → ∞; and that, by Lyapounov’s
central limit theorem, (m−1n)1/2Mm(x) is asymptotically Normal N{0, σ(x)}. It
is readily proven from Bernstein’s inequality that Mm(x) = O{(mn−1 log n)1/2}
with probability one, and a longer argument may be employed to show that
Mm(x) = O{(mn−1 log log n)1/2}. (This requires, in addition to the conditions
of Thorem 2.2, the assumption that m(n) is nondecreasing andm(n+1)−m(n) =
O(1).)

3. Numerical Results

We took Y = (sgnX)|X|−1/α, where X was Normal N(0, 1) and 1 < α < 2.
In this setting, a = (π/2)1/2/{Γ(α) sin(απ/2)}, and the distribution function H

of the stable law with characteristic function exp(−a|t|α) may be calculated by
numerical integration from the formula

H(x|α, a) =
1
2

+ π−1
∫ ∞

0
t−1 sin(tx) exp(−atα)dt.

An asymptotic approximation to the distribution function Jn(x)=Gn(n−1/αx) =
P{∑j≤n(Yj − µ) ≤ x} is furnished by Ĵ1n = H(n−1/α̂x|α̂, â), where α̂ and â
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are defined using the method of Hill (1975). Our main aim is to compare
this approach with the subsample bootstrap, which produces the estimator
Ĵ2,n(x) = Ĝm(n−1/αx). A third approximation is via the mixture distribution
at (2.2), which suggests Ĵ3,n(x) = G̃m(n−1/αx). (We replaced H(n−1/αx|α̂, â)
by H(n−1/α̂x|α̂, â), to reflect the fact that α would be unknown in paractical
applications of this method.) In each case we make the comparison using the
uniform metric to measure distance: d̂j = sup |Ĵj,n − Jn|.

Let |Y(1) − Ȳ | ≤ · · · ≤ |Y(n) − Ȳ | denote the ordered values of |Yi − Ȳ |. To
implement Hill’s approach we put

α̂ = (k + 1)
( k∑

j=1

log |Y(n−j+1) − Ȳ | − k log |Y(n−k) − Ȳ |
)−1

,

â = Ĉπ/{Γ(α̂) sin(α̂π/2)},where Ĉ = |Y(n−k) − Ȳ |α̂(k + 1)/n.

Both the asymptotic and bootstrap methods involve selecting tuning parameters,
the number of order statistics, k, and the subsample size, m respectively. To make
our comparative study fair we conducted extensive simulations to determine, for
each α, the optimal values of k and m in the sense of minimising d̂j .

Table 3.1 gives the average, over five samples (four in the case of the hybrid
method), of d̂j for j = 1, 2, 3, as a function of α = 1.1(0.1)1.9, for sample sizes
n = 20, 50, 100, and employing optimal tuning parameters. (Computation was
very time-consuming, hence our restriction to only four or five samples.) In all
cases the bootstrap performs consistently worse than the asymptotic approach, as
predicted by our theory. However, the hybrid method initially (for n = 20) per-
forms worse than the asymptotic approach. By n = 50 our large-sample theory is
more appropriate; there, the hybrid method outperforms both the bootstrap and
the asymptotic approaches for the majority of values of α. By n = 100 the hy-
brid method is definitely outperforming both the bootstrap and the asymptotic
approach.

Table 3.1. Approximations to E(d̂j) for asymptotic, subsample bootstrap
and hybrid methods

α 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Asymptotic 0.063 0.094 0.148 0.062 0.082 0.063 0.063 0.062 0.064

n = 20 Bootstrap 0.181 0.149 0.216 0.130 0.160 0.113 0.110 0.101 0.093
Hybrid 0.095 0.102 0.185 0.100 0.146 0.094 0.097 0.100 0.093

Asymptotic 0.096 0.088 0.074 0.065 0.076 0.071 0.059 0.056 0.057
n = 50 Bootstrap 0.138 0.103 0.112 0.115 0.083 0.080 0.086 0.070 0.079

Hybrid 0.065 0.058 0.061 0.050 0.049 0.061 0.075 0.065 0.068
Asymptoctic 0.090 0.073 0.063 0.063 0.063 0.060 0.054 0.058 0.049

n = 100 Bootstrap 0.118 0.145 0.100 0.099 0.080 0.108 0.071 0.061 0.085
Hybrid 0.048 0.042 0.047 0.046 0.027 0.040 0.050 0.043 0.073
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The α values where the hybrid method performed worst were generally the
larger ones. To some extent this is predicted by our theory, in that the con-
vergence rates of all approaches have been shown to be poor for large α, being
worse than n−ε for any given ε > 0 if α is sufficiently close to 2. This fact,
coupled with the variability of particularly the bootstrap method (see below),
indicates that any of the three methods may tend to outperform the others for
such α’s. However, we did not notice the predicted inferior performance of the
hybrid method for α close to 1. In general, the hybrid method seems to perform
well for moderate to large sample sizes.

The variability of any of the different methods may be measured by the
average (over the nine values of α used in Table 3.1) of the sample variances
(for the four or five different realizations) of the value of dj corresponding to
that method. For each of the three sample sizes considered, this measure shows
that the bootstrap is the most variable, followed by the hybrid method. The
same result is immediately seen from a plot of the five curves corresponding to
values (for a given sample) of dj as a function of α. Consistently, for each of the
three sample sizes, the bootstrap method produces more variable curves than the
hybrid method.

4. Proofs

Proof of Theorem 2.1. Suppose first that 1 < α ≤ 4/3. In view of the smooth-
ness conditions imposed on F , the functions S(x) = P (|Y | > x) − 2F ′(0)x−α

and D(x) = P (Y > x) − P (Y < −x) − F ′′(0)x−2α satisfy |S(x)| + |D(x)| =
O(x−(2α+η)) as x→ ∞, for some η > 0. Therefore, as t ↓ 0,∫ ∞

0
(x− sinx)S(x/t)dx = O(t2α+η),

∫ ∞

0
(1 − cos x)D(x/t)dx = O(t2α+η).

Hence, for η > 0 sufficiently small,

1 − E(cos tY ) = t

∫ ∞

o
(sin tx){2F ′(0)x−α + S(x)}dx

= a1t
α + a′2t

2 +O(t2α+η), (4.1)

E(sin tY ) = µt− t

∫ ∞

0
(1 − cos tx){F ′′(0)x−2α +D(x)}dx

= µt− a3t
2α +O(t2α+η), (4.2)

ψ(t) = E(eitZ ) = 1 − {a1|t|α − ia1µ(sgn t)|t|α+1 + a2t
2

+ia3(sgn t)|t|2α} +O(t2α+η). (4.3)

Assume next that 4/3 < α < 2. Define S(x) as before, but now put D(x) =
P (Y > x) − P (Y < −x). The analogues of (4.1)-(4.3) are here,

1 −E(cos tY ) = a1|t|α + a′2t
2 +O(|t|4−α+η), E(sin tY ) = µt+O(|t|4−α+η),

ψ(t) = 1 − {a1|t|α − ia1µ(sgn t)|t|α+1 + a2t
2} +O(|t|4−α+η).
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Henceforth we treat only the case 1 < α ≤ 4/3, bearing in mind that the last-
written formula should be used in place of (4.3) when α > 4/3.

Put ε = η/α, z1 = a1|t|α+n1−(2/α)a2t
2, z2 = n−1/αia1µ(sgn t)|t|α+1 −n−1ia3

(sgn t)|t|2α, z3 = n−(1+ε)(|t|+ t10). Then for |t| ≤ nξ and ξ > 0 sufficiently small,

{ψ(t/n1/α)}n = [1 − n−1{z1 − z2 +O(z3)}]n

= exp(−a1|t|α)
[
1 +

2∑
j=1

1
j!

(−n1−(2/α)a2t
2)j

+z2 − n−1 1
2
a2

1|t|2α +O{z3 + (n1−(2/α)t2)3}
]
. (4.4)

Condition (2.5) implies that the distribution of Z satisfies Cramér’s condi-
tions: sup|t|>ε |ψ(t)| < 1 for all ε > 0. From that condition and (2.5) we may
deduce the existence of a constant C ∈ (0, 1) such that |ψ(t)| < 1−Cmin(1, |t|α)
for all real t. Hence, for any κ > ξ > 0,( ∫ nκ

nξ
+

∫ −nξ

−nκ

)
|ψ(t/n1/α)|n ≤ 2

∫ nκ

nξ
exp{−Cmin(tα, n)}dt = O(n−K)

for all K > 0. It is straightforward to prove that, with

π(t) =
K∑

j=1

1
j!

(−n1−(1/α)a2t
2)j + n−1/αia1µ(sgn t)|t|α+1

−n−1(
1
2
a2

1 + ia3sgn t)|t|2α, (4.5)

we have ( ∫ nκ

nξ
+

∫ −nξ

−nκ

)
exp(−a1|t|α)|π(t)|dt = O(n−K).

Therefore,( ∫ nκ

nξ
+

∫ −nξ

−nκ

)
|{ψ(t/n1/α)}n − exp(−a1|t|α)π(t)|dt = O(n−K)

for all K > 0. Combining this result and (4.4), and remembering that the latter
is valid for |t| ≤ nξ, we deduce that for a κ > 0,∫ nκ

0
|t|−1|{ψ(t/n1/α)}n − exp(−a1|t|α)π(t)|dt = o(n−1 + n2−(4/α)).

The theorem follows from this formula and the smoothing lemma for character-
istic functions (Petrov (1975), Theorem 2, p.109).

Proof of (2.12). In the case 1 < α < 2 we may assume without loss of generality
that µ = E(Y ) = 0, and define Zj = Yj for both 0 < α < 1 and 1 < a < 2. Put
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W = 0 if 0 < α < 1 and W = m1−(1/α)n−1 ∑
j≤n Zj if 1 < α < 2. Let ψ̂(t) =

n−1 ∑
j≤n exp(itZj) denote the empirical characteristic function of the data X .

Then ψ = E(ψ̂) denotes the characterisitc function of Z, and ψ̂(t/m1/α)me−itW is
the characteristic function of S∗

m = m−1/α ∑
j≤mZ∗

j , conditional on X . Put ∆ =
ψ̂ − ψ and D(t) = m|∆(t/m1/α)|, let λn denote a sequence of positive numbers
diverging so fast that λn/ log n → ∞ yet so slowly that mn−1λn log n → 0, and
put tn = min{(n/mλn)1/α,m1/α}.

Our proof of the theorem is in five steps.

Step (a). There exists a set E1 = E1(n), satisfying P (E1) = 1 − O(n−K) for all
K > 0, on which for constants C1, C2 > 0,

|ψ̂(t/m1/α)m − ψ(t/m1/α)m −m∆(t/m1/α)ψ(t/m1/α)m−1|
≤ C1D(t)2 exp(−C2|t|α) (4.6)

uniformly in |t| ≤ tn.
To derive (4.6) observe that by the binomial theorem,

|ψ̂m − ψm −m∆ψm−1| ≤
m∑

j=2

(m
j

)
|∆|j |ψ|m−j

≤ 1
2
m2|∆|2|ψ|m exp{(m− 2)|∆/ψ|}. (4.7)

Let C2 > 0 be such that |ψ(t)| ≤ exp(−C2|t|α) for |t| ≤ 1, and put C−1
3 =

inf |t|≤ζ |φ(t)|, where ζ > 0 is chosen sufficiently small for the infimum to be
nonzero. Then, when the argument of ∆ and ψ is t/m1/α and |t| ≤ ζm1/α,

|ψ|m exp(|m∆/ψ|) ≤ exp{C3m|∆(t/m1/α)| − C2|t|α}. (4.8)

In Step (d) we shall derive the following result.

Lemma 4.1. For all K > 0,

sup
|t|≤1

P [|ψ̂(t) − ψ(t)| > max{(n−1λn|t|α)1/2, n−1λn}] = O(n−K).

In view of the lemma, sup|t|≤tn P{D(t) > 1} = O(n−K) for all K > 0. It
follows that if An is a set of t values satisfying |t| ≤ tn, and if An contains no
more than O(nA) elements for an arbitrary but fixed A > 0, then

P
{

sup
t∈An

D(t) > 1
}
≤

∑
t∈An

P{D(t) > 1} = O(n−K) (4.9)

for all K > 0. If t1, t2 are real numbers then

|D(t1) −D(t2)| ≤ C4m
1−(1/α)|t1 − t2|n−1

n∑
i=1

|Zi| + |ψ(t1) − ψ(t2)|. (4.10)



BOOTSTRAP FOR HEAVY-TAILED DISTRIBUTIONS 901

By choosing An to be a lattice with points n−B apart, for arbitrarily large but
fixedB, we may deduce from (4.9) and (4.10) that the event E1 ={sup|t|≤tn D(t) ≤
2} satisfies P (E1) = 1 − O(n−K) for all K > 0. Combining (4.7) and (4.8) we
deduce that on E1,

|ψ̂(t/m1/α)m − ψ(t/m1/α)m −m∆(t/m1/α)ψ(t/m1/α)m−1|
≤ 1

2
D(t)2 exp(C3 − C2|t|α),

which gives (4.6) with C1 = 1
2 exp(C3).

Step (b). With probability one,

I1 ≡
∫
|t|≤tn

|t|−1D(t)2 exp(−C2|t|α)dt = O(mλn/n). (4.11)

To derive (4.11), note that by Lemma 4.1,

sup
|t|≤m1/α

P [D(t) > max{(mn−1λn|t|α)1/2,mn−1λn}] = O(n−K)

for all K > 0. The argument following (4.9) may now be used to show that the
event

E2 =
{

sup
|t|≤m1/α

D(t)/max[(mn−1λn|t|α)1/2,mn−1λn] ≤ 1
}

satisfies P (E2) = 1 −O(n−K). On E2,

I2 ≡
∫
(mn−1λn)1/α≤|t|≤tn

|t|−1D(t)2 exp(−C2|t|α)dt

≤ 2
∫

(mn−1λn)1/α≤|t|≤tn
t−1 max{mn−1λnt

α, (mn−1λn)2} exp(−C2t
α)dt

≤ 2mn−1λn

∫ ∞

0
tα−1 exp(−C2t

α)dt = C4mλn/n,

say. By the Borel-Cantelli lemma, P (Ẽ2 i.o.) = 0, where Ẽ2 denotes the comple-
ment of E2. Therefore, with probability one,

I2 = O(mλn/n). (4.12)

Finally, we show that

I3 ≡
∫
|t|≤(mn−1λn)1/α

|t|−1D(t)2 exp(−C2|t|α)dt = o(mλn/n), (4.13)

with probability one.
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The method of proof involves first using standard bounds for | sinx|, | sin x−
x| and 1 − cos x to prove that, with η = η(n) = (λn/n)1/2,

I3 ≤ C5m
2
[ ∫

|t|≤η
|t|−1{n−1

n∑
i=1

min(1, |tZi|)}2dt+ η2α
]

for 0 < α < 1, and

I3 ≤ C5m
2
{ ∫

|t|≤η
|t|−1

(
[n−1

n∑
i=1

min{1, (tZi)2}]2 + {n−1
n∑

i=1

min(|tZi|, |tZi|3)}2

+{n−1
n∑

i=1

min(1, |tZi|)I(|Zi|>η−1)}2
)
dt+η2

∣∣∣n−1
n∑

i=1

ZiI(|Zi|≤η−1)
∣∣∣2+η2α

}
for 1 < α < 2. Expanding the squares of series as double series, and integrating
the latter term-by-term, we may prove that I3 = O{m2T 2

α + η2α + (log n)U2
3 },

where Tα = ηU1 if 0 < α < 1, Tα = η2U2 + η|U4| if 1 < α < 2,

U1 = n−1
n∑

i=1

|Zi|I(|Zi| ≤ η−1) for 0 < α < 1,

U2 = n−1
n∑

i=1

Z2
i I(|Zi| ≤ η−1) for 1 < α < 2,

U3 = n−1
n∑

i=1

I(|Zi| > η−1) for 0 < α < 1 or 1 < α < 2,

U4 = n−1
n∑

i=1

ZiI(|Zi| ≤ η−1) for 1 < α < 2.

Define u1 = u4 = ηα−1, u2 = ηα−2 and u3 = ηα, and put pi = P{|Ui − E(Ui)| >
ui}. It may be proved that |E(Ui)| = O(ui), and from Bernstein’s inequality
that pi = O{exp(−C6nη

α)}= O{exp(−C6λn)}. Therefore, since λn → ∞ faster
than log n, the Borel-Cantelli lemma implies that |Ui| = O(ui) with probability
1, for 1 ≤ i ≤ 4. Hence, I3 = O(m2η2α log n) = o(mn−1 log n). This completes
the proof of (4.13).

Step (c). Completion
Put t′n = min(tn,mξ). By assumption,∫

|t|≤t′n
|t|−1|ψ(t/m1/α)m − exp(−a|t|α)πm(t)|dt = o(δm). (4.14)

We claim that∫
|t|≤t′n

|t|−1m|∆(t/m1/α){ψ(t/m1/α)m−1 − exp(−a|t|α)πm(t)}|dt

= o(δm) +O{(λn/mn)1/2} (4.15)
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with probability one. To appreciate why, note that the left-hand side is domi-
nated by{ ∫

|t|≤t′n
|t|−1D(t)2 exp(−C7|t|α)dt

}1/2

×
{ ∫

|t|≤t′n
|t|−1|ψ(1/m1/α)m−1 − exp(−a1|t|α)πm(t)|2 exp(C7|t|α)dt

}1/2
,

where C7 > 0 is arbitrary. The arguments in Step(b) show that the first integral
in the expression equals O(mλn/n) = o(1), with probability one. The second
integral is dominated by C8(I4 + I5), where

I4 =
∫
|t|≤t′n

|t|−1|ψ(t/m1/α)m − exp(−a|t|α)πm(t)|2 exp(C7|t|α)dt = o(δ2m),

I5 =
∫
|t|≤t′n

|t|−1|ψ(t/m1/α)|2(m−1)|1 − ψ(t/m1/α)|2 exp(C7|t|α)dt

≤ C9

∫
|t|≤t′n

|t|−1 exp(−C10|t|α)|t/m1/α|2α exp(C7|t|α)dt = O(m−2),

provided C7 is sufficiently small. Result (4.15) is immediate.
Formulae (4.6) and (4.11) imply that∫

|t|≤t′n
|t|−1|ψ̂(t/m1/α)m−ψ(t/m1/α)m−m∆(t/m1/α)ψ(t/m1/α)m−1|dt=O(mλn/n)

with probability one. This property, (4.14) and (4.15) together yield that∫
|t|≤t′n

|t|−1|ψ̂(t/m1/α)m − {1 +m∆(t/m1/α)} exp(−a1|t|α)πm(t)|dt

= o(δm) +O{(mλn/n) + (λn/mn)1/2} (4.16)

with probability one.
The following lemma is proved in Step (e).

Lemma 4.2. There exist constants C11, C12 > 0 such that for all 1 ≤ m ≤ n

and all real t, E|ψ̂(t)|m ≤ C11 exp{−mC12(|t|α ∧ 1)}.
Define

I4 =
∫

t′n<|t|≤nκ
|t|−1E|ψ̂(t/m1/α)|mdt,

where κ > 1 is fixed but arbitrarily large. In view of Lemma 4.2,

E(I4)≤C13

∫ nκ

t′n
t−1 exp{−C12(|t|α∧1)}dt≤C14n

κ exp[−C12{(n/mλn)∧m(αξ)∧1}].

By definition of λn, (n/mλn)/ log n→ ∞, and since m is an order of magnitude
larger than each positive power of log n, m(αξ)∧1/ log n→ ∞. Therefore, E(I4) =
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O(n−K) for all K > 0. It now follows from the Borel-Cantelli lemma that for
each K > 0, I4 = O(n−K) with probability one.

It is straightforward to show that with probability one,∫
t′n<|t|≤nκ

|t|−1|{1 +m∆(t/m1/α)} exp(−a1|t|α)πm(t)|dt = O(n−K)

for all K > 0. Hence, with

A(t) = ψ̂(t/m1/α)m − {1 +m∆(t/m1/α)} exp(−a1|t|α)πm(t),

we have ∫
t′n<|t|≤nκ

|t−1A(t)|dt = O(n−K).

This result and (4.16) together imply that for all κ > 0,∫
|t|≤nκ

|t−1A(t)|dt = o(δm) +O{mλn/n) + (λn/mn)1/2} (4.17)

with probability one.
When 0 < α < 1, A equals the Fourier-Stieltjes transform of the function

Ĝm − (H̃m + Mm) = Ĝm − (Hm +Mm). Theorem 2.2 then follows from (4.17)
via the smoothing lemma for characteristic functions (Petrov (1975), p.109). In
the case 1 < α < 2 the Fourier-Stieltjes transform of Ĝm − (H̃m +Mm) equals

B(t) = ψ̂(t/m1/α)me−itW − {e−itW +m∆(t/m1/α)} exp(−a1|t|α)πm(t),

and
|B(t)| ≤ |A(t)| +m|∆(t/m1/α)πm(t)||eitW − 1| exp(−a1|t|α).

The argument leading to (4.11) may be used to prove that∫
|t|≤nκ

m|∆(t/m1/α)πm(t)| exp(−a1|t|α)dt = O{(mλn/n)1/2}.

Therefore, since |t−1(eitW − 1)| ≤ 2|W | = O{(m/n)1−(1/α)(cn log n)1/α} with
probability one (Petrov (1975), p.274),∫
|t|≤nκ

|t−1B(t)|dt=o(δm)+O{(mλn/n)+(λn/mn)1/2+(m/n)2−(2/α)(cn log n)2/α}

with probability one. Theorem 2.2 follows from this result via the smoothing
lemma for characteristic functions. (An argument by contradiction may be used
to show that λn may be replaced by log n; note that λn/ log n → ∞ arbitrarily
slowly.)
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Step (d). Proof of Lemma 4.1.
Let B1, B2, . . . denote positive constants and let ψ and ψ̂ have argument t,

which at this stage we do not insist satisfies |t|≤1. Put ψ̂1(t)=n−1 ∑
j≤ncos(tZj),

ψ̂2(t) = n−1 ∑
j≤n sin(tZj), ψk = E(ψ̂k). Now,

nVar (ψ̂1) =
1
2
{1 + ψ1(2t)} − ψ1(t)2 ≤ B1(|t|α ∧ 1),

nVar (ψ̂2) =
1
2
{1 − ψ2(2t)} − ψ2(t)2 ≤ B1(|t|α ∧ 1).

Hence, by Bernstein’s inequality, for each x > 0,

P (|ψ̂−ψ| > x) ≤
2∑

k=1

P (|ψ̂k−ψk| > 1
2
x) ≤ 4 exp[−nB2x

2/{(|t|α∧1)+x}]. (4.18)

Therefore, if |t| ≤ 1,

P (|ψ̂ − ψ| > x) ≤ 4 exp(−nB3x
2|t|−α) + 4 exp(−nB3x).

Now take x = max{(n−1λn|t|α)1/2, n−1λn} to deduce the lemma.

Step (e). Proof of Lemma 4.2.
If ||ψ̂|2 − |ψ|2| ≤ 1

2(1 − |ψ|2) then

|ψ̂|2 = 1 − (1 − |ψ|2) + (|ψ̂|2 − |ψ|2) ≤ 1 − 1
2
(1 − |ψ|2) ≤ exp{−2B4(|t|α ∧ 1)}.

If ‖ψ̂|2 − |ψ|2| > 1
2(1 − |ψ|2) then |ψ̂ − ψ| > 1

4(1 − |ψ|2) ≥ B5(|t|α ∧ 1).
Therefore, using (4.18).

E|ψ̂|m ≤ exp{−mB4(|t|α ∧ 1)} + P{|ψ̂ − ψ| > B5(|t|α ∧ 1)}
≤ 5 exp{−mB6(|t|α ∧ 1)}.
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Csörgö, S., Deheuvels, P. and Mason, D. (1985). Kernel estimates of the tail index of a distri-
bution. Ann. Statist. 13, 1050-1077.

Deheuvels, P., Mason, D. M. and Shorack, G. R. (1993). Some results on the influence of
extremes on the bootstrap. Ann. Inst. H. Pointcaré 29, 83-103.
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