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Abstract: Panel count data arise when study subjects who may experience certain

recurrent events are only observed intermittently at discrete examination times. In

addition to the underlying recurrent event process of interest, there usually exist

two other nuisance processes, namely the observation and follow-up processes, which

may be correlated with the recurrent event process of interest. We propose a general

class of random-effects monotonic index models for regression analysis of such panel

count data. In order to estimate the regression parameters, we develop a weighted

rank (WR) estimation procedure and and establish the consistency and asymptotic

normality of the resulting WR estimator. A numerical study and an application of

the proposed methodology show that it works well in practice.
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1. Introduction

Panel count data occur when study subjects who may experience certain

recurrent events are examined only at discrete time points, rather than contin-

uously, owing to cost, feasibility, or other practical considerations (Kalbfleisch

and Lawless (1985); Thall and Lachin (1988); Sun and Zhao (2013); Chiou et

al. (2019)). Here, in addition to the underlying recurrent event process of inter-

est, there usually exist two other nuisance processes, namely the observation and

follow-up processes (Wellner and Zhang (2000); Lin et al. (2000); Zhang (2002);

Cai and Schaubel (2004); Lu, Zhang and Huang (2007)). Furthermore, the latter

processes may be correlated with the recurrent event process of interest, leading

to so-called informative examination and follow-up times or processes. See Sun

and Zhao (2013) and Chiou et al. (2019) for a comprehensive review of panel

count data.
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Many statistical methods have been developed for the analysis of panel count

data. In general, existing approaches can be classified broadly into three types:

pseudo-likelihood estimations, the estimating equation approach, and nonpara-

metric estimations. In pseudo-likelihood procedures, Cox-type models are com-

monly used, and the pseudo-likelihood function is constructed based on nonho-

mogeneous Poisson process assumptions. The likelihood and pseudo-likelihood

methods are robust against departures from the Poisson assumption, as long as

the proportional rates model holds (Zhang (2002); Wellner and Zhang (2000);

Lu, Zhang and Huang (2007); Zhu et al. (2018)).

The estimating equation approaches are computationally convenient, but

may be inefficient. Sun and Wei (2000) and Hu, Sun and Wei (2003) considered

such approaches by modeling cumulative event counts at different time points,

and Hua and Zhang (2012) improved the estimation efficiency of these approaches

using generalized estimating equations.

Kernel smoothing and spline approximation are two popular nonparametric

approaches to analyzing of panel count data. For example, Zhao, Tu and Yu

(2018) investigated the B-splined pseudo-likelihood method for a time-varying

coefficients model of panel count data. Wang and Yu (2021) employed kernel

smoothing to study a time-varying coefficients panel count model under the as-

sumption of a nonhomogeneous Poisson process. However, nonparametric esti-

mations may be difficult for problems with high-dimensional covariates, owing to

the well-known “curse of dimensionality”.

When analyzing panel count data, the observation process and the follow-up

process may be informative about the recurrent event process, even after condi-

tioning on available covariates, which presents a challenge. For example, patients

with higher cancer recurrence rates may have more frequent clinical examinations

and a longer follow-up time, because they may require more medical assessments

and attention (Li et al. (2011); Sun and Zhao (2013); Ma and Sundaram (2018)).

Informative examination and follow-up times are often encountered in panel count

data, and falsely treating them as noninformative could result in biased regression

coefficient estimations and misleading conclusions.

One way of accounting for informative examination and follow-up times is

to specify joint models for all three processes (Kim (2006); Sun, Tong and He

(2007); He, Tong and Sun (2009); Buzkova (2010); Zhao and Tong (2011); Zhou

et al. (2017); Ma and Sundaram (2018); Jiang, Su, and Zhao (2020)). For exam-

ple, Huang, Wang and Zhang (2006) and Wang, Ma and Yan (2013) postulated

frailty proportional rates models for recurrent event processes, leaving the distri-

butions of the frailty and the possibly correlated examination times unspecified.
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Chiou et al. (2018) considered a semiparametric accelerated mean model for re-

current event processes, and allowed the examination time process and the un-

derlying recurrent event process to be correlated through a shared frailty.

In the following, we propose a general class of random-effects monotonic in-

dex models for a recurrent event process of interest in the presence of informative

examination and follow-up times. A major advantage of these models is their flex-

ibility and generality, because they include many popular models as special cases,

such as the proportional means model (Lin et al. (2000); Sun and Wei (2000);

Zhang et al. (2013)) and the accelerated mean model (Xu et al. (2017); Chiou et

al. (2018)). To estimate the regression parameters, we develop a weighted-rank

(WR) estimation method, that is insensitive to the choice of the observation

process and the censoring mechanism.

Many works have developed rank-estimation methods for different types of re-

gression models. For example, Han (1987) proposed distribution-free maximum-

rank correlation estimators for generalized regression models. Cavanagh and

Sherman (1998) proposed monotone rank estimators for monotonic linear in-

dex models. Lin et al. (2017) provided a maximum-rank correlation estimator

for random-effects transformation models when the random-effects distribution

is symmetric. Liu, Yuan and Sun (2021a) proposed a WR estimator for non-

parametric transformation models with nonignorable missing data; see Abrevaya

(1999), Khan and Tamer (2007), Wang and Chiang (2019) and Liu, Yuan and Sun

(2021b,c) for applications of rank-estimation methods in other contexts. To the

best of our knowledge, there are no rank-estimation procedures available for the

analysis of a recurrent event process in the presence of informative examination

and follow-up times.

The remainder of the paper is organized as follows. In Section 2, we intro-

duce the random-effects monotonic index model and present the proposed WR

estimators for the regression parameters. We also establish the consistency and

asymptotic normality of the WR estimators and provide a random weighting re-

sampling scheme for approximating the distribution of the WR estimators. The

simulation results presented in Section 3 suggest that the proposed method works

well in practical situations. In Section 4, the approach is applied to real panel

count data, and Section 5 concludes the paper. The proofs of the asymptotic

results are provided in Section S1 of the Supplementary Material.
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2. A WR Estimation for Random-Effects Monotonic Index Models

In this section, we first describe a class of random-effects monotonic index

models, and then present the proposed WR estimation procedure.

2.1. Random-effects monotonic index models

Consider a study involving N subjects, who may experience recurrent events.

For subject i ∈ {1, . . . , N}, let Mi(t) represent the cumulative number of events

that have occurred before time t, for 0 ≤ t ≤ τ , where τ is a known constant

time point. For subject i, suppose there is a (p + 1)-dimensional vector Wi of

covariates, the effects of which on Mi(t) are of primary interest. For i = 1, . . . , N ,

let Ki denote the number of observation times for the ith subject. We allow Ki to

take the value zero when there are no observations for the ith subject. Even if the

follow-up time for each subject is τ , the counting process Mi(t) is observed only at

finite time points Ti(1) < · · · < Ti(Ki), which are order statistics of {Ti1, . . . , TiKi
}.

Naturally, not every subject can be followed until τ . Let Ci be the follow-up time

for the ith subject. Then, Mi(Tik) cannot be observed when Ci < Tik < τ . That

is, we only observe panel count data given by

{(Tik,Mik = Mi(Tik),W
T
i , Ci)

T : Tik ≤ Ci, k = 1, . . . ,Ki, i = 1, . . . , N}. (2.1)

Let Zi be a q-dimensional random vector of latent variables that is independent

of Wi. We assume that given {Wi, Zi}, the conditional mean function (CMF) of

Mi(t) follows the random-effects monotonic index model:

E{Mi(t)|Wi, Zi} = µ(WT
i β
∗, Zi, t), (2.2)

where ‖β∗‖ = 1, and for fixed Zi and t, µ(WT
i β
∗, Zi, t) is an unspecified strictly

increasing function of WT
i β
∗. If Mi(t) is a Poisson process, equation (2.2) is a

conventional model for the mean of a Poisson variable on the interval (0, τ). We

are interested in making inferences about β∗ in model (2.2), without assuming

that Mi(·) is a homogeneous or non-homogeneous Poisson process.

We denote {Hi(t), t ≥ 0} as the observation process or examination time

process, given by the point process

Hi(t) =

Ki∑
k=1

I(Tik ≤ t), (2.3)

representing the cumulative visit numbers up to time t. Throughout this paper,

for any real numbers {ai}i≥1, we set
∑0

k=1 ai ≡ 0. Thus, if Ki = 0, we have
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Hi(t) ≡ 0. Let

Oi = Oi(·) = (WT
i (·), ZT

i (·), Ci(·),Mi(·), Hi(·))T

= (WT
i , Z

T
i , Ci,Mi(·), Hi(·))T, i = 1, . . . , N,

be independent copies of O = O(·) = (WT(·), ZT(·), C(·),M(·), H(·))T =

(WT, ZT, C,M(·), H(·))T, where W = (X1, . . . , Xp+1)T. We assume that C,

H(·), and M(·) are conditionally independent given {W,Z}. For the observa-

tion process and follow-up time, we assume that

E{H(t)|W,Z} = ς(W )ν(Z, t), (2.4)

P (C > t|W,Z) = κ1(W, t)κ2(Z, t), (2.5)

where ς(·), ν(·, ·), κ1(·, ·), and κ2(·, ·) are unspecified functions such that ς(·) ≥ 0,

ν(·, ·) ≥ 0, 0 ≤ κ1(·, ·)κ2(·, ·) ≤ 1, and for all fixed {Z,W}, ∂ν(Z, t)/∂t ≥ 0 and

∂{κ1(W, t)κ2(W, t)}/∂t ≤ 0.

Remark 1. Let H(t) =
∑K

k=1 I(Tk ≤ t). Suppose K and {Tk : k ≥ 1} are

conditionally independent given {W,Z}, E(K|W,Z) = ς(W )ν1(Z) and E{I(Tk ≤
t)|W,Z} = ν2(Z, t), for all k ≥ 1. Then, it is easy to verify that

E{H(t)|W,Z} = ς(W )ν1(Z)ν2(Z, t),

which shows that (2.4) is satisfied with ς(W ) and ν(Z, t) = ν1(Z)ν2(Z, t).

Example 1. Assume that, given {W,Z}, K has a Poisson distribution with mean

ς(W )ν1(Z) > 0, and Tk, for k ≥ 1, are independent and identically distributed

(i.i.d.) with distribution function {F (t)}σ(Z), where σ(z) > 0 for z ∈ Rq and

F (t) is a distribution function such that f(t) = dF (t)/dt > 0 for t > 0. Under

these assumptions, E{H(t)|W,Z} = ς(W )ν(Z, t), where ν(Z, t) = ν1(Z)ν2(Z, t)

and ν2(Z, t) = {F (t)}σ(Z).

Remark 2. Suppose G(C) = G1(ζ1, Z)∧G2(ζ2,W ), where ζ1, ζ2, Z, and W are

independent, G(·) is an unknown increasing function, G1 ∧ G2 = min(G1, G2),

G1(·, ·), and G2(·, ·) are unknown functions. Then, (2.5) is satisfied.

Example 2. Assume that C = Λa ∧ Λb, where Λa and Λb are conditionally

independent given {W,Z}. Here, Λa and Λb follow exponential distributions

with means 1/λ1(W ) > 0 and 1/λ2(Z) > 0, respectively. Under these assump-

tions, P (C > t|W,Z) = κ1(W, t)κ2(Z, t), where κ1(W, t) = exp{−λ1(W )t} and

κ2(Z, t) = exp{−λ2(Z)t}.
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Remark 3. The frailty proportional rates models (Huang, Wang and Zhang

(2006); Wang, Ma and Yan (2013)) and semiparametric accelerated mean models

(Chiou et al. (2018)) are important cases of the proposed random-effects mono-

tonic index models. Let Z denote a latent nonnegative frailty variable, the distri-

bution of which is unspecified and satisfies E(Z|W ) = 1. The frailty proportional

rates model specifies the mean of the event process M(t), given the frailty vari-

able Z and covariate W , as µ1(WTβ∗, Z, t) = ZΛ(t) exp(WTβ∗), where Λ(·) is a

completely unspecified baseline mean function. The semiparametric accelerated

mean model assumes that the recurrent event process M(t), conditioning on the

latent nonnegative frailty variable Z and covariate W , has the mean function

µ2(WTβ∗, Z, t) = ZiΛ0{t exp(WTβ∗)}, where Λ0(t) =
∫ t

0 λ0(u)du and λ0(u) is an

unspecified, absolutely continuous baseline rate function.

Remark 4. Motivated by the frailty proportional rates models and semiparamet-

ric accelerated mean models, it is possible to relax the independence assumption

of Z and W . Specifically, assume that given {W,Z}, C, H(·) and M(·) are condi-

tionally independent, and the conditional mean function of M(t) follows the spe-

cial random-effects monotonic index model: E{M(t)|W,Z} = g(Z)π(WTβ∗, t),

where ‖β∗‖ = 1, g(Z) is an unspecified nonnegative function of Z such that

E{g(Z)|W} = 1, and for fixed t, π(WTβ∗, t) is an unspecified strictly increas-

ing function of WTβ∗. For the observation process and follow-up time, assume

that E{H(t)|W,Z} = ς(W )σ(Z)ν(t) and P (C > t|W,Z) = κ(W, t), where ς(·),
σ(·), ν(·), and κ(·, ·) are unspecified functions such that ς(·) ≥ 0, σ(·) ≥ 0,

E{σ(Z)|W} = 1, ν(·) ≥ 0, 0 ≤ κ(·, ·) ≤ 1, ∂ν(t)/∂t ≥ 0, and for fixed W ,

∂κ(W, t)/∂t ≤ 0. Then, under certain mild conditions, the consistency of the

WR estimator β̂ (See subsection 2.2) to β∗ still holds.

2.2. WR estimators

To construct a consistent rank regression estimator of β∗ analogous to the

maximum-rank correlation estimator in Han (1987) or the monotone rank esti-

mator in Cavanagh and Sherman (1998), we construct a function Ψ(Oi, Oj) that

satisfies the property

E{Ψ(Oi, Oj)|Wi,Wj} ≥ E{Ψ(Oj , Oi)|Wi,Wj}
if and only if WT

i β
∗ > WT

j β
∗. (2.6)
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For panel count data, we set

Uij =

Ki∑
k=1

I(Tik ≤ Ci ∧ Cj)Mik, Vij =

Kj∑
l=1

I(Tjl ≤ Ci ∧ Cj), (2.7)

Ψ(Oi, Oj) = Yij = UijVij , i, j = 1, . . . , N. (2.8)

Here, Yij = 0 if KiKj = 0. Let Θ = {β ∈ Rp+1 : ‖β‖ = 1}. The proposed WR

estimator of β∗ is defined as

β̂ = argmax
β∈Θ

QN (β), (2.9)

where

QN (β) =
1

N2 −N

N∑
i 6=j

YijI(WT
i β > WT

j β). (2.10)

Note that {QN (β) : β ∈ Θ} is a U-process of order two. The consistency and

asymptotic normality of β̂ are given by the following theorems.

Theorem 1. Under the conditions C0–C5 in the Appendix, we have β̂
p−→ β∗

as N →∞.

Note that the maximization of QN (β) with respect to β in (2.9) is subject

to the constraint ‖β‖ = 1. Following Liu, Yuan and Sun (2021a), we derive the

asymptotic distribution of β̂ by first reparameterizing β∗ = β(ϑ∗) = β(θ∗, α∗) =:

(θ∗T, α∗
√

1− ‖θ∗‖2)T, where ϑ∗ = (θ∗T, α∗)T and θ∗ = (θ∗1, . . . , θ
∗
p)

T. Let sgn(·)
denote the sign function, that is, sgn(u) = I(u > 0) − I(u < 0), for u ∈ R.

Obviously, we can write ϑ∗ = ϑ(β∗) =: (β∗1 , . . . , β
∗
p , sgn(β∗p+1))T, where α∗ =

sgn(β∗p+1) and θ∗j = β∗j , for j = 1, . . . , p. Define

ϑ̂ = (θ̂
T
, α̂)T = argmax

ϑ∈Υ
QN{β(ϑ)}, (2.11)

where Υ = {ϑ(β) : β ∈ Θ}. Then, it is easy to see that θ̂ = (β̂1, . . . , β̂p)
T and

α̂ = sgn(β̂p+1). From Theorem 1 and the condition C4 in the Appendix, ϑ̂ is a

consistent estimator of ϑ∗.

Theorem 2. Define

Q(β) = E[Ψ(O1, O2)I(WT
1 β > WT

2 β)], A(ϑ) = −∂
2Q{β(ϑ)}
∂θ∂θT

,
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where ϑ = (θT, α)T. Let U be a normal random vector with mean 0p×1 and

covariance matrix Σ = cov{h(Oi,ϑ
∗)}, where

h(Oi,ϑ) =
A−1(ϑ)∂bi(ϑ)

∂θ
,

bi(ϑ) = E[aij(ϑ) + aji(ϑ)− 2E{aij(ϑ)}|Oi],
aij(ϑ) = Ψ(Oi, Oj)[I{WT

i β(ϑ) > WT
j β(ϑ)}

−I{WT
i β(θ∗, α) > WT

j β(θ∗, α)}].

If the conditions C0–C6 in the Appendix are satisfied, we have N1/2(ϑ̂ − ϑ∗) =

N1/2((θ̂−θ∗)T, (α̂−α∗))T d−→ (UT, 0)T as N →∞. Define B(ϑ) = ∂β(ϑ)/∂ϑT.

Then, as N → ∞, N1/2(β̂ − β∗) = N1/2{β(ϑ̂) − β(ϑ∗)} d−→ B(ϑ∗)(UT, 0)T,

which is a normal random vector with mean 0(p+1)×1 and covariance matrix Ω =

cov{B(ϑ∗)(UT, 0)T}.

2.3. Coordinate-wise algorithm

In this section, following Wu and Stefanski (2015) and Liu, Yuan and Sun

(2021a), we present a coordinate-wise optimization algorithm to optimize the ob-

jective function QN (β). The idea of the algorithm is to maximize one coordinate

at a time, with the other fixed. Define

`k(γ|ζ,η) =
∑

(i,j)∈S

pijI{(ζT, γ,ηT)(Wi −Wj) < 0}, k = 1, . . . , p+ 1,

where ζT = (ζ1, . . . , ζk−1), ηT = (η1, . . . , ζp+1−k), pij = Yji, and S = {(i, j) :

pij 6= 0}. Note that we set ζ = ∅ if k = 1 and η = ∅ if k = p+ 1. To this end, we

can write `k(γ|ζ,η) as

`k(γ|ζ,η) =
∑

(i,j)∈S

pijI(aij,kγ < bij,k)

=
∑

(i,j)∈S

pij{I(γ < cij,k)I(aij,k > 0) + I(γ > cij,k)I(aij,k < 0)}

=

L∑
l=1

pl{I(γ < cl,k)I(al,k > 0) + I(γ > cl,k)I(al,k < 0)}, (2.12)

where cij,k = bij,k/aij,k, aij,k = Xik − Xjk, bij,k = −
∑k−1

l=1 (Xil − Xjl)ζl −∑p+1
l=k+1(Xil −Xjl)ηl−k and

{(aij,k, bij,k, cij,k, pij,k) : (i, j) ∈ S }
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= {(al,k, bl,k, cl,k, pl,k) : c1,k < · · · < cL,k, L = |S |}.

Here, for ease of presentation, the dependence of (bij,k, cij,k) and (bl,k, cl,k) on

(ζ,η) is suppressed. Note that the objective function `k(γ|ζ,η) is just a piecewise

constant function with cut-off values {cl}Ll=1. Furthermore, Liu, Yuan and Sun

(2021a) showed that

`k(cs+1,k|ζ,η) = `k(cs,k|ζ,η)− ps+1I(as+1,k > 0) + psI(as,k < 0),

s = 1, . . . , L− 1. (2.13)

Using (2.13), the values of {`k(cl,k|ζ,η)}Ll=1 can be easily obtained. Thus, `k(γ|
ζ,η) is very easy to maximize. It follows that

γ̂k(ζ,η) = argmax
γ∈R

`k(γ|ζ,η) = argmax
γ∈{c1,k,...,cL,k}

`k(γ|ζ,η). (2.14)

To this end, the proposed coordinate optimization algorithm is as follows:

1. Set the initial value β(0) = (β
(0)
1 , . . . , β

(0)
p+1)T;

2. Given β(m) = (β
(m)
1 , . . . , β

(m)
p+1)T, for k = 1, . . . , p+ 1, compute

β
(m+1)
k = γ̂k((β

(m+1)
1 , . . . , β

(m+1)
k−1 )T, (β

(m)
k+1, . . . , β

(m)
p+1)T),

where γ̂k(ζ,η) is defined in (2.14). Then, set β(m+1) =(β
(m+1)
1 , . . . , β

(m+1)
p+1 )T;

3. Repeat step 2 till |QN (β(m+1))−QN (β(m))| < 10−6. Denote the final value

of β by β(∞);

4. Set β̂ = β(∞)/‖β(∞)‖.

Obviously, the proposed coordinate-wise optimization algorithm guarantees a

monotone increasing of QN (β) at each iteration step in a very efficient manner.

That is, we always have QN (β(m+1)) ≥ QN (β(m)), for m = 1, 2, . . ..

To apply Theorem 2 to make an inference about β∗, we estimate the limiting

covariance matrix Ω of β̂. Inspired by the method of Jin, Ying and Wei (2001), we

develop a resampling scheme to approximate the distribution of β̂, particularly

its covariance matrix. Let λ1, . . . , λN be i.i.d. exponential random variables with

mean one, that is, Exp(1). The resampling WR estimator of β∗ is defined as

β̂
∗

= argmax
β∈Θ

Q∗N (β), (2.15)
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where

Q∗N (β) =
1

N2 −N

N∑
i 6=j

λiλjYijI(WT
i β > WT

j β). (2.16)

Then, we have the following proposition.

Proposition 1. Under the conditions C0–C6 in the Appendix, given {Oi, i =

1, . . . , N}, N1/2(β̂
∗ − β̂)

d−→ N(0(p+1)×1,Ω) as N → ∞, which is the limiting

distribution of N1/2(β̂ − β∗).

The proof of Proposition 1 is similar to that of Jin, Ying and Wei (2001),

and is thus omitted. Theoretically, the distribution of N1/2(β̂ − β∗) can be

approximated by the resampling distribution of N1/2(β̂
∗ − β̂), given the data

{Oi, i = 1, . . . , N}. In practice, for b = 1, . . . , B, we produce β̂
∗
b by solv-

ing (2.15) with random weights (λb1, . . . , λbN ) in (2.16), while holding the data

{Oi, i = 1, . . . , N} at their observed values. The distribution of β̂ can then be

approximated by the empirical distribution of {β̂∗b}Bb=1. The asymptotic covari-

ance matrix Ω can be estimated by Ω̂ = NB−1
∑B

b=1(β̂
∗
b − β̄

∗
)(β̂
∗
b − β̄

∗
)T, with

β̄
∗

= B−1
∑B

b=1 β̂
∗
b . For j = 1, . . . , p+ 1, the 100× (1− α)% confidence interval

of β∗j is given by [β̂j−N−1/2ω̂
1/2
jj C1−α/2, β̂j +N−1/2ω̂

1/2
jj C1−α/2], where ω̂jj is the

(j, j)-element of Ω̂, and C1−α/2 is the 1 − α/2 quantile of the standard normal

distribution.

3. Simulation Study

In this Section, we present the results obtained from a simulation study

conducted to investigate the performance of the proposed WR estimator β̂, and

compare it with that of several other estimators given in the literature for the

same problem. Additional results for the complicated simulation settings are

given in Section S2 of the Supplementary Material.

In the study, we assume that the latent variable Zi follows a gamma distribu-

tion with parameters (2, 2), and Ki follows a uniform distribution over {3, 4, 5, 6}.
We set τ = 8 and Ci = min(C∗i , τ), where C∗i follows a uniform distribution over

[1, 10]. Given Ki, the observation times Ti1, . . . , TiKi
are i.i.d. with a uniform

distribution over (0, Ci). Let Wi = (Xi1, Xi2)T, where X1i is a standard nor-

mal random variable, and Xi2 is an exponential random variable with mean one.

Given Wi, Zi, Ki, and (Ti1, . . . , TiKi
), we generate Mik = M(Tik) using the for-

mula
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Mi(Tik) = Mi(Ti1) + {Mi(Ti2)−Mi(Ti1)}+ · · ·+ {Mi(Tik)−Mi(Ti,k−1)}

and assume that Mi(t)−Mi(s) follows a Poisson distribution with mean

µ(WT
i β
∗, Zi, t)− µ(WT

i β
∗, Zi, s).

For the random-effects monotonic index model, we consider the following four

CMFs:

(a) µ(WT
i β
∗, Zi, t) = tg(Zi) exp(WT

i β
∗);

(b) µ(WT
i β
∗, Zi, t) = t{g(Zi) + exp(WT

i β
∗) + 1};

(c) µ(WT
i β
∗, Zi, t) = t{g(Zi) + exp(WT

i β
∗)};

(d) µ(WT
i β
∗, Zi, t) = tg(Zi) + exp(WT

i β
∗),

where β∗ = (β∗1 , β
∗
2)T and g(Z) =

√
Z or g(Z) = exp(−Z/5).

As mentioned above, several methods have been proposed in the literature

for the problem discussed here under the simpler model (a). In the study, we

compared the proposed WR estimator with four such estimators, namely the es-

timating equation-based estimator given in Sun and Wei (2000), the maximum

pseudo-likelihood estimator given in Zhang (2002), the maximum likelihood es-

timator given in Lu, Zhang and Huang (2007), and the augmented estimating

equation-based estimator given in Wang, Ma and Yan (2013). In the following,

these are referred to as the EE, MPL, ML, and AEE estimators, respectively, and

are determined using the R function panelReg in the spef package (Chiou et al.

(2019)). The results given below are based on N = 100 or 200 and B = 200, with

1,000 replications.

Tables 1 and 2 compare the proposed WR estimator with the four existing

estimators, with β∗ = (−1, 1)T/
√

2 and N = 100 and 200, and we calculate both

the empirical bias (Bias) and the mean squared error (MSE) for each of the five

estimators. The WR estimator is always unbiased and is also stable across all the

cases. By comparison, the four other estimators seem to be unbiased under model

(a), but are biased under models (b), (c), and (d). In addition, the proposed WR

estimator appears to have a smaller MSE than the EE, MPL, ML, and AEE

estimators under models (b), (c) and (d). Moreover, the MPL, ML, and WR

estimators perform similarly in terms of the bias and MSE under model (a). In

other words, as expected, the WR estimator applies to more general situations

than the existing estimators do.

Tables 3 and 4 present the results obtained for the proposed WR estima-

tor under the simulation settings described above, with β∗ = (−1, 1)T/
√

2 and
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Table 1. Simulation results under four different conditional mean functions with g(Z) =√
Z. Bias: empirical bias; MSE: mean squared error; CMF: conditional mean function.

β∗
1 β∗

2

N CMF Estimator Bias MSE Bias MSE

100 a WR 0.0093 0.0082 0.0004 0.0044
AEE 0.0010 0.0061 -0.0017 0.0039
ML 0.0014 0.0063 -0.0026 0.0039

MPL 0.0017 0.0056 -0.0029 0.0037
EE -0.0032 0.0075 -0.0077 0.0073

b WR 0.0191 0.0118 0.0056 0.0073
AEE 0.3368 0.1165 -0.2431 0.0638
ML 0.3363 0.1162 -0.2428 0.0637

MPL 0.3449 0.1219 -0.2524 0.0680
EE 0.4133 0.1763 -0.3122 0.1050

c WR 0.0151 0.0085 0.0051 0.0057
AEE 0.2683 0.0747 -0.1886 0.0388
ML 0.2679 0.0745 -0.1886 0.0388

MPL 0.2775 0.0796 -0.1975 0.0420
EE 0.3524 0.1305 -0.2538 0.0715

d WR 0.0066 0.0080 -0.0024 0.0047
AEE 0.1105 0.0172 -0.0745 0.0098
ML 0.1104 0.0174 -0.0745 0.0099

MPL 0.1164 0.0181 -0.0785 0.0101
EE 0.1797 0.0385 -0.1211 0.0209

200 a WR 0.0051 0.0050 0.0001 0.0021
AEE -0.0009 0.0035 0.0056 0.0033
ML 0.0006 0.0032 -0.0026 0.0023

MPL 0.0011 0.0028 -0.0022 0.0021
EE -0.0026 0.0036 0.0010 0.0031

b WR 0.0042 0.0044 -0.0010 0.0031
AEE 0.3253 0.1080 -0.2248 0.0538
ML 0.3250 0.1079 -0.2247 0.0538

MPL 0.3333 0.1131 -0.2334 0.0575
EE 0.4130 0.1733 -0.3072 0.0981

c WR 0.0075 0.0036 0.0031 0.0026
AEE 0.2553 0.0670 -0.1711 0.0315
ML 0.2551 0.0669 -0.1711 0.0315

MPL 0.2641 0.0714 -0.1793 0.0342
EE 0.3495 0.1249 -0.2495 0.0651

d WR 0.0053 0.0053 -0.0002 0.0024
AEE 0.0976 0.0126 -0.0629 0.0063
ML 0.0975 0.0126 -0.0630 0.0064

MPL 0.1028 0.0133 -0.0672 0.0067
EE 0.1773 0.0344 -0.1153 0.0163
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Table 2. Simulation results under four different conditional mean functions with g(Z) =
exp(−Z/5). Bias: empirical bias; MSE: mean squared error; CMF: conditional mean
function.

β∗
1 β∗

2

N CMF Estimator Bias MSE Bias MSE

200 a WR 0.0073 0.0068 0.0001 0.0034
AEE 0.0002 0.0058 -0.0048 0.0037
ML 0.0007 0.0059 -0.0055 0.0037

MPL 0.0019 0.0056 -0.0068 0.0035
EE -0.0045 0.0064 -0.0018 0.0043

b WR 0.0098 0.0057 0.0042 0.0023
AEE 0.2242 0.0517 -0.1459 0.0231
ML 0.2241 0.0516 -0.1458 0.0231

MPL 0.2337 0.0559 -0.1548 0.0257
EE 0.3198 0.1051 -0.2250 0.0538

c WR 0.0063 0.0043 0.0020 0.0018
AEE 0.0958 0.0098 -0.0604 0.0041
ML 0.0959 0.0099 -0.0607 0.0042

MPL 0.1027 0.0113 -0.0663 0.0049
EE 0.1714 0.0326 -0.1093 0.0145

d WR 0.0080 0.0061 0.0006 0.0044
AEE 0.2625 0.0731 -0.1784 0.0369
ML 0.2622 0.0730 -0.1784 0.0369

MPL 0.2685 0.0761 -0.1847 0.0389
EE 0.3544 0.1290 -0.2522 0.0677

N = 100 and 200. The tables show the sample standard deviation of the estimates

(SD), the average of the estimated standard deviations (ESD), and the 95% em-

pirical coverage probability (CP). As shown, the ESD appears to be close to the

SD, and is thus appropriate. In addition, the results for the CP suggest that the

normal approximation to the distribution of the WR estimator seems to be rea-

sonable and, as expected, the results become better as the sample size increases.

Additional simulation results under other setups presented in the Supplementary

Material yield similar results.

4. Data Analysis

In this section, we apply the proposed WR estimation procedure to a well-

known bladder cancer data set (Andrews and Herzberg (1985, pp.250-260), Sun

and Wei (2000)). A total of 116 patients with bladder tumors are randomized into

three treatment groups: placebo, pyridoxine, and thiotepa. The main objective

is to assess the effectiveness of the treatment in reducing the occurrence rate of
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Table 3. Simulation results under four different conditional mean functions with g(Z) =√
Z. SD: sample standard deviation of the parameter estimator; ESD: the average of

the estimated standard deviations; CP: the empirical coverage probabilities of the 95%
confidence interval; CMF: conditional mean function.

β∗
1 β∗

2

N CMF SD ESD CP SD ESD CP

100 a 0.0899 0.0820 0.9550 0.0662 0.0693 0.9500

b 0.1068 0.1063 0.9710 0.0852 0.0896 0.9490

c 0.0911 0.0977 0.9610 0.0755 0.0812 0.9510

d 0.0893 0.0846 0.9700 0.0685 0.0723 0.9640

200 a 0.0704 0.0604 0.9740 0.0456 0.0486 0.9740

b 0.0664 0.0742 0.9800 0.0553 0.0626 0.9710

c 0.0597 0.0671 0.9700 0.0512 0.0562 0.9640

d 0.0729 0.0597 0.9630 0.0494 0.0502 0.9530

Table 4. Simulation results under four conditional mean functions with g(Z) =
exp(−Z/5). SD: sample standard deviation of the parameter estimator; ESD: the aver-
age of the estimated standard deviations; CP: the empirical coverage probabilities of the
95% confidence interval; CMF: conditional mean function.

β∗
1 β∗

2

n CMF SD ESD CP SD ESD CP

100 a 0.1031 0.0968 0.9570 0.0805 0.0830 0.9480

b 0.0938 0.0887 0.9680 0.0712 0.0739 0.9590

c 0.0778 0.0779 0.9610 0.0590 0.0637 0.9630

d 0.1187 0.1165 0.9610 0.1018 0.0992 0.9310

200 a 0.0821 0.0720 0.9590 0.0587 0.0600 0.9470

b 0.0747 0.0626 0.9730 0.0479 0.0514 0.9700

c 0.0651 0.0558 0.9690 0.0419 0.0445 0.9630

d 0.0776 0.0833 0.9760 0.0663 0.0708 0.9640

bladder tumors. Because the patients are observed periodically, only the numbers

of occurrences of bladder tumors between observation times are available. That

is, only panel count data are observed on the underlying process. In addition

to the treatment indicators, there exists another covariate, namely the initial

number of bladder tumors.

To apply the proposed estimation procedure, let M(t) denote the total num-

ber of recurrences of bladder tumors up to time t, and assume that M(t) is

described by the index model (2). Define X1 as the initial number of tumors,

X2 = 1 if the patient was given the thiotepa treatment, and zero otherwise, and

X3 = 1 if the patient was given the pyridoxine treatment, and zero otherwise.

Table 5 presents the estimated covariate effects with B = 200, including
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Table 5. Regression analysis results for the Bladder Tumor data: estimates of the regres-
sion coefficients, estimated standard deviation (ESD), and P-values for testing β∗

j = 0,
j = 1, 2, 3.

Estimate ESD P-value

β∗
1 β∗

2 β∗
3 β∗

1 β∗
2 β∗

3 β∗
1 β∗

2 β∗
3

WR 0.6178 -0.6060 0.5010 0.2067 0.2117 0.5056 0.0028 0.0042 0.3217

AEE 0.6354 -0.7656 0.0997 0.2027 0.3486 0.4380 0.0017 0.0280 0.8200

ML 0.6380 -0.7644 0.0973 0.2184 0.3242 0.3980 0.0035 0.0180 0.8100

MPL 0.4211 -0.6284 0.2146 0.1577 0.2811 0.2913 0.0076 0.0250 0.4600

EE 1.0306 -1.2630 0.3681 0.3408 0.4795 0.5730 0.0025 0.0084 0.5200

the WR estimates, estimated standard deviation (ESD) and p-values for testing

β∗j = 0, for j = 1, 2, 3.

For comparison, we also include the results based on the four estimation pro-

cedures discussed in the previous section. The results show that the five methods

give similar conclusions, and all suggest that the thiotepa treatment reduces the

bladder tumor recurrence rate. By comparison, the pyridoxine treatment does

not seem to have any effect in terms of reducing the bladder tumor rate. Although

the results from the different approaches are similar, the WR method indicates

a stronger thiotepa treatment effect than the others do.

5. Conclusion

We have proposed a class of of random-effects monotonic index models for

regression analyses of panel count data, which are common in many fields. A

challenge for the problem is that, in addition to the underlying recurrent event

process of interest, one has to deal with two nuisance processes, namely the ob-

servation process and the follow-up process, which may be correlated with the

recurrent event process. The proposed random-effects monotonic index models

include many popular models as special cases, such as the proportional means

model and the accelerated mean model. We have developed a WR estimation pro-

cedure for estimation, and established the asymptotic properties of the resulting

estimators of the regression parameters. In addition, our numerical results indi-

cate that the proposed approach applies to more general situations than existing

methods do.

In this study, we have focused on the estimation of the regression parameters.

However, one may sometimes also be interested in estimating the mean function

µ in (2.2), as well as the relationship between the recurrent event process of

interest and the observation process. It is apparent that a new method has to
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be developed to solve these issues. Another possible direction for future research

is the case in which there exist several correlated recurrent event processes and

one observes multivariate panel count data (Sun and Zhao (2013)). In this case,

a key issue is how to model the correlation between these processes. Of course,

one could choose to leave the correlation structure arbitrary if only the marginal

effects are of interest.

Supplementary Material

The online Supplementary Material contains the proofs of Theorems 1 and

2 and additional simulation results.
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Appendix

In this appendix, we will give the conditions for the proof of the asymptotic

results in Theorems 1 and 2. For this, let O = (WT, ZT, C,M(·), H(·))T denote

an observation from the distribution P on the set O ⊆ Rp+1×Rq×R+×D(0,∞)×
D(0,∞), where D(0,∞) is the space of real-valued cadlag functions on [0,∞).

For each o = o(·) = (w, z, c,m(·), h(·))T in O and each β in Θ, define

%(o,β) = E{Ψ(O, o)I(WTβ > wTβ)}+ E{Ψ(o,O)I(wTβ > WTβ)},

where w = (x1, . . . , xp+1)T and Ψ(O1, O2) is defined in (2.8). Write ∇m for

the mth partial derivative operator of the function %(z,β) with respect to β =

(β1, . . . , βp+1)T ∈ Rp+1, and let

|∇k|%(o,β) =
∑

i1,...,ik∈{1,...,p+1}

∣∣∣∣ ∂k

∂βi1 · · · ∂βik
%(o,β)

∣∣∣∣ .
Let W, Z and C denote the supports of W , Z and C, respectively. To establish

the asymptotic properties, we require the following conditions.

C0 (a) Oi = (WT
i , Z

T
i , Ci,Mi(·), Hi(·))T, i = 1, . . . , N are independent copies of

O = (WT, ZT, C,M(·), H(·))T;
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(b) C, M(·) and H(·) are conditionally independent given {W,Z}; (c) W

and Z are independent; (d) E{M(t)|W,Z} = µ(WTβ∗, Z, t) and for fixed

{Z, t}, µ(WTβ∗, Z, t) is an unspecified strictly increasing function of WTβ∗;

(e) E{H(t)|W,Z} = ς(W )ν(Z, t), P (C > t|W,Z) = κ1(W, t)κ2(Z, t), where

ς(·), ν(·), κ1(·, ·) and κ2(·, ·) are unspecified functions such that ς(·) ≥ 0,

ν(·, ·) ≥ 0, 0 ≤ κ1(·, ·)κ2(·, ·) ≤ 1, and for all fixed Z ∈ Z, W ∈ W and

t > 0, ∂ν(Z, t)/∂t ≥ 0 and ∂{κ1(W, t)κ2(W, t)}/∂t ≤ 0;

C1 Assume that for all (w1, w2) ∈ W ×W, ς(w1)ς(w2) > 0. For all (w1, w2) ∈
W ×W, there exist compact subsets Zw1,w2

⊆ Z and Cw1,w2
⊆ C such that

(a) P (Z ∈ Zw1,w2
)L (Cw1,w2

) > 0, where L (·) is the Lebesgue measure on

R; (b) for all r ∈ Zw1,w2
, (s, r) ∈ Zw1,w2

×Zw1,w2
and a ∈ Cw1,w2

,

∂{1− κ1(w1, a)κ2(s, a)κ1(w2, a)κ2(r, a)}
∂a

> 0, (A.1)∫ a

0

∂ν(r, t)

∂t
dt > 0; (A.2)

C2 The set W is not contained in any proper linear subspace of Rp+1;

C3 The vector of covariates, W = (X1, . . . , Xp+1)T, is of full rank, and there

exists j ∈ {1, . . . , p+ 1} such that Xj has an everywhere-positive Lebesgue

density conditional on X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xp+1)T;

C4 The unknown parameter β∗ = (β∗1 , . . . , β
∗
p+1)T, where β∗ ∈ Θ, β∗j 6= 0, and

j is defined in condition C3; without loss of generality, assume that j = p+1

in conditions C3-C4;

C5 E(Y 2
12) = E{Ψ2(O1, O2)} < +∞.

C6 (a) Let B denote a neighborhood of β∗. For each o, all mixed second

partial derivatives of %(o,β) exist on B. There is a function ω(o) such

that E{ω(O)} < +∞ and for all o ∈ O and β in B,

‖∇2%(o,β)−∇2%(o,β∗)‖ ≤ ω(o)‖β − β∗‖;

(b) E{‖∇1%(O,β∗)‖2} < +∞;

(c) E{|∇2|%(O,β∗)} < +∞;

(d) E{∂2%{O,β(θ, α∗)}/∂θ∂θT}|θ=θ∗ is negative definite.

Most of the above conditions are assumed for rank estimation of a stan-

dard random-effects monotonic index model. Additional conditions are on the
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observation process, censoring mechanism and the distribution assumptions on

(C,WT, ZT)T. C0 defines the structure which generates the observations. In

particular, C0(d) contains the key monotonicity assumption. Conditions C0-C5

guarantee the identifiability of β∗. Specifically, conditions C0-C5 ensure that

Q(β) = E{QN (β)} is uniquely maximized over Θ at β∗, which can be proved by

verifying that the inequality in (2.6) holds if and only if β = β∗.

From C0, we can write

P (C1 ∧ C2 > a|W1,W2, Z1, Z2) = κ1(W1, a)κ2(Z1, a)κ1(W2, a)κ2(Z2, a).

Thus, the conditional density of C1 ∧ C2 given {W1,W2, Z1, Z2} can be written

as

fC1∧C2
(a|W1,W2, Z1, Z2) =

∂{1− κ1(W1, a)κ2(Z1, a)κ1(W2, a)κ2(Z2, a)}
∂a

.

(A.3)

Observing (A.3), (A.1) in C1 is easily satisfied. Note that (A.2) in C1 is easily

satisfied if we assume ∂ν(r, t)/∂t > 0 for all r ∈ Z and t > 0. For the consistency

proof, condition C5 can be weakened to a finite first moment for Y12, but the

normality result requires a finite second moment. Conditions C6 contains stan-

dard regularity conditions sufficient to support an argument based on a Taylor

expansion of %{o;β(θ, α∗)} about θ.
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