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Abstract: It has long been recognised that most standard point estimators lean

heavily on untestable assumptions when missing data are encountered. Statisticians

have therefore advocated the use of sensitivity analysis, but paid relatively little

attention to strategies for summarizing the results from such analyses, summaries

that have clear interpretation, verifiable properties and feasible implementation. As

a step in this direction, several authors have proposed to shift the focus of inference

from point estimators to estimated intervals or regions of ignorance. These regions

combine standard point estimates obtained under all possible/plausible missing

data models that yield identified parameters of interest. They thus reflect the

achievable information from the given data generation structure with its missing

data component. The standard framework of inference needs extension to allow for

a transparent study of statistical properties of such regions.

In this paper we propose a definition of consistency for a region and introduce

the concepts of pointwise, weak and strong coverage for larger regions which ac-

knowledge sampling imprecision in addition to the structural lack of information.

The larger regions are called uncertainty regions and quantify an overall level of

information by adding imprecision due to sampling error to the estimated region of

ignorance. The distinction between ignorance and sampling error is often useful, for

instance when sample size considerations are made. The type of coverage required

depends on the analysis goal. We provide algorithms for constructing several types

of uncertainty regions, and derive general relationships between them. Based on

the estimated uncertainty regions, we show how classical hypothesis tests can be

performed without untestable assumptions on the missingness mechanism.

Key words and phrases: Bounds, identifiability, incomplete data, inference, pattern-

mixture model, selection model.

1. Introduction

The problem of missing values has received due attention in the statisti-

cal literature for many years; over the past decade the nature of this work has

changed appreciably. Previously, the main concern was the lack of balance in-

duced in data sets by missing values that precluded simple methods of analysis.
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Recent advances in general statistical methodology and computational develop-

ments have greatly reduced this as an issue. The focus has shifted to the nature

of inferences that can be legitimately drawn from incomplete data, and how these

are bound up with assumptions about the unobserved data. Rubin (1976) and

Little and Rubin (1987) provide much of the foundation for this debate. In

particular, Rubin delineated those settings in which one could proceed to anal-

yse incomplete data effectively as though they were incomplete by design. This

distinction is central to the problem of missing data and rests on the probabilis-

tic relationships between the observed data, the missing data, and the random

variable representing missingness.

We are concerned here with the situation in which data may be missing in

a non-random fashion. That is, conditional on the observed data and covariates,

there remains statistical dependence between a data point and the probabil-

ity that it is missing. Analyses that assume the data are missing by design

are then no longer generally valid. The lack of knowledge associated with the

missing data now introduces an essential degree of ambiguity into statistical

inference. We term this ambiguity ‘ignorance’ and distinguish it from famil-

iar statistical imprecision, the consequence of random sampling. Our procedure

will accommodate this by replacing point estimators by sets of points that es-

timate intervals or regions of ignorance. Each point in these sets is derived in

the usual way from a different plausible model that is compatible with the ob-

served data and yields identified parameters of interest. These sets are quite

distinct from confidence regions that represent the statistical imprecision asso-

ciated with a point estimate. In our approach such measures of sampling error

must be added to the region of ignorance to obtain an overall region of uncer-

tainty. These ideas of ignorance and uncertainty were introduced and illustrated

in Goetghebeur, Molenberghs and Kenward (1999), Kenward, Molenberghs and

Goetghebeur (2001) and Molenberghs, Kenward and Goetghebeur (2001). Re-

lated ideas have been formulated and/or used by, e.g., Balke and Pearl (1997),

Cochran (1977), Horowitz and Manski (2000), Imbens and Manski (2004),

Joffe (2001), Nordheim (1984), Robins (1989) and Scharfstein, Manski and An-

thony (2004).

In this paper we develop a formal framework for the study of ignorance and

uncertainty, illustrating these concepts with a study of HIV prevalence in Kenya

(presented in Section 2) where diagnostic test outcomes are incompletely ob-

served. In Section 3 we introduce a formal definition for the region of ignorance.

Having replaced conventional point estimators with intervals or regions of esti-

mates, we develop ‘classical’ frequentist inference to handle standard concepts

such as coverage and consistency in these new settings. In Section 4, we define

pointwise coverage and consistency of a regional estimator when the target of
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inference is the unidentified true parameter value. We develop the combination

of the estimated region of ignorance with statistical imprecision and derive esti-

mators for the resulting pointwise uncertainty regions. We show how the level

of classical hypothesis tests can be protected without untestable assumptions

about the missing data mechanism. In Section 5, we define weak and strong

coverage, and consistency of a regional estimator when the target of inference is

the identified region of ignorance (that contains the true parameter value). We

construct uncertainty regions designed to attain a given weak or strong coverage

probability. Until Section 6 we impose no restrictions on the observed data law.

In Section 6 we discuss the additional challenges that must be met when the

observed data model is parametric or semiparametric.

2. Motivation

To motivate the problem setting, consider the following HIV surveillance

study described in Verstraeten, Farah, Duchateau and Matu (1998). To evaluate

the current situation of the HIV epidemic in Kenya, 787 blood samples were col-

lected as part of the National AIDS Control Programme among pregnant women

from rural and urbanised areas near Nairobi in 1996. Of these, 52 (699) HIV

test results were positive (negative) and coded Y = 1 (0). Thus 751 diagnostic

test results were observed (R = 1) and 36 were missing (R = 0). Some sera were

hemolysed and therefore produced inconclusive HIV test results; others were not

available at the time of diagnostic testing. Under this setting, the observed data

(YiRi, Ri) for subjects i = 1, . . . , N = 787 can be regarded as N independent and

identically distributed copies of random variables (Y R,R).

When the dependence of missingness on the missing outcome is unknown to

the investigator, the pattern-mixture model

pr(R = 1) = ν0 (2.1)

logit{pr(Y = 1|R)} = η0 + γ∗
pm(1 − R) (2.2)

with γ∗
pm known, and the selection model

pr(Y = 1) = β0 (2.3)

logit{pr(R = 1|Y )} = δ0 + γsY (2.4)

with γs known, are nonparametric models for the observed data. Each choice of

γ∗
pm (γs) thus corresponds to a choice of (ν0, η0) ((β0, δ0)) that fits the observed

data perfectly, so different choices for γ∗
pm (γs) cannot be rejected by any statis-

tical test. As a result, HIV risk β0 cannot be identified from the observed data

without unverifiable assumptions (note that β0 = expit(η0)ν0 + γpm(1 − ν0) and



956 S. VANSTEELANDT, E. GOETGHEBEUR, M. G. KENWARD AND G. MOLENBERGHS

γpm = pr(Y = 1|R = 0) = expit(η0 + γ∗
pm) under the pattern-mixture model de-

fined by (2.1)−(2.2)). However, β0 is identified once a value is chosen for γ∗
pm (γs).

In line with the missing data literature, parameters like γ∗
pm (γs) that are not

identified, but conditional on which the parameter are identified, are called ‘sen-
sitivity parameters’ (see e.g., Molenberghs, Kenward and Goetghebeur (2001)).

Since the observed data do not identify the sensitivity parameter, one should
be reluctant to analyze the data under a single choice such as γs = 0. For
this reason, it has become increasingly common to conduct sensitivity analyses
which reveal how estimates for β0 vary over different values for the sensitivity
parameter (see e.g., Copas and Li (1997), Scharfstein, Robins and Rotnitzky
(1999), Molenberghs, Kenward and Goetghebeur (2001) and Verbeke, Molen-
berghs, Thijs, Lesaffre and Kenward (2001)). Figure 1 shows the varying risk
estimates for the Kenyan HIV study. The missing at random (MAR) assumption
(Rubin (1976)) corresponds to γs = 0 and is itself consistent with a relatively low
HIV risk estimate of 0.069. Larger risk estimates would occur if HIV positives
were least likely to respond (i.e., γs < 0).

Figure 1. Estimates (solid line) and 95% confidence intervals (dotted lines)
for β0 = pr(Y = 1) in function of γpm = pr(Y = 1|R = 0) (left) and the
odds ratio exp(γs) of response for HIV positives to HIV negatives (right).

While graphical displays like Figure 1 are the most suitable tools in any
sensitivity analysis, they prohibit concise reporting of results, especially when,
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as usual, many unknown parameters are of interest. One natural and simple
strategy for summarizing the results of a sensitivity analysis is to report, besides
the usual analysis results obtained under a sole plausible missing data asssump-
tion (e.g., MAR), the range of estimates for β0 corresponding to a plausible
range of values for the sensitivity parameter. We call such a range of estimates
an Honestly Estimated Ignorance Region (HEIR) for the target parameter be-
cause it expresses ignorance due to the missing data. Extreme application of
this philosophy has lead to reporting worst case-best case intervals in a num-
ber of applications (see e.g., Cochran (1977), Nordheim (1984), Robins (1989),
Kooreman (1993), Horowitz and Manski (2000), Balke and Pearl (1997) and
Molenberghs, Kenward and Goetghebeur (2001)). These involve no untestable
assumptions about the missing data but have debatable merits because they are
often extremely wide. The approach taken by us and others (e.g., Scharfstein,
Manski and Anthony (2004)) is less extreme because we allow for untestable
assumptions (namely that the sensitivity parameter lies within a chosen range)
up to a chosen degree in order to obtain narrower and more plausible ranges of
estimates. While the procedure is partly subjective, this is inherent to the prob-
lem as some untestable assumptions are (usually) unavoidable in any sensitivity
analysis (e.g., even graphical displays like Figure 1 can often only be produced
for a limited range of values for the sensitivity parameter, and their interpreta-
tion thus necessarily involves untestable assumptions). Furthermore, reporting
estimates that correspond to a range of values instead of a single value for the
sensitivity parameter is always superior, in the sense that it is less sensitive to
untestable assumptions. This is discussed further in Section 7.

Regions of estimates (HEIRs) instead of point estimates have been reported
and found useful in a number of applications. They may be obtained directly
from graphical displays like Figure 1, using methods for sensitivity analysis as
described in Scharfstein, Robins and Rotnitzky (1999) for example, or be con-
structed more rapidly using specialized algorithms or computations (see Balke
and Pearl (1997), Horowitz, Manski, Ponomareva and Stoye (2003), Kooreman
(1993), Robins (1989) and Vansteelandt and Goetghebeur (2001)). Nonetheless,
their frequentist properties have received little attention so far, with some notable
exceptions (Horowitz and Manski (2000) and Imbens and Manski (2004)). The
goal of this paper is to examine how one can account for the sampling variability
of HEIRs, and what it takes to be a good estimated region of ignorance. To
enable rigorous study, we start by formally defining HEIRs.

3. Formal Setting

Consider a study in which an m× 1 vector variable Li is to be measured on

units i = 1, . . . , N , e.g., Li may contain a primary outcome and baseline covari-

ates. As the entire vector Li may be missing, we observe instead N independent
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and identically distributed copies Oi = (Ri,Li(Ri)) of the observed data vector

O = (R,L(R)). Here, R is an m × 1 vector whose tth element, t = 1, . . . ,m,

equals 1 if the tth component Lt of L is observed and 0 otherwise, and L(R)

denotes the observed part of L (according to the observed response indicator R).

We denote the true distribution of the full data (L,R) by f0(L,R).

Suppose for now (and until Section 6) that we impose no restrictions on the

full data distribution f(L,R). Our goal is then to draw inference on a vector

functional β0 = β{f0(L)} ∈ IRp (e.g., the mean) of the true complete data

distribution f0(L) =
∫

f0(L,R)dR. This is challenging when there are missing

data, because several full data laws f(L,R) may marginalize to the true observed

data law

f0(O) =

∫

f0(L,R)dL(1−R) =

∫

f(L,R)dL(1−R), (3.1)

where L(1−R) denotes the missing part of L (according to the observed re-

sponse indicator R). Different examples of such laws f(L,R) cannot be dis-

tinguished based on realizations from the observed data law. Nevertheless, they

may imply different values for the parameter of interest β = β{f(L)}, where

f(L) =
∫

f(L,R)dR, in which case the observed data do not identify β0.

We follow ideas in Robins (1997) by defining a class M(γ) of full data laws,

indexed by some vector parameter γ, to be nonparametric identified (NPI) if for

each observed data law f(O), there exists a unique law f(L,R;γ) in the class

M(γ) such that f(O) is the marginal distribution of O according to the joint

law f(L,R;γ); that is, f(O) =
∫

f(L,R;γ)dL(1−R). In Section 2 for example,

L = Y and each possible value for γ = γpm ∈ [0, 1] characterizes a single class

M(γ) of full data laws defined by restrictions (2.1)−(2.2) for the given γ. For

each γ ∈ [0, 1], this class M(γ) contains a unique law that marginalizes to the

observed data law. In line with our previous definition, we call the parameter γ

indexing the models M(γ) a sensitivity parameter.

It follows from the definition that β0 is uniquely identified from the observed

data law under each model M(γ). Furthermore, the observed data cannot dis-

tinguish different models M(γ) (corresponding to different γ-values). Suppose

however that we have some information about the mechanism leading to the out-

comes being missing that enables us to restrict the class of full data laws to those

classes M(γ) for which γ lives in a chosen set Γ; e.g., to consider the model

defined by restrictions (2.1)−(2.2) with γ ∈ [0, 0.25]. Then our primary goal is

to draw inference for β0 under the union model M(Γ) = ∪γ∈ΓM(γ), assuming

that the true value γ0 of γ lies in Γ.
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Because β0 is not generally identified from the observed data law under

M(Γ), a whole region of values

ir(β,Γ) =

{

β{f(L)} : f(L) =

∫

f(L,R)dR with f(L,R) ∈ M(Γ)

satisfying f0(O) =

∫

f(L,R)dL(1−R)

}

(3.2)

rather than a single point value for β, is typically consistent with the observed

data law. Extending ideas in Molenberghs, Kenward and Goetghebeur (2001),

this region ir(β,Γ) will be called the ignorance region for β. We call an estimator

of this set an Honestly Estimated Ignorance Region (HEIR) for β0 and view it

as an estimate for β0 under M(Γ).

4. Inference for β0

In studying the frequentist properties of HEIRs, we first take the viewpoint

that the unidentified estimand β0 (as opposed to the identified estimand ir(β,Γ))

is the target of inference under model M(Γ). Our goal is then to construct an

appropriate concept of weak consistency for HEIRs and (1−α)100% uncertainty

regions that cover β0 with at least (1 − α)100% chance under this model.

4.1. Sampling variability: Pointwise coverage

The HEIR inherits variability from the sample of data. This is most easily ex-

plored through the parameter β(γ) ≡ β{f(L)} where f(L) =
∫

f(L,R)dR with

f(L,R) ∈ M(γ) satisfying f0(O) =
∫

f(L,R)dL(1−R), which is identified under

the smaller model M(γ). For given γ, estimates and (1 − α)100% confidence

regions for β(γ) under M(γ) can be constructed in the usual way. However,

because the true value γ0 of γ is not identified under M(Γ), such confidence

regions may fail to cover the truth β0 = β(γ0) with at least 100(1−α)% chance

under the true data-generating model (indeed, only the γ0-specific region will).

It is hence more meaningful to construct regions that cover β(γ) uniformly over

γ ∈ Γ under M(γ) with at least (1 − α)100% chance.

Definition 1. A region URp(β,Γ) is a (1−α)100% pointwise uncertainty region

for β0 when its pointwise coverage probability

inf
γ∈Γ

prM(γ){β(γ) ∈ URp(β,Γ)} (4.1)

is at least (1 − α)100%.

Here the notation prM(γ)(·) indicates that probabilities are taken under

M(γ). It follows from this definition that (1 − α)100% pointwise uncertainty
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regions cover the truth β0 = β(γ0) with at least (1 − α)100% chance, whatever

value γ0 ∈ Γ was used for generating the observed data.

Pointwise uncertainty regions extend confidence regions for identified param-

eters to partially identified parameters. They retain the well-known link with hy-

pothesis tests: one can test the null hypothesis H0 : β = β0 versus Ha : β 6= β0

at the α × 100% significance level by rejecting the null hypothesis when β0 is

excluded by the (1 − α)100% pointwise uncertainty region URp(β,Γ). Indeed,

under M(Γ)

pr0(reject β0) = 1 − pr0{β(γ0) ∈ URp(β,Γ)}

≤ 1 − inf
γ∈Γ

prM(γ){β(γ) ∈ URp(β,Γ)} ≤ α,

where the subscript 0 indicates that probabilities are taken w.r.t. the true ob-

served data law and the last step follows from the definition of pointwise uncer-

tainty regions.

Below, we show how to construct (1−α)100% pointwise uncertainty intervals

for scalar parameters. To simplify the discussion, let γ l and γu be values in Γ

that correspond to the lower and upper bound of an ignorance interval for β,

respectively, so that ir(β,Γ) = [βl, βu] = [β(γ l), β(γu)]. Throughout, suppose

that the following hold.

Assumption 1. We have available consistent and asymptotically normal (CAN)

estimators β̂l for β(γ l) with standard error se(β̂l) under M(γ l), and β̂u for β(γu)

with standard error se(β̂u) under M(γu).

Assumption 2. The values γ l and γu in Γ that correspond to the lower bound

βl = β(γ l) and upper bound βu = β(γu), respectively, are independent of the

observed data law.

Assumption 1 guarantees that CAN estimators for β can be found under

M(γl) and M(γu). Assumption 2 guarantees that these estimators are CAN for

the bounds of the ignorance interval for β0 with consistent standard errors se(β̂l)

and se(β̂u), respectively. In Section 6, we give an example where Assumption 2

fails because the values for the sensitivity parameters that correspond to these

bounds must be estimated from the observed data. Additional account must

then be taken of the sampling variability of these estimated values.

Under Assumptions 1 and 2, (1−α)100% pointwise uncertainty intervals for

β0 can be constructed by adding confidence limits with adjusted critical values

to the estimated ignorance limits β̂l and β̂u. Thus, with cα∗/2 a critical value

yet to be derived, we propose (1−α)100% pointwise uncertainty intervals of the

form

URp(β,Γ) = [CL, CU ] = [β̂l − cα∗

2
se(β̂l), β̂u + cα∗

2
se(β̂u)]. (4.2)
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Next we calculate the critical value cα∗/2 needed to attain the desired pointwise

coverage level. In the Appendix, we show that under Assumptions 1 and 2,

expression (4.2) is an asymptotic (1 − α)100% pointwise uncertainty interval for

β0 if cα∗/2 solves the following equation

min

[

Φ(cα∗

2
) − Φ

{

−cα∗

2
−

βu − βl

se(β̂u)

}

,Φ

{

cα∗

2
+

βu − βl

se(β̂l)

}

− Φ(−cα∗

2
)

]

= 1 − α, (4.3)

where Φ(·) is the cumulative distribution function of a standard normal variate.

We further show that the asymptotic pointwise coverage probability of this in-

terval is the nominal (1 − α)100%. Equation (4.3) yields no feasible solution for

cα∗/2 because it involves unknown functionals of the observed data distribution.

Hence, consistent estimators must be derived for the critical value by replacing

βl, βu, se(β̂l) and se(β̂u) in (4.3) by consistent estimators. Resulting Estimated

Uncertainty RegiOns will be called EUROs.

In the Appendix, we show that cα∗/2 approximates the (1 − α)100% per-

centile of the standard normal distribution when there is much ignorance about

the target parameter and the intended sample size is large. Pointwise uncer-

tainty intervals further enjoy the important property that for monotone map-

pings g(·), pr0{ir(β,Γ) ⊂ URs(β,Γ)} = pr0[g{ir(β,Γ)} ⊂ g{URs(β,Γ)}] =

pr0[ir{g(β),Γ} ⊂ g{URs(β,Γ)}]. Hence, they can be estimated on a transformed

scale where, for instance, asymptotic normality is a better approximation and

subsequently backtransformed to the original scale.

In the Kenyan HIV surveillance study, we deduce that β0 lies between βl =

β(γpm = 0) = expit(η0)ν0 = E(Y R) and βu = β(γpm = 1) = expit(η0)ν0+1−ν0 =

E(Y R + 1 − R). Replacing population values by sampling analogs, we estimate

HIV risk between β̂l = 52/787 = 0.066 and β̂u = 88/787 = 0.112 without assump-

tions on the missing data mechanism. With γpm,l = 0 and γpm,u = 1 correspond-

ing to the lower bound βl and upper bound βu regardless of the observed data

law, Assumption 2 is satisfied. Thus, solving (4.3) with ŝe(β̂l) = 52 × 731/7873

and ŝe(β̂u) = 88 × 699/7873 yields cα∗/2 = 1.645. A 95% pointwise EURO

for β0 is [0.0515, 0.130]. Without assumptions on the missing data mechanism,

we estimate HIV risk to lie between 5.15% and 13.0% with at least 95% chance.

Interestingly, this interval retains the qualitative interpretation of a classical con-

fidence interval but involves no missing data assumptions.

Physicians involved in this study think that 25% is a safe overestimate

of the risk of HIV among nonresponders. Assuming they are right, we set

γpm ∈ Γ = [0, 0.25] and estimate β0 to lie between 52/787 = 0.066 and 52/787 +
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(0.25)36/787 = 0.078. We find a corresponding 95% pointwise EURO from

0.0515 to 0.0924. Better finite-sample approximations are expected by esti-

mating pointwise uncertainty intervals on the logit scale. Solving (4.3) with

β̂l = logit(52/787), β̂u = logit(88/787), ŝe(β̂l) = 787/(52 × 731) and ŝe(β̂u) =

787/(88 × 699) yields cα∗/2 = 1.665 and a 95% pointwise EURO for logit(β0)

is [−2.89,−2.25]. A 95% pointwise EURO for β0 becomes [expit(−2.89),

expit(−2.25)] = [0.0528, 0.0949]. Thus, under a realistic range of plausible miss-

ing data assumptions (i.e., provided that γpm ∈ [0, 0.25]), we estimate that HIV

risk lies between 5.28% and 9.49% with at least 95% chance.

4.2. Consistency

To verify whether the HEIR itself is adequate as an estimator of the partially

identified parameter β0 under M(Γ), we extend the concept of weak consistency

for point estimators to HEIRs. As γ0 is not identified under M(Γ), we require

weak convergence of all individual point estimators β̂(γ) to β(γ) over γ ∈ Γ.

To formalize this, consider for each γ ∈ Γ a sequence of random vectors

β̂1(γ), . . . , β̂N (γ) and the theoretical parameter value β(γ).

Definition 2. The HEIR ı̂rN (β,Γ) = {β̂N (γ);∀γ ∈ Γ} is weakly consistent for

β0 if the convergence in probability of β̂N (γ) to β(γ) under M(γ) holds for all

γ ∈ Γ.

HEIRs that are weakly consistent for a parameter β0 under M(Γ) have the

desirable property that they cover the truth β0 = β(γ0) with arbitrarily large

probability as the sample size increases (provided γ0 ∈ Γ).

For example, in the Kenyan HIV surveillance study, HIV risk β(γ) = E(Y R)

+γE(1 − R) where γ = γpm. By the Weak Law of Large Numbers (Newey and

McFadden (1994)), β̂(γ) = N−1
∑N

i=1 YiRi + γ(1 − Ri) converges in probability

to β(γ) for all γ ∈ [0, 1]. We conclude that the HEIR [N−1
∑N

i=1 YiRi, N
−1
∑N

i=1

(YiRi + 1 − Ri)] is a weakly consistent estimator for HIV risk β0 when γ is

unrestricted. Likewise, the HEIR [N−1
∑N

i=1 YiRi, N
−1
∑N

i=1{YiRi + 0.25(1 −

Ri)}] is a weakly consistent estimator for β0 when γ ∈ [0, 0.25].

5. Inference for ir(β,Γ)

The previous notions of pointwise coverage and consistency were designed to

measure the validity of HEIRs w.r.t. their ability to estimate the target parameter

of interest β0. When the ignorance region for β0 itself is the primary target of a

study, a more natural goal is to construct HEIRs whose distance from the true

ignorance region can be made arbitrarily small with arbitrarily large probability
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and (1−α)100% uncertainty regions that cover ir(β,Γ) with at least (1−α)100%

chance in large samples.

5.1. Sampling variability: Strong coverage

A natural strategy for communicating the sampling variability of HEIRs for

scalar parameters β is to add the standard (1 − α)100% confidence limits to the

estimated ignorance limits; that is:

URs(β,Γ) = [CL, CU ] = [β̂l − cα
2
se(β̂l), β̂u + cα

2
se(β̂u)], (5.1)

where cα/2 is the (1 − α/2)100% percentile of the standard normal distribution.

This is done in Kenward, Molenberghs and Goetghebeur (2001) and Rosenbaum

(1995), for instance. The interval thus constructed covers all (1 − α)100% confi-

dence intervals for β(γ) under M(γ), pointwise for all γ ∈ Γ. In the Appendix,

we show that the resulting interval can be interpreted as the (1−α)100% strong

uncertainty interval URs(β,Γ), which covers all values in the ignorance region

ir(β,Γ) simultaneously with (1 − α)100% chance. For vector parameters β, we

define such (1 − α)100% strong uncertainty region as follows.

Definition 3. A region URs(β,Γ) is a (1 − α)100% strong uncertainty region

for β0 when its strong coverage probability pr0{ir(β,Γ) ⊂ URs(β,Γ)} is at least

(1 − α)100% under the true observed data law.

It is immediate from the definition that a (1 − α)100% strong uncertainty

region is a conservative (1 − α)100% pointwise uncertainty region.

In the Appendix we show that the strong coverage level of the strong uncer-

tainty interval (5.1) lies between 1−α and 1−α/2 when the estimated confidence

limits CL and CU satisfy pr0(CL > βl) = pr0(CU < βu) = α/2. It equals 1 − α

when, as is generally expected, the true ignorance interval almost never covers

the strong uncertainty interval (i.e., pr0{(CL > βl) ∧ (CU < βu)} = 0). We fur-

ther show that the strong coverage probability of this interval lies between 1−α

and 1 − α + α2/4 when, as expected, pr0(CL > βl|CU < βu) ≤ pr0(CL > βl).

For instance, for α = 0.05 it lies between 95% and 95.0625% (when this property

holds).

As with pointwise coverage, strong uncertainty regions can be estimated on

a monotonely transformed scale while retaining the original coverage level.

5.2. Sampling variability: Weak coverage

While strong uncertainty regions cover all parameter values in the true region

of ignorance simultaneously with given probability, one would often be satisfied

having covered most of them. Indeed, an estimated region which is expected to



964 S. VANSTEELANDT, E. GOETGHEBEUR, M. G. KENWARD AND G. MOLENBERGHS

cover most parameter values in ir(β,Γ) is useful, even when it represents a low

strong coverage probability. In view of this, we define the weak coverage proba-

bility of an uncertainty region as the expected proportion of overlap between the

uncertainty region and the true region of ignorance. This leads to the following

definition of (1 − α)100% weak uncertainty regions.

Definition 4. A region URw(β,Γ) is a (1−α)100% weak uncertainty region for

β0 when its weak coverage probability

E0‖URw(β,Γ) ∩ ir(β,Γ)‖

‖ir(β,Γ)‖

is at least (1 − α)100% under the true observed data law, where ‖A‖ (A ⊆ IRp)

denotes the volume of A.

This can additionally be interpreted as the probability that a uniform draw

from the ignorance region for β0 is covered by URw(β,Γ).

In the Appendix, we show that 100(1 − α)% weak uncertainty intervals for

scalar β0 can be constructed following (4.2), where cα∗/2 solves the equation

α =
se(β̂l) + se(β̂u)

βu − βl

∫ +∞

0
zϕ(z + cα∗

2
)dz + ε. (5.2)

Here ϕ(·) denotes the standard normal density function and ε is a correction

term. In the Appendix, we show that ε can be calculated exactly as

ε =

∫ +∞

(βu−βl)/se(β̂u)
ϕ(z + cα∗

2
)dz +

∫ +∞

(βu−βl)/se(β̂l)
ϕ(z + cα∗

2
)dz

−
se(β̂u)

βu − βl

∫ +∞

βu−βl

se(β̂u)

zϕ(z + cα∗

2
)dz

−
se(β̂l)

βu − βl

∫ +∞

βu−βl

se(β̂l)

zϕ(z + cα∗

2
)dz (5.3)

which we show to be so small that setting ε = 0 will not hamper the accuracy of

the calculated critical value. We further show that the weak coverage probability

of this interval is the nominal 1 − α.

Equation (5.2) yields no feasible solution for cα∗/2 because it involves un-

known functionals of the observed data distribution. Hence, consistent estimators

must be derived for the critical value by substituting βl, βu, se(β̂l) and se(β̂u)

in (5.2) by consistent estimators. When the HEIR is large and its endpoints

precisely estimated, it may itself cover more than (1 − α)100% of the true igno-

rance interval on average. By allowing for negative values of cα∗/2, the coverage
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level is then reached for a weak uncertainty interval which is contained within

the HEIR. A drawback with inference for weak uncertainty intervals is that they

cannot generally be estimated on a monotonely transformed scale while retaining

the original coverage level.

For example, in the Kenyan HIV surveillance study, with γpm ∈ [0, 0.25],

the 95% strong EURO [0.0487, 0.0950] is estimated to cover the true ignorance

interval for HIV risk with (at least) 95% chance. We estimated p̂r0{(CL >

βl) ∧ (CU < βu)} = 2.5 10−16, indicating that the nominal coverage level is

well approximated by 95%. The 95% weak EURO is [0.0587, 0.0899]. It has

an expected overlap of 95% with the true ignorance region for HIV risk when

γpm ∈ [0, 0.25]. Since values near the midpoint of the interval are almost always

covered, it is considerably smaller than the 95% strong EURO.

5.3. Relationship between the weak and pointwise uncertainty region

To enhance our understanding of the relationships between the different un-

certainty regions, we prove that a (1 − α)100% pointwise uncertainty region

URp(β,Γ) is a conservative (1 − α)100% weak uncertainty region. Indeed, we

know that for all β ∈ ir(β,Γ), pr0{β ∈ URp(β,Γ)} ≥ 1−α. Using that the weak

coverage probability of URp(β,Γ) is the probability that a uniform draw β̃ from

the ignorance region for β is covered by URp(β,Γ), we find

E0‖URp(β,Γ) ∩ ir(β,Γ)‖

‖ir(β,Γ)‖
= pr0,β̃{β̃ ∈ URp(β,Γ)}

= Eβ̃[E0{β̃ ∈ URp(β,Γ)|β̃}]

≥ Eβ̃(1 − α|β̃) = 1 − α.

Here, the subscript β̃ refers to the uniform sampling distribution over ir(β,Γ).

5.4. Asymmetric uncertainty regions

In constructing pointwise, strong and weak uncertainty intervals, we have

chosen the same critical values cα∗/2 to calculate the lower limit CL = β̂l −

cα∗/2se(β̂l) and the upper limit CU = β̂u + cα∗/2se(β̂u). When se(β̂l) differs from

se(β̂u), shorter (1−α)100% uncertainty intervals may sometimes be obtained by

allowing for different values cα∗

l
/2 in CL = β̂l − cα∗

l
/2se(β̂l) and cα∗

u/2 in CU =

β̂u + cα∗

u/2se(β̂u), respectively. To obtain such intervals, we estimate cα∗

u/2 from

the observed data for different chosen values of cα∗

l
/2. For strong uncertainty

intervals, for example, we choose cα∗

u/2 such that pr0(CU < βu) = α − α∗
l /2

when cα∗

l
/2 is such that pr0(CL > βl) = α∗

l /2 (with α∗
l /2 ≤ α∗). For pointwise

and weak uncertainty intervals, a similar strategy is possible along the lines
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of the Appendix. Having obtained estimates for cα∗

u/2 over a range of cα∗

l
/2-

values, we then choose the (cα∗

l
/2, cα∗

u/2)-tuple that minimizes the length β̂u −

β̂l + cα∗

l
/2se(β̂l) + cα∗

u/2se(β̂u) of the uncertainty interval.

5.5. Simulation study

Because our weak and pointwise uncertainty intervals ignore imprecise esti-

mation of the critical value and standard error, we assess their performance in

a simulation study. To be able to evaluate the net effects of estimation of the

critical value and standard error, we wish to avoid relying on asymptotic approx-

imations and therefore consider inference for the mean of normally distributed

observations. We generate ten thousand data sets with sample size 787, standard

normally distributed observations for responders and marginal nonresponse prob-

ability ν0 = 36/787. We assume a priori that γ = E(Y |R = 0) lies in Γ = [−2, 2].

For each data set, ignorance and 95% uncertainty intervals for β0 = E(Y ) are

estimated for the three coverage definitions. Strong uncertainty limits are esti-

mated via Wald-type confidence limits calculated at the two estimated ignorance

limits η̂ν̂−2(1−ν̂) and η̂ν̂+2(1−ν̂), where η = E(Y |R = 1). Weak and pointwise

uncertainty limits are estimated analogously, but with adjusted critical values.

Table 1. Simulation results: Estimated coverage probabilities (two-sided

P-values of the null hypothesis of no bias in the estimates), average length

(ĈU − ĈL) of the uncertainty interval and average adjusted critical values

(cα∗/2).

Type Coverage Average Length cα∗/2

Strong 0.949 (0.293) 0.332 1.960

Weak 0.955 (0) 0.244 0.803

Pointwise 0.948 (0.221) 0.308 1.645

Table 1 gives empirical coverage probabilities, average length of the EURO

and (average) adjusted critical values. Strong and pointwise EUROs reach the

nominal 95% coverage probability. Some overcoverage is however observed for

weak EUROs. This is due to imprecise estimation of the critical values cα∗/2.

These are highly variable for weak EUROs (mean 0.803 and standard deviation

0.0891), but substantially less so for pointwise EUROs (mean 1.647 and standard

deviation 0.0000149). Furthermore, by choosing the exact critical value 0.797 for

weak uncertainty intervals, we obtain an estimated coverage of 0.950 (P-value

0.691). The correction term ε for weak EUROs is negligible, having a highly
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skewed distribution with median −2.053 10−13 (min. −1.663 10−6, 1st quartile

−5.812 10−12, 3rd quartile −4.480 10−15, max. −3.249 10−28).

5.6. Consistency

To verify whether the HEIR is adequate as an estimator of ir(β,Γ), we

extend the definition of Section 4.2 for weakly consistent HEIRs by defining a

HEIR to be weakly consistent for an ignorance region ir(β,Γ) under model M(Γ)

when its distance to ir(β,Γ) can be made arbitrarily small with arbitrarily large

probability in large samples.

To formalize this, consider the sequence of random sets ı̂r1(β,Γ), . . . , ı̂rN(β,Γ)

and the theoretical region of ignorance ir(β,Γ). Define ‖ir(β,Γ) − ı̂rN (β,Γ)‖ as

the maximum distance between the true (ir(β,Γ)) and estimated (ı̂rN (β,Γ))

region of ignorance for β0, i.e.,

‖ir(β,Γ) − ı̂rN (β,Γ)‖

= max

(

sup
βN∈ı̂rN (β,Γ)

inf
β̃∈ir(β,Γ)

‖βN − β̃‖, sup
β̃∈ir(β,Γ)

inf
βN∈ı̂rN (β,Γ)

‖βN − β̃‖

)

,

where ‖βN −β̃‖ is the Euclidian distance between βN and β̃. The above distance

is known as the Hausdorff metric over the metric space 2IRp

of all subsets of IRp.

Using general results on stochastic convergence in metric spaces (van der

Vaart (1998)), we come to the following definition.

Definition 5. The HEIR ı̂rN (β,Γ) is weakly consistent for ir(β,Γ) if

(∀ε, δ > 0)(∃N0(ε, δ)) (N > N0(ε, δ) ⇒ pr0{‖ı̂rN (β,Γ) − ir(β,Γ)‖ < δ} > 1 − ε) .

The following theorem, proved in Appendix 2, gives simple sufficient rules

for verifying this property.

Theorem 1. Define the HEIR ı̂rN (β,Γ) = {β̂N (γ);∀γ ∈ Γ} as a set of in-

dividual point estimators β̂N (γ), and the true region of ignorance ir(β,Γ) =

{β(γ);∀γ ∈ Γ} as the set of corresponding estimands β(γ). Then, ı̂rN (β,Γ) is

a weakly consistent estimator for ir(β,Γ) under M(Γ) when the point estimators

β̂N (γ) in ı̂rN (β,Γ) are weakly consistent estimators for β(γ) uniformly over all

γ ∈ Γ; that is,

(∀ε, δ>0)(∃N0(ε, δ))

(

N >N0(ε, δ) ⇒ prM(γ){sup
γ∈Γ

‖β̂N (γ)−β(γ)‖<δ}>1−ε

)

,

where ‖β̂N (γ) − β(γ)‖ is the Euclidian distance between β̂N (γ) and β(γ).
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For example, because in the Kenyan HIV surveillance study Y R+γ(1−R) is

continuous at each γ ∈ [0, 1] w.p.1, and Y R + γ(1−R) is bounded above by 1, it

follows from the Uniform Law of Large Numbers (Newey and McFadden (1994))

that β̂(γ) = N−1
∑N

i=1 YiRi+γ(1−Ri) converges in probability to β(γ) uniformly

over all γ ∈ [0, 1]. We conclude that the HEIR [N−1
∑N

i=1 YiRi, N
−1
∑N

i=1(YiRi+

1−Ri)] is a weakly consistent estimator for ir(β,Γ) under M(Γ) when Γ = [0, 1].

Likewise, the HEIR [N−1
∑N

i=1 YiRi, N
−1
∑N

i=1{YiRi +0.25(1−Ri)}] is a weakly

consistent estimator for ir(β,Γ) under M(Γ) when Γ = [0, 0.25]. Note that the

reverse of Theorem 1 is not true.

6. Parametric and Semiparametric Models

So far, we have conducted inference for specific functionals of the complete

data law by constructing ignorance and uncertainty regions under a family of

NPI models. Such families are constructed in Robins (1997) and Scharfstein,

Robins and Rotnitzky (1999). In practice, parametric restrictions on the full

data distribution are often necessary, for instance when we are interested in low

dimensional models for the complete data, or when we are forced to impose

dimension reducing modelling restrictions due to the curse of dimensionality. In

this section, we discuss whether meaningful ignorance and uncertainty regions

can still be defined when the full data law is required to satisfy the restrictions

of some parametric or semiparametric model M∗.

Suppose we are interested in assessing the effect of age X (in years) on HIV

risk in the Kenyan surveillance study through model M∗, defined by

logit{pr(Y = 1|X)} = η0 + β0X (6.1)

logit{pr(R = 1|Y,X)} = α
(1)
0 + α

(2)
0 X + γY. (6.2)

Because M∗ imposes restrictions on the observed data law, there will generally

be few (often at most one) full data laws that marginalize to the observed data

law and satisfy (6.1)−(6.2). As a result, the dependence γ of missingness on the

missing outcome may become identified, in which case the identifiability problem

disappears. The fact that γ can be identified despite the missing data, is due to

the (semi)parametric restrictions that M∗ imposes. This is undesirable as one

would rarely have sufficient information to know, before seeing the observed data,

whether (6.1)−(6.2) hold (see also the discussion of Diggle and Kenward (1994),

Little and Rubin (1987), Scharfstein, Robins and Rotnitzky (1999)). By the

same token, it would usually be unreasonable to restrict attention to those full

data laws that satisfy the intersection model M∗∩M(Γ) by defining the ignorance
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region for β to be

ir(β,Γ) =

{

β{f(L)} : f(L) =

∫

f(L,R)dR with f(L,R) ∈ M∗ ∩M(Γ)

satisfying f0(O) =

∫

f(L,R)dL(1−R)

}

,

where M(Γ) is defined as before as a class of NPI models for the full data in the

absence of the restrictions of M∗. The ignorance region for β0, and hence also

the strong uncertainty region, is therefore generally no longer well defined when

the full data model M∗ places restrictions on the observed data law.

It remains useful, however, to repeat the analysis for different fixed values

γ of the sensitivity parameter in the set Γ as if M∗ ∩ M(γ) were true; e.g.,

to conduct inference for β0 indexing (6.1) for different values of γ in (6.2). We

continue to call the resulting range of estimates a HEIR. Pointwise uncertainty

intervals can be constructed as before and stay meaningful provided that, for

each γ, probabilities in (4.1) are taken w.r.t. M∗ ∩M(γ). Indeed, when γ0 ∈ Γ

the resulting intervals will cover the truth β0 = β(γ0) with at least (1−α)100%

chance provided M∗ ∩M(γ0) holds. Likewise, it remains meaningful to define

a HEIR weakly consistent for β0 when the convergence of β̂N (γ) to β(γ) under

M∗ ∩M(γ) holds for all γ ∈ Γ. Indeed, such HEIR will cover the truth β0 =

β(γ0) with arbitrarily large probability as the sample size increases provided

M∗ ∩M(γ0) holds with γ0 ∈ Γ.

For example, consider the full data model defined by (6.1) with unrestricted

response model. Figure 2 (left) shows HEIRs and 95% EUROs for age-specific

HIV risk under this model. HEIRs were obtained via the IDE algorithm (Vanstee-

landt and Goetghebeur (2001)) which yields point estimates on the bound-

ary of the HEIR. Without assumptions on the missing data, we find HIV risk

estimates between 6% and 12% over a reasonably wide age range. Follow-

ing Vansteelandt and Goetghebeur (2001), the boundary of the HEIR was con-

structed by defining a sensitivity parameter γ and estimating from the observed

data the ‘extreme’ values of γ that yield estimates on the boundary of the HEIR.

The standard errors of the ignorance limits, which were used to construct EU-

ROs in Figure 2 (left), were calculated supposing that these ‘extreme’ values are

fixed. Assumption 2 failed in this example because the values of γ that yielded

estimates on the boundary of the HEIR vary over different samples, and hence

depend on the observed data law. The reported EUROs ignore this extra vari-

ability. Figure 2 (right) therefore examines 500 bootstrap resamples, but reveals

no undercoverage/overcoverage of our intervals. The 95% pointwise EUROs are

the most meaningful here because they are known to cover the true age-specific
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HIV risk with at least 95% chance, regardless of the missing data mechanism,

when (6.1) holds.

Figure 2. Left: HEIRs (solid lines) and 95% EUROs (dotted lines) for age-
specific HIV risk; Right: Bootstrap-based estimated coverage of 95% EUROs
for age-specific HIV risk.

7. Discussion

Our formalism can be viewed as a frequentist alternative to Bayesian ap-

proaches for sensitivity analysis (see e.g. Scharfstein, Daniels and Robins (2003)).

Our approach chooses not to average out the extremes, which is especially impor-

tant where the possibility of high risks must be confronted. The nonparametric

Bayesian approach of Scharfstein, Daniels and Robins (2003) is attractive and

useful when there are strong scientific beliefs about the degree of selection bias,

which can be expressed in a prior distribution f(γ) for γ. In a similar spirit, our

weak uncertainty regions express where the estimand can be expected when each

value in the ignorance region is a priori considered equally plausible. Ultimately,

more general prior knowledge could be incorporated in our frequentist framework

by redefining a (1−α)100% weak uncertainty region for β0 to be a region whose

coverage probability
∫

prM(γ) {β (γ) ∈ URw(β,Γ)} f (γ) dγ
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is at least (1 − α)100% under the true observed data law. Such regions enjoy

the desirable property that they are guaranteed not to use the observed data

to gather additional information about the sensitivity parameter. In agreement

with Scharfstein, Robins and Rotnitzky (1999), using such information would be

undesirable as it can only come from model assumptions, which are usually made

for convenience. The Bayesian approach does not generally enjoy this property.

We plan to report on this alternative development elsewhere.

Detailed consideration of γ-specific point estimates and confidence intervals

(as in Figure 1 and Scharfstein, Robins and Rotnitzky (1999)) remains most in-

formative and is therefore highly valuable at the analysis stage. The methods in

this paper do not attempt to be competitive. They aim instead to summarize

the detailed information that results from a sensitivity analysis, with appropri-

ate account of sampling variability, and thus to make the results of a sensitivity

analysis feasible for practical reporting. Such a procedure has proved especially

valuable in settings where the simultaneous impact of several sensitivity param-

eters is studied (Vansteelandt and Goetghebeur (2005)). In general, we believe

that a worthwhile summary strategy is to report, besides the usual analysis under

a sole plausible missing data assumption (e.g. MAR), a HEIR and 95% point-

wise uncertainty interval for the target parameter corresponding to one or several

credible ranges of values for the sensitivity parameter that were selected with the

help of subject-matter experts’ insight. We believe this will help decision-makers

to actually use the results of sensitivity analyses in practice, because they can

interpret and use 95% pointwise uncertainty intervals like confidence intervals for

point parameters, also with (semi)parametric observed data models. Hypothe-

sis tests derived from the pointwise EURO are valuable for significance testing.

Equivalence can be concluded when the pointwise EURO is contained in a chosen

equivalence range. The methods are generally applicable and easy to implement

with simple S-Plus programs that can be obtained from the first author.

Additional challenges must be met to adjust for imprecise estimation of the

standard errors and critical values. In a small simulation study, ignoring this

imprecision yielded slight overcoverage for weak uncertainty intervals, but not

for strong and pointwise intervals. Further improvements are also possible for

estimation of the standard errors of the ignorance limits. In many examples, the

sensitivity parameters can be chosen such, that over repeat samples, the same lim-

iting values generate the bounds of the HEIR (i.e. such that Assumption 2 holds).

In that case, these standard errors can be calculated in the usual way, conditional

on those values for the sensitivity parameter. If this is not possible, our methods

will yield approximate results that have shown good performance in bootstrap

simulations. Alternatively, a bootstrap procedure itself may be used. For strong

uncertainty intervals, this approach was taken by Horowitz and Manski (2000),
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but is expensive in terms of computation time and does not yield improved results

for our example. For pointwise uncertainty intervals, mathematically equivalent

estimators were published by Imbens and Manski (2004) while this work was

under review.

The need to select the range of plausible values Γ for the sensitivity param-

eter is not an inherent drawback of our method, but typical of most meaningful

sensitivity analyses. Including implausible γ-values may not only broaden the

ignorance region unnecessarily, but also introduce implausible values. Further-

more, even a relatively narrow range of carefully chosen full data models may

be able to convey sufficient caution. In the Kenyan study, for example, the in-

terval [−1, 1] for γs already allows the odds of response to be up to 2.72 times

larger or smaller for HIV-positives than HIV-negatives. Combining this choice

with Figure 1 yields an estimated HIV risk β0 between 0.067 and 0.074. Logistic

response models, like (6.2), are especially useful in this regard, because restricted

range of values for the sensitivity parameters indexing these models will (usually)

produce bounded HEIRs for the target parameter, even when the outcomes are

theoretically unbounded. When it is hard to pin down a single range, one may

consider a growing set of ranges and observe how the ignorance region evolves

accordingly. An indication of the deemed plausibility may be added by colour-

ing the HEIRs correspondingly. This stops one step short of averaging in the

Bayesian way, with the continuing goal of distinguishing data-based information

from other sources.

In summary, we have proposed a formal, flexible and structured way of sum-

marizing the results from a sensitivity analysis with incomplete outcomes. It

makes the assumptions about the missing data explicit and shows how they

affect inference. The clear separation of ignorance due to incompleteness and

imprecision due to finite sampling may guide the trade-off between sample size

and follow-up of nonrespondents at the design stage. The methods developed

in this work have been applied beyond the missing data context, to investigate

the sensitivity of causal inferences to untestable assumptions (Vansteelandt and

Goetghebeur (2005)). Because the information obtained from sensitivity analy-

ses is often extremely detailed, we believe that well understood summaries like

HEIRs and EUROs, can help augment the use and reporting of sensitivity anal-

yses in practical investigations.
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Appendix

A.1. Construction of uncertainty regions and proofs

For notational simplicity, we omit the subscript 0 and implicitly assume that

probabilities, expectations and standard errors are taken with respect to the true

observed data law.

Lemma 1. (Pointwise uncertainty intervals) Let CL and CU be lower and upper

(1−α∗)100% confidence limits of βl and βu, respectively, based on CAN estima-

tors for βl and βu and a critical value cα∗/2 that solves (4.3). Then the interval

[CL, CU ] has asymptotic pointwise coverage probability 1 − α.

Proof. For univariate parameters, (1 − α)100% pointwise uncertainty limits for

β0 can be constructed by using the fact that the pointwise coverage probability

1 − α equals infγ∈Γ pr(CL ≤ β(γ) ≤ CU ) = infγ∈Γ{pr(CL ≤ β(γ)) − pr(CU ≤

β(γ))}, since CL ≤ CU . Define CL = β̂l − cα∗/2se(β̂l) and CU = β̂u + cα∗/2se(β̂u)

for some unknown cα∗/2 > 0. For CAN estimators β̂l and β̂u and arbitrary

β ∈ [βl, βu], we find that asymptotically

pr(CL ≤ β) − pr(CU ≤ β)

= pr

(

β̂l − βl

se(β̂l)
≤ cα∗

2
+

β − βl

se(β̂l)

)

− pr

(

β̂u − βu

se(β̂u)
≤ −cα∗

2
+

β − βu

se(β̂u)

)

= Φ

{

cα∗

2
+

β − βl

se(β̂l)

}

− Φ

{

−cα∗

2
−

βu − β

se(β̂u)

}

. (A.1)

Using this result we now show that

inf
γ∈Γ

{pr(CL ≤ β(γ)) − pr(CU ≤ β(γ))}

= min{pr(CL ≤ βl) − pr(CU ≤ βl),pr(CL ≤ βu) − pr(CU ≤ βu)}. (A.2)

Note from (A.1) that

pr(CL ≤ βl) − pr(CU ≤ βl) = Φ(cα∗

2
) − Φ

{

−cα∗

2
−

βu − βl

se(β̂u)

}

(A.3)

pr(CL ≤ βu) − pr(CU ≤ βu) = Φ

{

cα∗

2
+

βu − βl

se(β̂l)

}

− Φ(−cα∗

2
). (A.4)
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Asymptotically, it follows that for arbitrary β ∈ [βl, βu] and a standard normal

variate Z

pr(CL ≤ β) − pr(CU ≤ β)

= pr(CL ≤ βl) − pr(CU ≤ βl) + pr

(

cα∗

2
≤ Z ≤ cα∗

2
+

β − βl

se(β̂l)

)

−pr

(

−cα∗

2
−

βu − βl

se(β̂u)
≤ Z ≤ −cα∗

2
−

βu − β

se(β̂u)

)

= pr(CL ≤ βu) − pr(CU ≤ βu) − pr

(

cα∗

2
+

β − βl

se(β̂l)
≤ Z ≤ cα∗

2
+

βu − βl

se(β̂l)

)

+pr

(

−cα∗

2
−

βu − β

se(β̂u)
≤ Z ≤ −cα∗

2

)

. (A.5)

Suppose first that se(β̂l) ≤ se(β̂u). Then (β − βl)/se(β̂l) ≥ (β − βl)/se(β̂u). For

a standard normal variate Z, it follows that

pr

(

cα∗

2
≤ Z ≤ cα∗

2
+

β − βl

se(β̂l)

)

= pr

(

−cα∗

2
−

β − βl

se(β̂l)
≤ Z ≤ −cα∗

2

)

≥ pr

(

−cα∗

2
−

β − βl

se(β̂l)
−

βu − β

se(β̂u)
≤ Z ≤ −cα∗

2
−

βu − β

se(β̂u)

)

≥ pr

(

−cα∗

2
−

βu − βl

se(β̂u)
≤ Z ≤ −cα∗

2
−

βu − β

se(β̂u)

)

,

where we subtract (βu − β)/se(β̂u) from both sides in the second step and use

the inequality (β − βl)/se(β̂l) ≥ (β − βl)/se(β̂u) in the third step. Using (A.5)

it follows that pr(CL ≤ β) − pr(CU ≤ β) ≥ pr(CL ≤ βl) − pr(CU ≤ βl) for

arbitrary β ∈ [βl, βu]. When instead se(β̂l) > se(β̂u), then (β − βl)/se(β̂l) >

(β − βl)/se(β̂u). A similar argument as before then shows that

pr

(

−cα∗

2
−

βu − β

se(β̂u)
≤ Z ≤ −cα∗

2

)

≥ pr

(

cα∗

2
+

β − βl

se(β̂l)
≤ Z ≤ cα∗

2
+

βu − βl

se(β̂l)

)

,

so that pr(CL ≤ β) − pr(CU ≤ β) ≥ pr(CL ≤ βu) − pr(CU ≤ βu) for arbitrary

β ∈ [βl, βu]. We conclude that (A.2) holds. The result (4.3) is now immediate

from (A.2), (A.3) and (A.4).
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Note that pr(CU ≤ βl) ≈ 0 and pr(CL ≤ βu) ≈ 1 when βu − βl is large.

Hence, it follows from (A.2) that cα∗/2 approximates the (1 −α)100% percentile

of the standard normal distribution when there is much ignorance about the

complete data parameter of interest and the intended sample size is large.

Lemma 2. (Strong uncertainty intervals) Let CL and CU be lower and upper

(1 − α)100% confidence limits of βl and βu, satisfying pr(CL > βl) = pr(CU <

βu) = α/2. Then the interval [CL, CU ] has a strong coverage probability between

1 − α/2 and 1 − α.

Proof. For univariate parameters, (1 − α)100% strong uncertainty intervals for

β can be constructed by using the fact that the strong coverage probability 1−α

equals 1 − pr{∃β ∈ ir(β,Γ) : (CL > β) ∨ (CU < β)} = 1 − pr{(CL > βl) ∨ (CU <

βu)}. Hence pr(CL > βl) + pr(CU < βu) − pr{(CL > βl) ∧ (CU < βu)} = α.

Choose CL = β̂l − cα∗

l
/2se(β̂l) and ĈU = βu + cα∗

u/2se(β̂u), the lower and upper

(1 − α∗)100% confidence limits for β respectively, calculated at the estimated

ignorance limits β̂l and β̂u. Here we define the critical values cα∗

l
/2 and cα∗

u/2 such

that pr(CL > βl) = pr(CU < βu) = α∗/2. Because pr{(CL > βl)∧ (CU < βu)} ≤

pr(CL > βl) = α∗/2, we find α ∈ [α∗/2, α∗]. When - as expected - pr(CL >

βl|CU < βu) ≤ pr(CL > βl), then pr(CL > βl ∧CU < βu) ≤ pr(CL > βl)pr(CU <

βu) = α∗2/4. It follows under this assumption that α ∈ [α∗−α∗2/4, α∗] and that

the choice α∗ = α yields slightly conservative (1 − α)100% strong uncertainty

regions.

Lemma 3. (Weak uncertainty intervals) Let CL and CU be lower and upper (1−

α∗)100% confidence limits of βl and βu, respectively, based on CAN estimators for

βl and βu and a critical value cα∗/2 that solves (5.2). Then the interval [CL, CU ]

has an asymptotic weak coverage probability of 1 − α.

Proof. For univariate parameters, we construct (1 − α)100% weak uncertainty

limits for β by using the fact that

E‖URw(β,Γ) ∩ ir(β,Γ)‖

‖ir(β,Γ)‖
=

E{min (βu, CU )}

βu − βl
−

E{max (βl, CL)}

βu − βl

+
E(CL − βu|CL > βu)pr(CL > βu)

βu − βl

+
E(βl − CU |CU < βl)pr(CU < βl)

βu − βl
.
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Defining Zu = (CU − βu)/se(β̂u), we find that

E{min (βu, CU )} =

∫ βu

−∞

ufCU
(u)du +

∫ +∞

βu

βufCU
(u)du

=

∫ 0

−∞

{

βu + zuse(β̂u)
}

fZu(zu)dzu +

∫ +∞

0
βufZu(zu)dzu

= βu + se(β̂u)

∫ 0

−∞

zufZu(zu)dzu,

E(βl − CU |CU < βl)pr(CU < βl)

= (βl − βu)

∫ (βl−βu)/se(β̂u)

−∞

fZu(zu)dzu − se(β̂u)

∫ (βl−βu)/se(β̂u)

−∞

zufZu(zu)dzu.

Defining Zl = (CL − βl)/se(β̂l), we find that

E{max (βl, CL)} =

∫ βl

−∞

βlfCL
(l)dl +

∫ +∞

βl

lfCL
(l)dl

=

∫ 0

−∞

βlfZl
(zl)dzl +

∫ +∞

0

{

βl + zlse(β̂l)
}

fZl
(zl)dzl

= βl + se(β̂l)

∫ +∞

0
zlfZl

(zl)dzl,

E(CL − βu|CL > βu)pr(CL > βu)

= (βl − βu)

∫ +∞

(βu−βl)/se(β̂l)
fZl

(zl)dzl + se(β̂l)

∫ +∞

(βu−βl)/se(β̂l)
zlfZl

(zl)dzl.

We thus obtain

α =
se(β̂l)

βu − βl

∫ +∞

0
zlfZl

(zl)dzl −
se(β̂u)

βu − βl

∫ 0

−∞

zufZu(zu)dzu + ε,

where

ε =
E(CL − βu|CL > βu)pr(CL > βu)

βu − βl
+

E(βl − CU |CU < βl)pr(CU < βl)

βu − βl

=

∫ (βl−βu)/se(β̂u)

−∞

fZu(zu)dzu +

∫ +∞

(βu−βl)/se(β̂l)
fZl

(zl)dzl

+
se(β̂u)

βu − βl

∫ (βl−βu)/se(β̂u)

−∞

zufZu(zu)dzu −
se(β̂l)

βu − βl

∫ +∞

(βu−βl)/se(β̂l)
zlfZl

(zl)dzl.
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This is a very small correction term because the events CL > βu and CU < βl

are extremely rare (unless there is little ignorance about the target parameter

and/or the sample size is very small). Define CL = β̂l−cα∗/2se(β̂l) and CU = β̂u+

cα∗/2se(β̂u) for some unknown cα∗/2. Then, we show how cα∗/2 can be found. For

CAN estimators β̂l and β̂u, Zl and Zu follow asymptotically normal distributions

with mean −cα∗/2 and cα∗/2, respectively, as the sample size approaches infinity.

Indeed,

Zl =
β̂l − βl − cα∗

2
se(β̂l)

se(β̂l)
=

β̂l − βl

se(β̂l)
− cα∗

2
,

where (β̂l − βl)/se(β̂l) converges to a standard normal distribution in law. A

(1 − α)100% weak uncertainty interval can now be estimated by solving (5.2)

for cα∗/2. In this way, we obtain a weak uncertainty interval with asymptotic

coverage probability 1 − α.

A.2. Proof of Theorem 1

Given that all individual point estimators in ı̂rN (β,Γ) are weakly consistent

uniformly over γ ∈ Γ,

(∀ε, δ > 0)(∃N0(ε, δ))(N > N0(ε, δ) ⇒ pr{sup
γ∈Γ

‖β̂N (γ) − β(γ)‖ < δ} > 1 − ε).

Since supβ̂N (γ)∈ı̂rN (β,Γ) infβ(γ)∈ir(β,Γ) ‖β̂N (γ) − β(γ)‖ ≤ supγ∈Γ ‖β̂N (γ) −

β(γ)‖ and supβ(γ)∈ir(β,Γ) inf β̂N (γ)∈ı̂rN (β,Γ) ‖β̂N (γ) − β(γ)‖ ≤ supγ∈Γ ‖β̂N (γ) −

β(γ)‖, it follows that

(∀ε, δ > 0)(∃N0(ε, δ))
{

N > N0(ε, δ) ⇒ pr

(

sup
β̂N (γ)∈ı̂rN (β,Γ)

inf
β(γ)∈ir(β,Γ)

‖β̂N (γ) − β(γ)‖ < δ

∧ sup
β(γ)∈ir(β,Γ)

inf
β̂N (γ)∈ı̂rN (β,Γ)

‖β̂N (γ) − β(γ)‖ < δ

)

> 1 − ε

}

⇒ (∀ε, δ > 0)(∃N0(ε, δ)) (N > N0(ε, δ) ⇒ pr(‖ı̂rN (β,Γ)−ir(β,Γ)‖<δ)>1−ε) .
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