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Abstract: As a result of developments in instruments and computers, functional

observations are becoming increasingly prevalent. However, few existing methodolo-

gies can flexibly estimate the underlying trends with valid uncertainty quantification

for a sequence of functional data (e.g., functional time series). In this work,

we develop a locally adaptive smoothing method, called functional horseshoe

smoothing, by introducing a shrinkage prior to the general order of differences

of functional variables. This allows us to capture abrupt changes by making the

most of the shrinkage capability, and to assess uncertainty by using a Bayesian

inference. The fully Bayesian framework allows us to select the number of basis

functions using the posterior predictive loss. We provide theoretical properties of

the model, which support the shrinkage ability. Furthermore, by taking advantage

of the nature of functional data, the proposed method can handle heterogeneously

observed data without data augmentation. Simulation studies and a real-data

analysis demonstrate that the proposed method has desirable properties.

Key words and phrases: Functional time series, MCMC, shrinkage prior, tail

robustness, trend filtering.

1. Introduction

The recent development of measuring instruments and computers has made

it possible to obtain high-dimensional data in various fields. However, analyzing

such data using a classical multivariate analysis requires a huge number of

parameters making it difficult to extract valuable information from the data.

A promising methodology to solve these problems is functional data analysis

(FDA), which treats and analyzes high-dimensional data as a curve (function).

Functional versions for various branches of statistics have been provided; see

Ramsay and Silverman (2005), Kokoszka and Reimherr (2017), and Horváth and

Kokoszka (2012).

The traditional FDA approach for independent functional data has recently

been extended to time series. In fact, for functional time series data, the standard

stationary model for multivariate data has been extended (e.g., Besse, Cardot and

Stephenson (2000); Klepsch and Klüppelberg (2017); Klepsch, Klüppelberg and

Wei (2017); Hörmann, Horváth and Reeder (2013); Gao, Shang and Yang (2019);
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Hörmann, Kidziński and Hallin (2015); Mart́ınez-Hernández and Genton (2021)),

and its theoretical properties have been studied extensively (e.g., Bosq (2000);

Aue and Klepsch (2017); Spangenberg (2013); Aue, Horváth and F. Pellatt

(2017); Kühnert (2020); Cerovecki et al. (2019)). However, in actual data, such

as GDP data, the assumption of stationarity is often not satisfied because the

expected value varies across periods. There are few cases in which the trend can

be analyzed appropriately using existing methods.

The stationarity of conventional FDA methods means they cannot capture

rapid changes in trend estimation. Wakayama and Sugasawa (2021) solve this

difficulty by developing a new type of lasso and proposing functional trend

filtering. This new method can capture local changes, while removing observation

errors in the data. In other words, the method can clearly identify when structural

changes occur in time series data. In order for the inferred results to be used

for decision-making, it is essential to evaluate the interpretability of the model

and the uncertainty of the estimation. However, few methods for uncertainty

evaluation in functional time series analysis have been developed (Petris (2013);

Canale and Ruggiero (2016)).

In this work, we propose an approach in a Bayesian framework, hoping to

assess the uncertainty and estimate the trend accurately and flexibly, as seen

in univariate models (Faulkner and Minin (2018)). In the context of FDA, a

shrinkage prior on the functional space is introduced by Shin, Bhattacharya

and Johnson (2020). Using a similar idea, we construct a locally adaptive

smoother for functional data via the shrinkage prior. Because the priors in

the model can be represented as a scale mixture of normals, the model is

easy to implement using the Gibbs sampler, and minor extensions make it

possible to analyze heterogeneously observed data. Furthermore, in the proposed

Bayesian approach, we select the number of basis functions, often done by cross-

validation or information-based criteria (e.g., Yao, Müller and Wang (2005); Aue

and Klepsch (2017); Tang, Wang and Zhang (2020)), by adopting a posterior

predictive loss Gelfand and Ghosh (1998).

We also discuss the theoretical justification for this approach. The essence

of this method is that it removes noise, while leaving the change points large.

The property of the prior that keeps the signal from shrinking is called “tail

robustness”. For time series data, analyzing tail robustness is complicated,

but here we have shown the properties proposed by Okano et al. (2022). This

argument is not limited to functional data, but also justifies a locally adaptive

method for finite-dimensional data (Faulkner and Minin (2018); Kakikawa,

Shimamura and Kawano (2022)).

The remainder of the paper is structured as follows. Section 2.1 introduces

the setting and model for the trend estimation. Section 2.2 gives the posterior

computation algorithm. In Section 2.3, we present the way to select the number

of basis functions. Section 3 discusses the theoretical properties of the proposed
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prior and its posterior distribution. In Section 4, we investigate the performance

of the proposed method for homogeneously observed data and for heterogeneously

observed data. We apply our method to a real data set in Section 5. The

contribution of the article is discussed in Section 6. All proofs and detailed

posterior densities are given in the online Supplementary Material.

2. Functional Horseshoe Smoothing

2.1. Settings and models

Let Y1(·), . . . , YT (·) be observed functional data on S ⊂ R, ordered as t =

1, . . . , T . Suppose that we are interested in the mean function Zt(·) ≡ E[Yt(·)],
which may change smoothly or abruptly over t. To estimate Zt, we employ the

following measurement error model:

Yt(s) = Zt(s) + εt(s), εt(s) ∼ N(0, σ2), t = 1, . . . , T, s ∈ S,

where εt(s) are error terms, independent over different values of t and s, and σ2

is an unknown variance. Such measurement models are adopted in the context

of Bayesian modeling of functional data (Yang et al. (2016, 2017)).

Let ϕ1(·), . . . , ϕL(·) be basis functions on S (e.g., B-spline function) common

over t. We model Zt(·) as

Zt(·) =
L∑

ℓ=1

btℓϕℓ(·), t = 1, . . . , T,

where bt = (bt1, . . . , btL)
⊤ is a vector of coefficients, and L is the number of basis

functions. Thus, the heterogeneity of the mean function Zt(s) is characterized

by the heterogeneous coefficients, bt. The choice of L controls the smoothness of

the estimates of Zt(·); later we discuss a data-dependent selection of L.

Let Yt(st1), . . . , Yt(stnt
) be discrete observations, where st1, . . . , stnt

are

observation points, and nt is the number of discrete observations. Note that

we allow the number of sampling points and the sampled locations to be

heterogeneous over t. Under the settings described above, the model for yt =

(Yt(st1), . . . , Yt(stnt
))⊤ is

yt = Φtbt + εt, εt ∼ N(0, σ2Int
), t = 1, . . . , T,

where Φt is an nt × L matrix in which the (i, ℓ)-element is ϕℓ(sti).

Now, we consider prior distributions on bt. Here, ⊗ denotes the Kroneker

product. Let ∆k be the kth order forward difference operators, defined as

∆k =

{
D(0) for k = 0,

D(k)∆k−1 for k ≥ 1,
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where D(k) is the following (T − k − 1)L× (T − k)L matrix:

D(k) =


1 −1 0 . . . 0 0

0 1 −1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 −1

⊗ IL.

We then define (δ1, . . . , δT−k−1)
⊤ = ∆k(b1, . . . , bT )

⊤, and consider a model for

this. Although δt depends on k, we write δt rather than δ
(k)
t , for simplicity. For

example, if k = 0, each δt can be written as δt = bt − bt+1, for t = 1, . . . , T − 1.

Hence, if the vector δt is shrunk toward the origin, the two adjacent coefficient

vectors bt+1 and bt are identical, leading to the same mean functions for Zt(·) and
Zt+1(·). To encourage such structures, we introduce shrinkage priors on δt, which

has a large mass around the origin, whereas the tail of the prior is sufficiently large

to allow possible abrupt changes over t. Note that under general k, shrinking δt
toward the origin can be regarded as smoothing the k + 1th order derivatives of

Zt(·) with respect to t. We introduce the following hierarchical prior for δt:

δt|λt, τ, σ ∼ N(0, σ2τ 2λ2
t (Φ

⊤
t Φt)

−1), λt ∼ C+(0, 1), τ ∼ C+(0, 1), (2.1)

where C+(0, 1) denotes the standard half-Cauchy distribution. The conditional

prior of δt has the form of a g-prior (Zellner (1986)), and Shin, Bhattacharya

and Johnson (2020) use a hierarchical prior similar to (2.1) in the context of

linear regression models. Here, λt is a local shrinkage parameter that controls

the amount of shrinkage, and λt is common to all components of δt, so that the

vector δt can be simultaneously shrunk toward the origin. Using the half-Cauchy

for the local parameter λt leads to a multivariate horseshoe-like prior for δt. The

prior distribution has favorable properties, given in Section 3, and we make the

most of them to handle sparsity.

2.2. Posterior computation algorithm

The joint posterior distribution is given by

π(σ2)π(τ 2)
T∏

t=1

p(yt; Φtbt, σ
2In)

T−k−1∏
t=1

p(δt;0, σ
2τ 2λ2

t (Φ
⊤
t Φt)

−1)π(λt),

where π(σ2), π(τ 2), and π(λt) are prior distributions for σ2, τ 2, and λ2
t ,

respectively. The priors of τ 2 and λ2
t are defined in (2.1), and we use the conjugate

prior σ2 ∼ IG(aσ, bσ), which denotes an inverse gamma distribution with shape

parameter aσ and scale parameter bσ. Using the data augmentation technique of

the horseshoe prior (e.g., Makalic and Schmidt (2015)), we can sample from the

joint posterior using a simple Gibbs sampling, described as follows:
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• Sampling from σ2: The full conditional distribution of σ2 is IG(ãσ, b̃σ),

where

ãσ = aσ +
1

2
L(T − k − 1) +

1

2
nT,

b̃σ = bσ +
1

2

T∑
t=1

(yt − Φtbt)
⊤(yt − Φtbt) +

1

2τ 2

T−k−1∑
t=1

δ⊤
t Φ

⊤
t Φtδt
λ2
t

.

• Sampling from τ 2: The full conditional distribution of τ 2 is

IG

(
L(T − k − 1) + 1

2
,
1

ξ
+

T−k−1∑
t=1

δ⊤
t Φ

⊤
t Φtδt

2σ2λ2
t

)
,

where ξ is an auxiliary variable with full conditional distribution IG(1,

1 + 1/τ 2).

• Sampling from λ2
t : The full conditional distribution of λ2

t is

IG

(
L+ 1

2
,
1

νt
+

δ⊤
t Φ

⊤
t Φtδt

2τ 2σ2

)
,

where νt is an auxiliary variable with full conditional distribution IG(1,

1 + 1/λ2
t ).

• Sampling from bt: The full conditional distribution of bt is of the form

N(µt, ct(Φ
⊤
t Φt)

−1), where the specific forms of µt and ct are dependent on

k, the order of difference. Detailed expressions under k = 0 and k = 1 are

provided in the Supplementary Material.

As shown above, the full conditional distributions are all familiar forms,

allowing us to compute the posterior computation efficiently. Given the posterior

samples of bt, we can generate posterior samples of Zt(s) at an arbitrary location

s ∈ S, which gives a point estimate (e.g., posterior mean) and an interval

estimation (e.g., 95% credible interval).

2.3. Selection of the number of basis functions

In practice, specifying the number of basis functions, L, is an important

task. If L is smaller than necessary, the basis function approximation gives over-

smoothed results. On the other hand, the estimation results can be inefficient if

L is larger than necessary. We suggest adopting a model selection criterion to

select L in a data-dependent manner. Here we use the posterior predictive loss

(PPL) proposed by Gelfand and Ghosh (1998).

To clarify the number of bases used in the estimation, we write bt(L)

and Φt(L), rather than bt and Φt, respectively. Given bt(L), the conditional
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distribution of yt is N (Φt(L)bt(L), σ
2In). We then define the PPL as

PPL(L) =
T

T + 1

T∑
t=1

{yt − Φt(L)Ep[bt(L)]}⊤ {yt − Φt(L)Ep[bt(L)]}

+ nTEp[σ
2] +

T∑
t=1

tr(Φt(L)Covp(bt(L))Φt(L)
⊤),

where Ep and Covp are the expectation and covariance with respect to the

posterior distribution. We choose the number of basis functions by minimizing

the criterion PPL(L). The order of differences, k, can also be selected using the

PPL.

2.4. Extension to irregular grids

We here consider an extension to the proposed smoothing techniques under

irregularly spaced functional data. Let Zt1(·), Zt2(·), . . . , Ztn(·) be a sequence of

functional random variables indexed by ti. This situation requires that distance

information be incorporated into the model. Using the same basis expansion in

Section 2.1, we introduce the following prior:

bti+h − bti |λti , τ, σ ∼ N(0, hσ2τ 2λ2
ti
(Φ⊤

ti
Φti)

−1), h ≥ 0, (2.2)

where we use the same prior for λ2
t . Although the prior formulation (2.2)

corresponds to the extension under the first-order difference, second-order cases

can be extended to the irregular grids, following Lindgren and Rue (2008).

3. Theoretical properties of the model

This section presents the theoretical properties of the prior distribution and

its periphery. The proofs are provided in the Supplementary Material.

In Section 2.1, we formulated the prior as (2.1). Here we investigate this in

greater detail. The marginal prior of λt is

π(δt | τ, σ) ∝
∫ ∞

0

1

λL
t (1 + λ2

t )
exp

{
− 1

2σ2τ 2λ2
t

δ⊤
t Φ

⊤
t Φtδt

}
dλt.

Then, notable properties of the marginal prior are given by the following

proposition.

Proposition 1.

(i) π(δt | τ, σ) → ∞ as δt → 0.

(ii) π(δt | τ, σ) = O(∥Φtδt∥−L−1
2 )

Here, (i) implies that, for given τ, σ2, and L, the density diverges at the

origin δt = 0, like the original horseshoe prior (Carvalho, Polson and Scott (2009,
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2010)). Conspicuously, this property strongly shrinks trivial noise toward zero at

the posterior inference. On the other hand, (ii) suggests that the tail decay of

the marginal prior is slow. The random variables from the prior are expected to

take large values with greater probability, owing to the heavy tail. These critical

features of the prior distribution contribute to handling sparsity.

Next, we consider the posterior mean deduced from the prior. For simplicity,

we focus on k = 0. In this case, the model can be rewritten as

zt ≡ yt+1 − yt ∼ N(Φtδt, 2σ
2In), δt ≡ bt+1 − bt ∼ N(0, σ2λ2

t τ
2(Φ⊤

t Φt)
−1),

so that the model is defined for the observed value of difference zt.

Proposition 2. The posterior mean of the model is weakly tail robust, that is,

|E[Φt∗δt∗ |z]− zt∗ |
∥zt∗∥2

→ 0 as ∥zt∗∥2 → ∞ for any t∗ ∈ {1, . . . , T − 1}.

This claim implies that the difference between the posterior expectation and

the original observation is relatively subtle when ∥zt∗∥2 is large. This property

is weaker than the tail robustness (Carvalho, Polson and Scott (2010)). In our

setting, the dependencies between the data make it challenging to analyze the

tail robustness. Nevertheless, weak tail robustness still holds, implying that the

signal is preserved in the posterior analysis without shrinkage. This property is

derived from the fact that the prior has considerable mass on the tail. Using

C+(0, 1) for λt is motivated by this argument.

The tail robust-related properties of time series have not been determined

for ordinary multivariate analysis or in functional data. The result of this

theorem also applies to an ordinary multivariate analysis if we ignore Φt, which

is important in the context of shrinkage estimation.

4. Simulation Studies

4.1. Simulation settings

We evaluate the performance of the proposed and existing methods using

simulation studies. For t = 1, . . . , T (= 50) and the domain X = [1, n], with

n = 120, we have the following four scenarios as the true trend function βt(x):

(1) Constant: βt(x) = f1(x),

(2) Smooth: betat(x) = f1(x) sin((t+ x)/5),

(3) Piecewise constant: βt(x) =
∑5

i=1 fi(x)I{10(i−1)<t≤10i},

(4) Varying smoothness: βt(x) = f1(x)+20{sin((4t/n)−2)+2 exp(−30((4t/n)−
2)2))},
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Figure 1. Each surface represents a three-dimensional plot of the true trend.

where fi (i = 1, . . . , 5) is a sample path of the Gaussian process associated with

the radial basis function (RBF) kernel ki(x1, x2) = θ2i exp(−∥x1−x2∥2/2θ2i ), with
a hyperparameter θi. We set θi = 30, 20, 35, 25, 30, for i = 1, . . . , 5.

The observed data are generated by adding noise from N(0, 52) to the trend

functions at equally spaced H = 120 points of x, namely, x ∈ {1, . . . ,H}. Figure
1 shows how the trends change over time.

In scenario 1, we investigate whether the proposed methods discover that the

trend is constant over time, even in the presence of noise. Scenario 2 checks the

ability of the methods to extract a continuous curve from noisy data. Scenario 3

reveals the ability of the methods to detect abrupt changes between intermittent

straight horizons, that is, discontinuity points. In scenario 4, we examine whether

the methods can capture periods when the smoothness of the trend changes

significantly.

4.2. Homogeneously observed data

We first use the full data set generated using the method presented in the

previous section, which we call homogeneously observed data. For the simulated
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data, we apply the following methods:

• FHS: functional horseshoe smoothing.

• FLS: an artificial alternative method using a Laplace-like prior, that is,

λ2
t ∼ Exp(1).

• B-spline: a curve-fitting method using a B-spline function of order four

and uniform knots. This method is implemented using “fda.usc” package

(Febrero-Bande and de la Fuente (2012)). Note that the obtained basis

functions are used in FHS and FLS.

• FTF: functional trend filtering developed by Wakayama and Sugasawa

(2021).

• BART: Bayesian additive regression trees, as developed by Chipman, George

and McCulloch (2010).

The motivation for using the FLS method is to address the importance of

the half-Cauchy prior for the local parameter λt, as discussed in Section 2. The

purpose of using BART is to compare FHS with existing flexible methods. In

fact, this time-dependent functional analysis can be reframed as a bivariate (t and

x are explanatory variables) regression problem, to which BART can be applied.

In addition, to compare FHS with a locally adaptive frequentist method, we

implement FTF. The comparison with the B-spline is to determine how much

better the FHS and FLS are when compared with the case without smoothing.

For the Bayesian methods, we use 3,000 posterior draws, after discarding

3,000 burn-in samples. For the FHS and FLS, we select the optimal number of

the basis functions, L, and the order of difference, k, using the PPL criterion

from among candidates L ∈ {5, 9, 13, 17, 21, 25} and k ∈ {0, 1}, respectively.
To evaluate the point estimates, we adopt the following criterion:

• Mean absolute deviation (MAD): difference between the posterior medians

and the true values, defined as

MAD =
1

HT

H∑
x=1

T∑
t=1

∣∣β̂t(x)− βt(x)
∣∣.

Moreover, we use the following two criteria to evaluate the 95% credible intervals

obtained using the Bayesian methods:

• Mean credible interval width (MCIW): the width of intervals, defined as

MCIW =
1

HT

H∑
x=1

T∑
t=1

β̂97.5
t (x)− β̂2.5

t (x),
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Table 1. The averaged values of MAD (mean absolute deviation), MCIW (mean credible
interval width), CP (coverage probability of credible interval), and number L of bases for
FHS, FLS, Spline1 (B-spline estimator with the same basis as FHS), Spline2 (B-spline
estimator with the same basis as FLS), BART (Bayesian additive regression trees) and
FTF (functional trend filtering) for scenario 1 and scenario 2.

Scenario Method MAD MCIW CP(%) L

1 FHS 0.538 3.321 98.1 17.9

FLS 0.673 4.374 99.0 24.9

Spline1 1.495 - - 17.9

Spline2 1.127 - - 24.9

BART 0.656 3.187 93.4 -

FTF 0.490 - - -

2 FHS 0.961 5.214 96.6 23.4

FLS 0.940 4.590 94.1 24.9

Spline1 1.739 - - 23.4

Spline2 1.333 - - 24.9

BART 2.539 9.122 83.0 -

FTF 1.700 - - -

where β̂97.5
t (x) and β̂2.5

t (x) correspond to the 97.5 and 2.5 percentiles,

respectively, of the posterior distribution for βt(x).

• Coverage probability (CP): the coverage accuracy of the credible interval,

defined as

CP(%) =
100

HT

H∑
x=1

T∑
t=1

I{β̂97.5
t (x)>βt(x)>β̂2.5

t (x)}.

We repeated the simulations 150 times; the averages across the simulations

are presented in Tables 1 and 2.

Overall, the results in the tables show that FHS outperforms the other

method. Specifically, we have the following results:

Scenario 1: In general, frequentist shrinkage methods have a stronger ability to

shrink estimators to zero than Bayesian methods do, and hence FTF

yields the best results. However, the difference between it and FHS

is subtle, and FHS can also shrink the estimators significantly.

Scenario 2: The generated functional data have a complex and ever-changing

signal, but FHS and FLS capture it well, owing to their flexibility.

Here, we found that the proposed methods fitted successfully for

smoothly transitioning functional time series data. However, when

abrupt changes in the data do not exist, the curve is estimated better

by FLS.
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Scenario 3: Here, the distinction between FHS and the other methods becomes

evident. FHS estimates the trend almost horizontally, where the

amount of change is zero, and made large changes only at the

discontinuous points. In contrast, FLS was less able to make sparse

estimates, resulting in a gently curved estimate. This suggests that

choosing an appropriate prior is essential.

Scenario 4: The BART and FHS results eclipse those of the other methods. In

fact, FHS is inferior to BART, but still guarantees the flexibility to

capture abrupt changes.

Thus, FHS performs favorably, and any slight differences between it and other

methods should not compromise its usefulness. With respect to CP, FHS always

achieves a value close to 95, indicating that it provides a better inference than

other Bayesian methods do in terms of uncertainty evaluation. Moreover, the

stability of the estimation accuracy and coverage of FHS compared with that of

BART, a mere nonparametric method, indicates that FHS is more successful in

analyzing it as functional time series data.

Next, we investigate how the credible intervals change with the sample size.

We change the number H of data at each time from 120 to 60, and compare

the results with those of the original settings with respect to MCIW and CP.

From Table 3, obtaining additional data narrows the range of CI even though

CP remains almost the same, which is consistent with the fact that uncertainty

decreases with more data. This suggests that a trend estimation of functional

data should consider the number of functions and the number of observation

points for each function.

To investigate whether the choice of a basis is meaningful, that is, the

advantage of selecting a basis rather than preparing many basis functions, we fix

the number of basis functions at 25 and implement our method. The results are

shown in Table 4, indicating that the accuracy of the point estimation improves

by adaptively choosing the number of basis functions using PPL. Furthermore,

the performance of the interval estimation also improves, because MCIW gets

smaller when we select the number of basis functions, while preserving the CP

values.

4.3. Heterogeneously observed data

Here, We examine cases in which 5% and 10% of the data are omitted at

random. We report the results in Table 5, based on 3,000 MCMC iterations,

obtained after a burn-in period of 3,000 iterations. As the percentage of omitted

data increases, the data become more unequally spaced, and the estimation

becomes less precise, although it is still able to capture the trend accurately.

The wide MCIW implies an increase in uncertainty due to the omitted data. In

addition, it should be challenging to estimate the mean function when some points
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Table 2. The averaged values of MAD (mean absolute deviation), MCIW (mean credible
interval width), CP (coverage probability of credible interval), and number L of bases for
FHS, FLS, Spline1 (B-spline estimator with the same basis as FHS), Spline2 (B-spline
estimator with the same basis as FLS), BART (Bayesian additive regression trees), and
FTF (functional trend filtering) for scenario 3 and scenario 4.

Scenario Method MAD MCIW CP(%) L

3 FHS 0.713 4.350 98.2 21.5

FLS 3.701 6.307 59.2 9.24

Spline1 1.560 - - 21.5

Spline2 4.045 - - 9.24

BART 1.217 5.061 89.1 -

FTF 2.245 - - -

4 FHS 0.814 3.988 93.7 19.0

FLS 1.523 4.276 80.7 10.1

Spline1 1.542 - - 19.0

Spline2 1.868 - - 10.1

BART 0.711 3.210 92.6 -

FTF 1.213 - - -

Table 3. MCIW (mean credible interval width), MASVD (mean absolute sequentially
variational deviation), and CP (coverage probability of credible interval) of FHS with a
horseshoe prior for H = 120 and H = 60.

Scenario H MCIW CP(%)

1 120 3.321 98.1

60 4.879 98.5

2 120 5.214 96.6

60 6.513 96.4

3 120 4.350 98.2

60 6.234 97.9

4 120 3.988 93.7

60 5.389 94.0

are missing, but Figure 2 suggests that the estimator detects the trend. Thus,

heterogeneity in both the number of sampling points and the sampled locations

does not make implementation challenging, nor does it have a significant negative

effect on accuracy.

5. Empirical Application

Many studies have demonstrated the applicability and performance of func-

tional time series analysis methods using age-specific fertility data (e.g., Hyndman

and Ullah (2007); Wakayama and Sugasawa (2021)). This section presents

an empirical application of the proposed method using annual age-specific
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Table 4. MAD (mean absolute deviation), MCIW (mean credible interval width), and CP
(coverage probability of credible interval) for FHS (the estimator using the horseshoe-like
prior) with different number of bases for each scenario.

Scenario Method L MAD MCIW CP(%)

1 selected 17.9 0.538 3.321 98.1

fixed 25.0 0.571 3.658 98.6

2 selected 23.4 0.961 5.214 96.6

fixed 25.0 0.981 5.362 96.7

3 selected 21.5 0.713 4.350 98.2

fixed 25.0 0.749 4.572 98.2

4 selected 19.0 0.814 3.988 93.7

fixed 25.0 0.896 4.361 93.5

Table 5. MAD (mean absolute deviation), MCIW (mean credible interval width), and CP
(coverage probability of credible interval) for FHS (the estimator based on the horseshoe-
like prior) for each scenario under heterogeneously observed points.

Scenario omitted rate MAD MCIW CP

1 0% 0.538 3.321 98.1

5% 0.674 4.335 98.5

10% 0.727 4.622 98.5

2 0% 0.961 5.214 96.6

5% 1.017 5.599 96.8

10% 1.066 5.822 96.8

3 0% 0.713 4.350 98.2

5% 0.821 5.056 98.2

10% 0.862 5.277 98.0

4 0% 0.814 3.988 93.7

5% 0.889 4.784 96.4

10% 0.889 4.806 96.4

Australian fertility rates, obtained from the Australian Bureau of Statistics,

defined as the number of births per 1,000 female residents. These data cover

the age group 15 to 49 and the period 1921 to 2015. Then, we then consider that

there are 95 functions with the domain [15, 49]. Our interest is the transition of

the functions over time.

We apply FHS and its Laplace prior version (FLS). The numbers of bases for

FHS and FLS are 27 and 20, respectively, chosen using PPL from {5, 6, . . . , 30}.
Furthermore, the difference order k is selected as one using PPL. The observation

is shown in the upper left part of Figure 3, and its surface is rugged. FLS

smoothed the surface and largely removed the noise. This is also the case for

FHS, where the surface is smooth and the denoising effect is confirmed. The

difference is that FHS left the sharp edges intact, whereas FLS erased the sharp
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Figure 2. Each panel is a cross-section at x = 40. The dotted line is the true trend, the
blue line is the estimated trend, the gray area shows the 95% credible intervals at x = 40,
and red dots indicate omitted measurements. The data acquisition interval is uneven,
and some values are missing.

edges implying that the latter reduces the signal and the noise, and hides the

change points. Not doing so is a strength of FHS.

We next focus on the CI. Figure 4 shows the difference between the 97.5

percentile and the 2.5 percentile for each year. This is a three-dimensional

representation of the size of the 95% credible region. Here, we find that FHS

has a smaller credible area than FLS, and thus regard FHS as a more plausible

model.

6. Conclusion

We have presented a Bayesian nonparametric smoothing method for func-

tional time series data. This enables a locally adaptive estimation by exploiting

the sparsity from the shrinkage prior distributions. The result of our simulation

studies and empirical applications suggest that the proposed method performs

well, especially with a horseshoe-like prior, even with the presence of sharp

changes.

Moreover, we have elucidated the theoretical properties of the proposed

method. We discussed two significant issues with the shrinkage prior distribution.

The first is the spike at the origin of the marginal prior, and the second is
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Figure 3. The number of births per 1,000 female residents by age in each year in Australia.
The left is the observed quantity, and the middle (right) is the smoothed surface using
FHS (FLS).

t

1940
1960

1980
2000

ag
e

20 
25

30
35
40
45

0

2

4

6

8

FHS

t

1940
1960

1980
2000

ag
e

20 
25

30
35

40
45

0

2

4

6

8

FLS

15 15

Figure 4. The left (right) figure shows the credible interval width of FHS (FLS) in three
dimensions.

the thickness of its tail. Because of this, we expect the estimator to be very

good at eliminating noise and detecting abrupt changes simultaneously. We

further checked the latter by proving the weak tail robustness of the posterior

expectation. These are the theoretical reasons why using a horseshoe-like prior

is favorable.

FHS has two advantages over FTF (Wakayama and Sugasawa (2021)). One

is that selecting the parameters is easy. In the optimization approach, we

need to select the tuning parameter (penalty parameter) using K-fold cross-

validation, and the computational complexity increases with the number of

folds and the number of candidate parameters. The time and effort required

to select the three parameters k (the order of difference), L (the number of

basis functions), and λ (the penalty parameter) is enormous. In our Bayesian

approach, penalty parameters such as local parameters and global parameter

are selected automatically using MCMC. The parameter selection is easier than

that of the frequentist method, because it does not require selecting penalty

parameters, and the PPL (criterion of model) can be calculated. In addition,
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Bayesian models can estimate a trend more accurately than existing methods do

including FTF, especially when flexible shrinkage is required. This is because,

as noted by Polson and Scott (2011) and Carvalho, Polson and Scott (2010), by

using local and global parameters, the horseshoe prior can shrink each part of

the estimation to a different degree. Hence, FHS allows the smooth and sharp

parts of the estimation to coexist.

Furthermore, FHS can deal with heterogeneously observed data. From

simulation studies, FHS can capture the trend accurately, even when some data

are randomly omitted. There are two critical reasons why trends can be estimated

accurately without completing missing values. The first is that even though

there is little information at each time (some data are missing), accumulating

information from all functions yields, a lot of information. The second is that

when estimating trends, one can borrow information from the adjacent time. This

is a key advantage of functional data analysis.

Our model is also useful for estimating the varying-coefficient functional

linear model (VCFLM) (Matsui (2022); Wu, Fan and Müller (2010); Cardot and

Sarda (2008)). The VCFLM is a combination of a scalar-on-function model and

a varying-coefficient model, where the coefficients are functions that depend on

exogenous variables. By expanding the predictor function and the coefficient

function in an orthonormal basis, and introducing our prior into the coefficients

of the basis expansion, the VCFLM can be analyzed within the FHS framework.

Supplementary Material

The Supplementary Material contains detailed forms of full conditional

distributions of our method and proofs of propositions.
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