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Abstract: Sufficient conditions are given for plans, which permit the uncorrelated

estimation of all main effects and some specified interaction effects, to have a min-

imal number of experimental runs.
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1. Introduction

Orthogonal main effect plans (OMEP’s) are plans which allow for the un-
correlated estimation of all main effects, provided that all interactions can be
validly assumed to be negligible. In practice, such an assumption may not al-
ways be realistic. When an experimenter is not prepared to assume the absence
of all interactions, a plan which permits estimation of all main effects and all
or some specified interaction effects is required. When experimental runs are
expensive or time consuming, it is important to know the minimal number of ex-
perimental runs necessary to construct such a plan for a given number of factors
having a specified number of levels. This problem has been considered by Webb
(1968) for resolution-4 plans for 2n experiments, Margolin (1969a) for resolution-
4 plans for 2n3m experiments, Margolin (1969b) for general resolution-4 plans,
and Jacroux (1992) for orthogonal main effect plans. For resolution-4, -5 and
general resolution-r plans, readers are referred to Box and Hunter (1961) and
Webb (1965). Briefly, a resolution-4 plan is a plan which permits the estimation
of all main effects under the assumption that interactions involving three or more
factors are negligible, and a resolution-5 plan is a plan which permits the esti-
mation of all main effects and all two factor interactions under the assumption
that interactions involving three or more factors are negligible.

In this article, plans which permit the uncorrelated estimation of all main
effects and all i-factor interaction effects among r (i < r) specific factors are
considered. They include the OMEP’s (when r = 2) and some of the class one
compromise plans (when r = 3) introduced in Addelman (1962b). These plans
are more flexible and easier to construct than the orthogonal resolution-4 or -5
plans. They can usually include more factors than an orthogonal resolution-4
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or -5 plan with the same number of experimental runs. Sufficient conditions for
these plans to have a minimal number of experimental runs are derived.

2. Main Results

For a given plan, the following notations will be used throughout this article:
N = total number of observations to be taken; n( p1, . . . , pm; i1, . . . , im) = number
of observations to be taken at the i1th level of factor p1, . . ., the imth level of
factor pm. A plan is minimal if it has a minimal number of experimental runs.

Assume that a plan is to be constructed with k ≥ r+1 factors which permits
the uncorrelated estimation of all main effects and all i-factor (i < r) interaction
effects among factors p1, . . . , pr. It will be called an O( p1, . . . , pr) plan. It is
an OMEP when r = 2 and a class one compromise plan of Addelman (1962b)
when r = 3. When r > 2, an O( p1, . . . , pr) plan is weaker than an orthogonal
resolution-(r + 1) plan. It is obvious that an orthogonal resolution-4 plan is an
O( p1, p2, p3) plan for any three of its factors, and an orthogonal resolution-5 plan
is an O( p1, p2, p3, p4) plan for any four of its factors. An O( p1, . . . , pr) plan can
usually include more factors than an orthogonal resolution-(r + 1) plan with the
same number of experimental runs. For example, using the lower bound given
in Margolin (1969b), we know that a minimal resolution-4 plan (orthogonal or
not) for a 46 experiment has 64 runs whereas an O( p1, p2, p3) plan with the same
number of runs can include 12 factors of four levels each (Addelman (1962b)).
Another advantage for O( p1, . . . , pr) plans is that they remain as O( p1, . . . , pr)
plans under collapsing (Addelman (1962a)); hence making it very easy to con-
struct O( p1, . . . , pr) plans from existing O( p1, . . . , pr) plans and from orthogonal
resolution-(r + 1) plans.

We now introduce a method of constructing O( p1, . . . , pr) plans from existing
O( p1, . . . , pr) plans. It is related to some of the methods given in Addelman
(1962a) and Jacroux (1992). Let cj , j = 1, . . . , k be k positive integers and d0

be an O( p1, . . . , pr) plan with N experimental runs for k ≥ r + 1 factors in
which factor j has uj levels, j = 1, . . . , k. Then an O( p1, . . . , pr) plan d with
N

∏k
j=1 cj experimental runs for k factors in which factor j has vj ≤ cjuj levels,

j = 1, . . . , k, can be constructed as follows: Denote the levels of factor j of d0

by 0, 1, . . . , uj − 1, j = 1, . . . , k. From d0, we obtain the plans di1,...,ik , ij =
0, 1, . . . , cj − 1, j = 1, . . . , k, by replacing the levels of factor j in d0 with levels
ijuj , ijuj + 1, . . . , ijuj + (uj − 1) for j = 1, . . . , k. Let dc be the plan obtained by
combining the runs in {di1,...,ik , ij = 0, 1, . . . , cj − 1, j = 1, . . . , k}, and let d be
the plan obtained from dc by collapsing the levels in dc to the required number
of levels in d (for the collapsing method, see Addelman (1962a)), then d is the
desired plan.
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From Table 1 in Addelman (1962b), we know that for experiments 24, 37, 412

and 519, there exist O( p1, p2, p3) plans in 8, 27, 64 and 125 runs respectively.
Using the construction method mentioned above, many O( p1, . . . , pr) plans can
be constructed. For example, by the O( p1, p2, p3) plan in 8 runs, an O( p1, p2, p3)
plan d can be constructed for experiment 4 · 3 · 22 in 32 runs where p1, p2 are
the factors with 4 and 3 levels and p3 is a factor with 2 levels. Let d0 be the
O( p1, p2, p3) plan in 8 runs. We obtain the plans di1,i2, ij = 0, 1, j = 1, 2, by
replacing the levels of factor j in d0 with levels 2ij , 2ij + 1 for j = 1, 2. Let dc be
the plan obtained by combining the runs in {di1,i2 , ij = 0, 1, j = 1, 2}, then d

can be obtained from dc by collapsing the levels in dc to the required number of
levels in d. Similarly, there exist O( p1, p2, p3) plans, for example, for experiment
5 · 3 · 25 in 54 runs where p1, p2 are the factors with 5 and 3 levels and p3 is a
factor with 2 levels; for experiment 4 ·32 ·29 in 64 runs where p1 is the factor with
4 levels and p2, p3 are the factors with 3 levels; and for experiment 5 · 42 · 34 · 212

in 125 runs where p1 is the factor with 5 levels and p2, p3 are the factors with 4
levels. Using Theorem 1 which will be stated and proved shortly, we see that all
these plans are minimal O( p1, p2, p3) plans.

Using the definition of the least common multiple and the greatest common
divisor, the following result can be obtained easily.

Lemma 1. Let x1, . . . , xn be n positive integers and x =
∏n

i=1 xi. Then x = KL

where K is the least common multiple for x/x1, . . . , x/xn, and L is the greatest
common divisor for x1, . . . , xn.

Now we state the main result.

Theorem 1. suppose d is an O( p1, . . . , pr) plan with N experimental runs for
k ≥ r + 1 factors in which factor i has si levels, i = 1, . . . , k and let se =
maxj �=p1,...,pr sj. If N =

∏r
i=1 ti for t1, . . . , tr satisfying

r∏
i=1

ti = min
{ r∏

i=1

xi;xi ≥ spi, i = 1, . . . , r, g(x1, . . . , xr) ≥ se,
r∏

i=1

xi < 2
r∏

i=1

spi

}
,

where g(x1, . . . , xr) is the greatest common divisor for x1, . . . , xr, then d is a
minimal O( p1, . . . , pr) plan.

Proof. A necessary and sufficient condition for a plan to be an O( p1, . . . , pr)
plan is that for any integers h1, . . . , hr ≤ k, hi �= hj when i �= j, at least r −
1 of them belong to the set { p1, . . . , pr}, and ij ≤ shj

, j = 1, . . . , r, we have
N r−1n(h1, . . . , hr; i1, . . . , ir)=

∏r
j=1n(hj ; ij)(for example, see Addelman (1962b)).

Therefore for any h1, . . . , hr−1 which belong to the set { p1, . . . , pr}, and ij ≤shj
,

j = 1, . . . , r − 1, we have N r−2n(h1, . . . , hr−1; i1, . . . , ir−1) =
∏r−1

j=1 n(hj ; ij). For
an O( p1, . . . , pr) plan, n( p1, . . . , pr; i1, . . . , ir) ≥ 1 for any ij ≤ spj , j = 1, . . . , r.
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Since N < 2
∏r

i=1 spi , there exist positive integers ai, i = 1, . . . , r such that
N−(r−1) ∏r

j=1 n( pj; aj) = n( p1, . . . , pr; a1, . . . , ar) = 1. Let

yi = n( p1, . . . , pi−1, pi+1, . . . , pr; a1, . . . , ai−1, ai+1, . . . , ar), i = 1, . . . , r.

Then yi =
∑spi

j=1 n( p1, . . . , pr; a1, . . . , ai−1, j, ai+1, . . . , ar) ≥ spi, i = 1, . . . , r and∏r
i=1 yi = N−r(r−2)(

∏r
j=1 n( pj; aj))r−1 = N−r(r−2)N (r−1)2 = N. Furthermore for

any i ≤ se and j ≤ r we have

n(e; i) = N−(r−1)n(e; i)
r∏

l=1

n( pl; al)

= n( pj ; aj)n( p1, . . . , pj−1, e, pj+1, . . . , pr; a1, . . . , aj−1, i, aj+1, . . . , ar).

Hence n(e; i) is a multiple of n( pj ; aj), j = 1, . . . , r. Therefore N =
∑se

i=1 n(e; i) ≥
seK where K is the least common multiple for n( pj; aj), j = 1, . . . , r. By Lemma
1, L ≥ se where L is the greatest common divisor for yi, i = 1, . . . , r. Since N =∏r

i=1 ti where ti, i = 1, . . . , r satisfy the condition in Theorem 1, d is minimal.
This completes the proof.

The following result is a direct consequence of Theorem 1.

Corollary 1. Let d and se be as in Theorem 1. If sr
e = N < 2

∏r
i=1 spi and

spi ≤ se, i = 1, . . . , r then d is minimal.

3. Discussion

In this article, we considered certain plans which permit the uncorrelated es-
timation of all main effects and some specified interaction effects. They are more
flexible and easier to construct than orthogonal resolution-4 or -5 plans. Sufficient
conditions are given for these plans to have a minimal number of experimental
runs. This minimal number is useful to the experimenters for constructing mini-
mal orthogonal designs. For example, for a 10 ·7 ·42 ·38 experiment, a plan which
permits the uncorrelated estimation of all main effects and two-factor interac-
tions among the 10-, 7- and a 3-level factors requires at least 384 experimental
runs. If this is considered too expensive or time consuming to perform, then
either some factors should be dropped, or the levels of some factors should be
redefined, or a non-orthogonal plan should be considered.
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