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Abstract: A general construction is put forward that covers many unimodal uni-

variate distributions with simple, exponentially decaying tails (e.g., asymmetric

Laplace, log F , and hyperbolic distributions, plus many new models). The pro-

posed family is a subset of a regular exponential family, and many properties flow

therefrom. Two main practical points are made in the context of maximum likeli-

hood fitting of these distributions to data. The first is that three, rather than an

apparent four, parameters of the distributions suffice. The second is that maximum

likelihood estimation of location in the new distributions is equivalent to a stan-

dard form of kernel quantile estimation, choice of kernel corresponding to choice

of model within the class. This leads to a maximum likelihood method for band-

width selection in kernel quantile estimation, but with somewhat mixed practical

performance.

Key words and phrases: Asymmetric Laplace distribution, bandwidth selection,

exponential family, hyperbolic distribution, kernel quantile estimation, log F dis-
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1. Introduction

A continuous univariate distribution on R has simple exponential tails if, for

some α, β > 0, its density f has the properties

f(x) ∼ eαx as x → −∞, f(x) ∼ e−βx as x → ∞. (1)

The archetypal example of such a distribution has density

fAL(x) =
αβ

α + β
exp {αxI(x < 0) − βxI(x ≥ 0)} ; (2)

this is the asymmetric Laplace distribution (Kotz, Kozubowski and Podgórski

(2001, Chap. 13)). It is particularly tractable and straightforward, its one draw-
back, to some, being its ‘pointed’, non-differentiable nature at x = 0.

Which other distributions share the property of simple exponential tails? I

initially knew of two − the log F and hyperbolic distributions − and they sur-

face below (their properties include smoother behaviour around x = 0). The
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first purpose of this paper is to present a simple general construction involving
the two parameters α, β > 0 which affords a wide variety of distributions with
tail behaviour (1). Input to this construction is a simple, symmetric, ‘gener-
ating’ distribution with random variable XG, density g, distribution function
G, and first iterated (left-tail) distribution function G[2](x) =

∫ x
−∞

G(t)dt =
E{(x − XG)I(XG < x)} which, inter alia, is G(x) times the mean residual life
function (Bassan, Denuit and Scarsini (1999), and references therein). G[2](x)
does not exist for any x if g(x) ∼ |x|−(γ+1) as x → −∞ for some 0 < γ ≤ 1,
so such very heavy tailed generating distributions — ‘Cauchy and heavier’ —
are disqualified from consideration. Taking g to be symmetric (about zero) is a
convenience that affords particularly elegant simplifications without losing im-
portantly in generality, and is followed virtually throughout this paper. The
main construction and basic properties are given in Section 2. Special cases are
considered in Section 3. The proposed family is a special subset of a regular
exponential family.

The second purpose of this paper is to make two major practical points in
the context of maximum likelihood fitting of the proposed family of distributions
to data. The first of these (Section 4) explores whether the new construction
really needs all four of its parameters in practice. The answer is negative: three
parameters suffice. The second (Section 5) observes that maximum likelihood
estimation of location in the new family is precisely equivalent to a standard
form of kernel quantile estimation (Azzalini (1981)); specific choice of kernel is
equivalent to specific choice of model within the family. This leads to a maximum
likelihood method for bandwidth selection in kernel quantile estimation, but its
practical performance is shown to be somewhat mixed.

Finally, in Section 6, two closely related topics are briefly described. Some
details missing from this paper can be found in its technical report version, Jones
(2006).

2. General Construction and Properties

The proposed general family of distributions with simple exponential tails
has density

fG(x) = K−1
G (α, β) exp{αx − (α + β)G[2](x)}. (3)

The key to this construction is that as x → −∞, G[2](x) → 0, and as x → ∞,
G[2](x) ∼ x. That fG has simple exponential tails as at (1) is thus clear. Note
that this holds regardless of the weight of tails of allowed G. Of course, the
location-scale extension σ−1fG{σ−1(x − µ)} would appear to be available for
practical work, but see Section 4.

The exponential tails ensure integrability of fG, confirming that it is a den-
sity, albeit one for which the normalisation constant KG(α, β) is not generally
available in closed form. Likewise, the exponential tails imply the existence of
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all moments of the distribution, but their explicit formulae are available only on
a case-by-case basis. These comments are reflected in the moment generating
function associated with (3) which, for −α < t < β, is seen to be KG(α + t, β −
t)/KG(α, β) (and the characteristic function is KG(α+ it, β − it)/KG(α, β)). De-
fine Kij

G(α, β) = ∂i+jKG(α, β)/∂αi∂βj . Then, inter alia, the mean of distribution
(3) is {K10

G (α, β) −K01
G (α, β)}/KG(α, β).

Densities (3) are unimodal for all α, β > 0 with mode x0 satisfying G(x0) =
α/(α + β), i.e., the mode of fG is at the α/(α + β)’th quantile of G. Moreover,
densities (3) are log-concave in x, i.e., strongly unimodal. Let XFG

follow the
distribution with density fG. Then, also, E{G(XFG

)} = α/(α + β).
For symmetric g, two alternative formulations turn out to be essentially the

same as (3). Let Ḡ[2](x) =
∫

∞

x {1 − G(t)}dt = E{(XG − x)I(XG > x)} be the

first iterated right-tail distribution function; for symmetric g, Ḡ[2](x) = G[2](−x).
First, one might consider the density proportional to exp{−βx− (α+β)Ḡ[2](x)},
but this is just the distribution of −XFG

with the roles of α and β swapped.
Second, one might consider the more symmetric formulation in which the density
is proportional to

exp{−αḠ[2](x) − βG[2](x)}, (4)

but this turns out to be density (3) again. This is because, for symmetric g,
G[2](x) − Ḡ[2](x) = E(x − XG) = x. Another apparent generalisation of (3) is
also fruitless: introduction of a scale parameter into G results only in a rescaled
and reparametrised version of (3).

Formulation (4), in particular, makes it clear that fG is symmetric (about
zero) if and only if α = β (for symmetric g). Indeed, symmetric densities are
proportional to the α’th power of density (3) with α = β = 1.

3. Special Cases

3.1. The asymmetric Laplace distribution

The asymmetric Laplace density (2) is the very special case of (3) when G
corresponds to a point mass at zero: G(x) = I(x ≥ 0), G[2](x) = xI(x ≥ 0).

3.2. The log F distribution

Let G be the logistic distribution so that G(x) = ex/(1 + ex) and G[2](x) =
log(1 + ex). It follows that the resulting density fLF (x) ∝ (1 + ex)−(α+β)eαx

and, in fact, KLF (α, β) = B(α, β) where B(·, ·) is the beta function. This is the
density of the log F distribution which dates back to R.A. Fisher and appears
from time to time, and in a variety of guises, in the literature. For a partial
review and references, see Jones (2008).

The logistic distribution also generates the log F distribution in the follow-
ing way. The ith order statistic of an i.i.d. sample of size n from the logistic
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distribution follows the log F distribution with α = i, β = n + 1 − i. Moreover,
Jones (2004) argues that replacing the integers i and n by a pair of real parame-
ters provides a general method for generating distributions with two extra shape
parameters from a simple initial distribution.

3.3. The hyperbolic distribution

Now let G be the (scaled) t2 distribution (the Student t distribution on
two degrees of freedom) such that G(x) = (1/2)(1 + x/

√
1 + x2) and G[2](x) =

(1/2)(x+
√

1+x2). This results in the hyperbolic distribution of Barndorff-Nielsen
(1977) (see also Barndorff-Nielsen and Blaesild (1983)):

fH(x) ∝ exp

[

{

(α − β)x − (α + β)
√

1 + x2
}

× 1

2

]

;

KH(α, β) = (α + β)K1(
√

αβ)/
√

αβ, where K1(·) is a Bessel function. This
parametrisation is not the most usual one that takes as parameters π = (α −
β)/(2

√
αβ) and ξ =

√
αβ (Barndorff-Nielsen and Blaesild (1983)), but it is one

of the alternative forms listed by those authors. Consideration of the hyperbolic
form of log fH makes this distribution an especially natural one with simple ex-
ponential tails from the viewpoint of linear asymptotes for the log density.

Jones (2004) argues that the two most tractable and useful order statistic
distributions are the log F distribution, generated by the logistic, and the skew
t distribution of Jones and Faddy (2003), generated by the t2. Here, I suggest
that the two most tractable and useful (smooth) alternatives to the asymmetric
Laplace distribution with exponential tails are, again, the log F distribution,
generated in an alternative fashion by the logistic, together with a different dis-
tribution, the hyperbolic, which turns out also to be generated by the t2 distri-
bution. I find the central place of the t2 distribution in this kind of distribution
theory intriguing, even more so now than seen in Jones (2002).

3.4. Other members of family (3)

One can take g to be a Laplace distribution, in which case the following new
(‘doubly double exponential’) distribution arises:

fDDE(x) ∝
{

exp(αx − cex) if x < 0,

exp(−βx − ce−x) if x ≥ 0,

where c = (α + β)/2, see Jones (2006, Sec. 3.4). This density is differentiable
everywhere but lacks a second continuous derivative at x = 0.

Further smooth f ’s arise from further smooth G with support R, but none
seems more attractive than those already considered. An obvious example is
the normal-based distribution with fN (x) ∝ exp [αx − (α + β){xΦ(x) + φ(x)}],



DISTRIBUTIONS WITH EXPONENTIAL TAILS 1105

where φ and Φ are the standard normal density and distribution functions. Dif-
ferences between such smooth densities are, in any case, not very marked: see
Figure 1 of Jones (2006) for a graphical comparison.

Finally, consider G to be a symmetric distribution on finite support (without
loss of generality, (−1, 1)). This results in three-piece distributions. The simplest
case is G uniform, so that G(x) = (1/2)(1 + x)I(−1 < x < 1) + I(x ≥ 1),
G[2](x) = (1/4)(1 + x)2I(−1 < x < 1) + xI(x ≥ 1), and thence

fU(x) ∝















exp(αx) if x < −1,

exp
(

− αβ
α+β

)

exp

{

−1
4(α + β)

(

x − α−β
α+β

)2
}

if − 1 ≤ x < 1,

exp(−βx) if x ≥ 1.

(5)

(KU (α, β) is given in Jones (2006)). Density (5) is the result of continuously −
but not differentiably − joining two lines and a quadratic center on the log density
scale. Equivalently, it consists of a normal center onto which exponential tails
have been grafted. In the symmetric case, (5) is the density associated with the
‘most robust’ M-estimator of Huber (1964, p.75; rescale (5) by factor k and take
α = β = k2 to match Huber’s parameterisation). Higher-order contact between
pieces can be achieved by replacing the quadratic by a higher-order polynomial,
such as another symmetric beta density. See also Section 5.

4. Maximum Likelihood Estimation I: Too Many Scale Parameters

Let X1, . . . ,Xn be an i.i.d. sample from the location-scale version

1

σ
fG

(

x − µ

σ

)

=
1

σKG(α, β)
exp

{

α
(x − µ)

σ
− (α + β)G[2]

(

x − µ

σ

)}

(6)

of density fG, and assume that G is twice continuously differentiable. The asym-
metric Laplace distribution is thus disqualified from consideration on two counts,
the second being the lack of role for σ which cannot be separated from α and β
in that case. (See Section 3.5 of Kotz, Kozubowski and Podgórski (2001) for an
account of maximum likelihood estimation for the asymmetric Laplace distribu-
tion.) The (exact) non-identifiability of α, β and σ in the asymmetric Laplace
case suggests a practical non-identifiability of α, β and σ in other cases of fG.
This proves to be so in the sense that the asymptotic correlation between the
maximum likelihood estimators of at least one pair of these parameters is ex-
tremely high, and therefore there is no hope of estimating all these parameters
well from data: in practice, one parameter can be dropped. This is because α,
β and σ all act as scale parameters, yet there are clear roles for only two scale
parameters, one associated with the left-tail of the distribution, the other with
the right. Relatedly, the tails of σ−1fG{σ−1(x − µ)} go like e(α/σ)x as x → −∞
and e−(β/σ)x as x → ∞.
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The elements of the observed and expected information matrices associated
with maximum likelihood estimation in the four-parameter distribution (6) are
given in Jones (2006). The main point concerning the unnecessary nature of
one scale parameter can, however, be demonstrated in the symmetric, three-
parameter case (α = β), as follows. The symmetry of the distribution means
that the location estimate µ̂ is asymptotically independent of σ̂ and α̂. The
elements of the submatrix of the expected information matrix associated with σ̂
and α̂ turn out to be n times

Jσσ =
1

σ2
[1 + 2αE{X2

FG
g(XFG

)}],

Jσα = − 1

σα
and Jαα = M′′

G(α),

where MG(α) = log{KG(α,α)}. The asymptotic correlation, r say, of σ̂ and α̂
is therefore a function of α only:

r(α) =
1

α
(

M′′

G(α)[1 + 2αE{X2
FG

g(XFG
)}]

)
1

2

.

When α → ∞, manipulations in Section 4.2 of Jones (2006) can be extended
to show that M′′

G(α) ∼ 1/(2α2) and E{X2
FG

g(XFG
)} ∼ 1/(2α), so that limα→∞

r(α) = 1. An asymptotic value of 1 for limα→0 r(α) arises from other calculations.
Indeed, an extraordinary closeness of r(α) to unity for all α is obtained in nu-
merical computations: for the log F and hyperbolic distributions, the minimum

correlations obtained were 0.992 and 0.994, respectively! A similar analysis was
done for the four-parameter log F distribution in Jones (2008) where a (rather
less impressive) minimum correlation between σ̂ and each of α̂, β̂ and 2/(α̂ + β̂)
of “almost 0.9” was found.

Treating the log F distribution as a three parameter distribution alleviates
the computational problems with fitting the four-parameter distribution noted by
Brown, Spears, Levy, Lovato and Russell (1996) and Dupuis (2001). The user is
left with a choice between, essentially, (µ, σ, 1 − p, p), 0 < p < 1, and (µ, 1, α, β)
that one expects to be unimportant in practical performance terms. Within
these parametrisations, further reparametrisations such as (µ, σ, (1 − p)σ, pσ) or
(µ, 1, p0, q0), where p0 > 0, q0 are new parameters suggested by Prentice (1975),
are possible.

5. Maximum Likelihood Estimation II: Kernel Quantile Estimation

The likelihood equation associated with differentiation with respect to µ in
(6) reads n−1

∑n
i=1 G {(Xi − µ)/σ} = α/(α + β), or equivalently

n−1
n

∑

i=1

G

(

µ − Xi

σ

)

=
β

α + β
≡ p. (7)
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The left-hand side of (7) is the kernel estimator of the distribution function at
the point µ, with bandwidth σ and kernel distribution function G. Solving (7)
for µ, the resulting µ̂(p) is precisely the inversion kernel quantile estimator at

p (Nadaraya (1964) and Azzalini (1981)). It is well known that maximum like-
lihood location estimation in the asymmetric Laplace distribution is equivalent
to sample quantile estimation (e.g., Koenker and Machado (1999)); here, for the
first time, is a simple generalisation to the case of kernel-smoothed quantile esti-
mation. Intriguingly, the more tractable choices of G from a distributional per-
spective and the usual choices of G from a kernel perspective (e.g., normal and
Epanechnikov and other symmetric beta kernels) differ. However, the relative
indifference to precise choice of kernel, bar perhaps smoothness considerations,
matches the relative similarity of members of the class fG.

The three-parameter version of (6) that yields (7) directly is parametrised
by (µ, σ, 1− p, p), but now take p to be fixed by choice of quantile. Interestingly,
the special case of the log F distribution that corresponds to use of the logis-
tic kernel in (7) is the ‘NEF-GHS’ distribution of Morris (1982). In addition,
when p = 1/2, Huber’s ‘most robust’ location M-estimator (Section 3.4) can now
be interpreted as an inversion kernel median estimator using a uniform kernel.
Quite generally, inversion kernel median estimators are seen to be equivalent to
M-estimators of location. On the other hand, inversion kernel quantile estima-
tors differ from kernel-smoothed order statistic estimators (for several of which,
see Sheather and Marron (1990)) but exhibit broadly comparable behaviour (see
below for some evidence). Note that (7) is readily solved numerically, and that
there is no need to worry about boundary effects near p = 0 or 1.

But now we also have a (semi-)principled method of bandwidth selection by
choosing σ and µ simultaneously by maximum likelihood. The second likelihood
equation that should be solved in conjunction with (7) is

1

n

n
∑

i=1

(Xi − µ)

{

p − G

(

µ − Xi

σ

)}

= σ. (8)

Uniqueness of the estimators of µ and σ is assured. In fact, the left-hand sides
of (7) and (8) are monotone decreasing in µ for fixed σ and in σ for fixed µ,
respectively, over appropriate ranges of values and hence, attractively, simple
(e.g., bisection) methods can be used successfully to compute both µ̂ and σ̂.

Simulation results using this methodology are, however, mixed. As examples,
Table 1 gives results for n = 25, 50, 100 and the standard normal and Laplace
distributions. The four methods compared in Table 1 are the sample quantile,
the Harrell and Davis (1982) estimator, and two estimators based on (7) with
‘biweight’ (i.e. beta(3, 3)) G: the first takes σ to be the ‘rule-of-thumb’ bandwidth
associated with minimisation of asymptotic mean squared error (Azzalini (1981))
assuming normality; the second utilises (8). Taking 50, 000 replications resulted
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Table 1. Mean squared errors (and biases in brackets beneath them) asso-
ciated with the estimation of normal and Laplace quantiles from samples
of size n = 25, 50, 100 for specified p and four estimation methods. The
biweight kernel was used in the kernel methods. 50, 000 replications.

Normal distribution Laplace distribution

Kernel; Kernel; Kernel; Kernel;

Sample Harrell- r-o-t b’width Sample Harrell- r-o-t b’width

p quantile Davis b’width via (8) quantile Davis b’width via (8)

n = 25

0.50 0.062 0.052 0.062 0.056 0.054 0.050 0.054 0.050
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

0.75 0.073 0.061 0.064 0.067 0.113 0.110 0.161 0.109

(−0.037) (0.018) (0.086) (−0.003) (−0.021) (0.078) (0.247) (0.030)

0.9 0.111 0.096 0.098 0.108 0.354 0.373 0.314 0.347

(−0.017) (0.054) (0.095) (−0.014) (0.010) (0.195) (0.186) (0.015)
n = 50

0.50 0.032 0.027 0.032 0.028 0.025 0.023 0.025 0.023

(0.025) (0.000) (0.025) (0.000) (0.023) (0.000) (0.023) (0.000)

0.75 0.037 0.032 0.032 0.033 0.060 0.055 0.077 0.054

(−0.003) (0.009) (0.057) (0.002) (0.010) (0.040) (0.172) (0.022)
0.9 0.063 0.049 0.050 0.054 0.219 0.175 0.161 0.172

(0.049) (0.028) (0.063) (−0.005) (0.116) (0.103) (0.123) (0.017)

n = 100

0.50 0.016 0.014 0.016 0.014 0.012 0.011 0.012 0.011
(0.012) (−0.001) (0.012) (−0.001) (0.011) (0.000) (0.011) (0.000)

0.75 0.019 0.016 0.016 0.017 0.032 0.028 0.036 0.027

(0.014) (0.004) (0.036) (0.003) (0.026) (0.020) (0.115) (0.018)

0.9 0.030 0.026 0.025 0.027 0.098 0.082 0.079 0.085

(0.024) (0.014) (0.041) (−0.002) (0.055) (0.050) (0.077) (0.009)

in standard errors such that the simulated mean squared errors are (approxi-
mately) correct to the number of decimal places shown.

The kernel method with σ chosen by (8) performs particularly well at the
median. This is because we are utilising the variance of a well-fitting model as
bandwidth. This, of course, can also be considered to be good robust estimation
of location via a particular M-estimator. Performance tends to be rather worse
for other quantiles, although the new method is best for the 0.75 quantile of
the Laplace distribution. Overall, the new estimator proves to be of roughly
comparable quality to the Harrell-Davis estimator (which is well thought of in
the study of Sheather and Marron (1990)) but is often beaten by the rule-of-
thumb kernel estimator away from the median. The latter observation must be
associated with the fitting of particular skew distributions that bear little relation
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to the symmetric distributions underlying the data (although the same is true of

the asymmetric Laplace distribution underlying the sample quantile). Hence the

words “a (semi-)principled method of bandwidth selection” above.

6. Related Methodology

Formula (3) also provides distributions for use on support R+, most obvi-

ously via log transformation. The simple exponential tails of fG translate to

simple power tails for the transformed density fG;+(y): fG;+(y) ∼ yα−1 as y →
0, fG;+(y) ∼ y−(β+1) as y → ∞. Elsewhere (Jones (2007)) I have argued that

this behaviour at 0 — that of the reciprocal of a random variable with a y−(α+1)

right-hand density tail — is a natural analogue of the power tail at infinity. The

F , log hyperbolic, and ‘log-skew-Laplace’ distributions arise as special cases: it

is in the guise of the log hyperbolic that the hyperbolic distribution is most often

used as a model for data (e.g., Barndorff-Nielsen (1977)), while Fieller, Flenley

and Olbricht (1992) put the log-skew-Laplace distribution forward as a more

tractable alternative to the log hyperbolic.

The work of Section 5 on kernel quantile estimation can be extended to the

regression context. To do so, take the version of (6) used in Section 5 as distri-

bution for the response variable, and pursue the usual approach of introducing

a further kernel function ‘in the x-direction’ to fit lines (or other polynomials)

locally (e.g., Loader (1999)). This yields a more principled version of the “double

kernel local linear quantile regression” approach of Yu and Jones (1998) which

turns out to consistently, if not always substantially, outperform the original ver-

sion. See Jones and Yu (2007) for much more on this improved double kernel

local linear quantile regression.
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