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1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables. Take Xn = 1/n
∑n

j=1 Xj,

S2(n) =
1

n

n
∑

j=1

(Xj − Xn)2, (1.1)

the adjusted range of partial sums

R(n) = max
1≤k≤n

{

k
∑

j=1

(Xj − Xn)
}

− min
1≤k≤n

{

k
∑

j=1

(Xj − Xn)
}

, (1.2)

and the self-normalized range

Q(n) = R(n)/S(n). (1.3)

Then Q is called the rescaled range or R/S statistic. Introduced by Hurst (1951)

when he studied hydrology data of the River Nile, it plays an important role

in testing statistical dependence of a sequence. With reference to it, Mandel-

brot introduced a class of Gaussian processes—fractional Brownian motions (cf.,

Mandelbort and Van Ness (1968)). The statistic has been used, for example, in

modeling stock prices (cf., e.g., Lo (1991) and Willinger, Taqqu and Teverovsky

(1999)). Moreover, it is an important tool in studying fractal theory and chaos

phenomena.

Feller (1951) gave the limit distribution of R(n)/
√

n for an i.i.d. sequence

with EX2
1 < ∞. Moran (1964) considered the case of heavy tails. Lin (2001)
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studied laws of the iterated logarithm (LIL) for R/S statistics under i.i.d. and

mixing samples. Lin and Lee (2002) extended these results to the AR(1) model

with an i.i.d. sample. But, for this statistic, one has more interest in a sample

with long-range memory. Many practical models, such as economic time series

for stock prices, exhibit long-range dependence. Lo (1991) cause a sequence long-

range dependent of order α if the process has an autocovariance function γk such

that

γ(k) ∼
{

k2α−2L(k) for α ∈ ( 1
2 , 1)

−k2α−2L(k) for α ∈ (0, 1
2 )

as k → ∞, (1.4)

where L(k) is a slowly varying function at infinity (“ak ∼ bk” means that ak/bk →
1 as k → ∞). An example is the fractional-difference process {Xn, n ≥ 1} defined

by

(1 − L)dXn = εn, (1.5)

where L is the lag operator, d ∈ (−1/2, 1/2) and εn is white noise. The autoco-

variance function here is γk ∼ ck2d−1 as k → ∞. The sequence is stationary and

invertible and exhibits a unique kind of dependence that is positive or negative,

depending on whether d is positive or negative (Hosking (1981)). Some methods

for detecting long-range memory have been developed. To this end, Lo (1991)

showed a functional central limit theorem for R/S statistics (in fact, he con-

sidered modified R/S statistics) generated by a zero-mean stationary Gaussian

sequence under a long memory assumption using a weak invariance principle due

to Taqqu (1975). A test for α follows: if α ∈ (1/2, 1), the R/S statistics diverge

in probability to infinity; if α ∈ (0, 1/2), the statistics converge in probability to

zero. In either case, the probability of rejecting the null hypothesis of short-range

memory approaches unity for all stationary Gaussian processes satisfying (1.4).

There are many references on long memory, such as papers by Granger and

Joyeux (1980), Cox (1984) and Beran (1992), and monographs by Bhattacharya

and Waymire (1990) and Beran (1994).

In this paper, we first show a LIL for range statistics R(n) given a long-

range memory sample. Then, with the help of this result, we develop a test for

long-range dependence.

2. Theorems and Their Proofs

Let Sn =
∑n

j=1 Xj , σ2
n = Var Sn and α′ = 2−2α − 2−2.

Theorem 2.1. Let {Xn, n ≥ 1} be a stationary sequence of Gaussian random

variables with mean zero and autocovariance function (1.4). Then

lim sup
n→∞

√

1

2σ2
n log log n

Rn ≤
√

α′ a.s.. (2.1)
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If, in addition,

nαL(n)1/2

mαL(m)1/2
·
(

1 − L(n − m)

L(n)

)

→ 0, as n/m → ∞, (2.2)

lim sup
n→∞

√

1

2σ2
n log log n

Rn =
√

α′ a.s.. (2.3)

Remark 2.1. We need a property of slowly varying functions. Let l(x) be a

slowly varying function at infinity with b = b(x) → 0, as x → ∞. Then for any

δ > 0,

lim
x→∞

bδ l(bx)

l(x)
= lim

x→∞
bδ l(x)

l(bx)
= 0 (2.4)

(cf., Hosking (1981)). Using this property, the fact that for some β > α,

1 − L(n − m)

L(n)
≤

(

m

n

)β

(2.5)

implies (2.2). Moreover, if there is a β > 0 such that x−βL(x) is non-increasing,

then (2.5) is satisfied with β = 1. Clearly, (2.5) is quite a weak condition, the

common slowly varying functions, such as log x and 1/ log x, satisfy it.

Using Theorem 2.1, we give a test for long-range memory.

Theorem 2.2. Under (2.2), as n → ∞,

1√
n log log n

Qn
a.s.→

{∞ for α ∈ ( 1
2 , 1),

0 for α ∈ (0, 1
2).

Remark 2.2. This theorem establishes a test for long-range memory in the a.s.

convergence sense, following Lo (1991) in the weak convergence sense.

Remark 2.3. For some cases of short-range memory, we have established laws

of the iterated logarithm for R/S statistics. For instance, for an i.i.d. sequence

(corresponding to the case of α = 1/2) with EX1 = 0 and EX2
1 = 1, we have

lim sup
n→∞

1√
2n log log n

Qn = 1 a.s..

For the AR(1) model with an i.i.d. sample, we have a similar result.

In order to prove Theorem 2.1, we need some preliminaries. The following

Fernique-type inequality is a consequence of Lemma 2.1 in Csáki, Csörgő and

Shao (1992).
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Lemma 2.1. Let B be a separable Banach space with norm ‖·‖ and let {Γ(t),−∞
< t < ∞} be a stochastic process with values in B. Let P be the probability measure

generated by Γ(·). Assume that Γ(·) is P-almost surely separable with respect to

‖ · ‖, and that for |t| ≤ t0 and 0 < x∗ ≤ x there exists a non-negative non-

decreasing function σ(x) such that P{‖Γ(t)‖ ≥ xσ(t)} ≤ K exp{−γxβ} for some

K, γ, β > 0. Then

P

{

sup
0≤t≤T

‖Γ(t)‖ ≥ xσ(t) + σ∗(T, k)
}

≤ 4K22k+1
exp{−γxβ}

for any 0 < t ≤ t0, x ≥ x∗ and k ≥ 3, where σ∗(T, k) = 4(14/γ)1/ββ
∫ ∞

2(k−2)/β

σ(Te−yβ
)dy.

Using a discrete version of this lemma, we can show the following strong law

of large numbers.

Lemma 2.2. For {Xn} defined in Theorem 2.1, we have (1/n)
∑n

j=1 Xj → 0

a.s.

Proof. By (1.4) and Lemma 3.1 in Taqqu (1975), we have that for α ∈ (1/2, 1),

σ2
n =

n
∑

i=1

n
∑

j=1

γ(i − j) ∼ an2αL(n),

where a = (2α|2α − 1|)−1. Consider the case of α ∈ (0, 1/2). Put R = γ(0) +

2
∑∞

k=1 γ(k). Then σ2
n = γ(0) +

∑n−1
j=1 (R − 2

∑∞
k=n−j+1 γ(k)). Hence R ≥ 0. If

R = 0, similarly to the proof of Lemma 2.1 in Taqqa (1975), we have also

σ2
n ∼ an2αL(n). (2.6)

If R > 0, it is clear that σ2
n ∼ Rn.

Consider the case of σ2
n ∼ an2αL(n). By the property of a slowly varying

function, for any ε > 0, one was limx→∞ xεL(x) = ∞, limx→∞ x−εL(x) = 0,

n2/σ2
n ≥ cn2(1−α)/L(n) ≥ cn1−α for large n, where c stands for a positive con-

stant. Hence, using Lemma 2.1 with σ(n) = σn, for any ε > 0 there exists a

constant C = C(ε) > 0 such that

P

{

max
1≤j≤2k

|Sj | ≥ 2kε
}

≤ C exp
{

− 22k

σ2
2k

· ε2

3

}

≤ C exp
{

− c2k(1−α)ε2

3

}

,

which, in combination with the Borel-Cantelli lemma, implies that as k → ∞,

max1≤j≤2k |Sj|/2k → 0 a.s. Using this result, along the lines of a proof of a

strong law of large numbers, we obtain Lemma 2.2. The details are omitted.

As for the case of σ2
n ∼ Rn, Lemma 2.2 is the Strong Law of Large Numbers

under only moment restrictions (cf., Serfling (1970)).
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Lemma 2.3. For any ε > 0, there exists C1 = C1(ε) > 0 such that for any x ≥ 1
and large n,

P

{

|R(n)|/σn > (1 + ε)
√

α′x
}

≤ C1 exp { − (1 + ε)x2/2}.

Proof. Rewrite R(n) as R(n) = max1≤i<j≤n |Sj −Si − ((j − i)/n)Sn|. Consider
the case σ2

n ∼ an2αL(n). For 1 ≤ i < j ≤ n, we have E(Sj − Si)
2 = ES2

j−i ∼
a(j − i)2αL(j − i) and E(Sj − Si)Sn = (1/2)E(S2

j−i + S2
n − S2

n−j+i). Therefore

σ2
ij := E

(

Sj − Si −
j − i

n
Sn

)2

∼ a(1 − j − i

n

)

(j − i)2αL(j − i) − a · j − i

n

(

1 − j − i

n

)

n2αL(n)

+a · j − i

n
(n − j + i)2αL(n − j + i).

Note that the function fα(x) = (1 − x)x2α − x(1 − x) + x(1 − x)2α, 0 ≤ x ≤ 1,
has maximum value α′ = 2−2α − 2−2 at x = 1/2. For given 0 < ε < 1/2, there
exists δ > 0 such that

sup
0≤x≤ε

fα−δ(x) ≤ α′. (2.7)

By the definition of a slowly varying function, for 0 < ε < 1/2, maxεn≤j−i≤n L(j−
i)/L(n) → 1, as n → ∞. Hence max1≤i<j≤n,j−i≥εn σ2

ij/σ
2
n ∼ supε≤x≤1 fα(x) =

α′. Moreover by property (2.4), letting ε > 0 be small enough, for n large enough
we have

max
1≤i<j≤n,j−i<εn

σ2
ij/σ

2
n

≤ max
1≤i<j≤n,j−i<εn

{

(1 − j − i

n
)(

j − i

n
)2(α−δ) − (

j − i

n
)(1 − j − i

n
)

+(
j − i

n
)(1 − j − i

n
)2(α−δ)

}

≤ α′,

by (2.7). Therefore
max

1≤i<j≤n
σ2

ij/σ
2
n ∼ α′. (2.8)

For any positive integers i, n and M , with M < n/2, let iM = [i/[n/m]][n/m],
where [·] denotes the largest integer part. Note that 0 ≤ i − iM ≤ [n/m]. Write

R(n) ≤ max
1≤i<j≤n

∣

∣

∣SjM
− SiM − jM − iM

n
Sn

∣

∣

∣ + 2 max
1≤j≤n

|Sj−jM
| + 1

M
|Sn|. (2.9)

By (2.8), we have that for large n,

P

{

max
1≤i<j≤n

|SjM
− SiM − jM − iM

n
Sn|/σn ≥ (1 +

ε

2
)
√

α′x
}

≤ M2 exp { − (1 + ε)x2/2}. (2.10)
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Moreover, by Lemma 2.1 and taking M to be large enough, we have

P

{

2 max
1≤j≤n

|Sj−jM
|/σn ≥ ε

4

√
α′x

}

≤
M
∑

k=0

P

{

max
k[n/m]≤j≤(k+1)[n/m]

|Sj−k[n/m]|/σn ≥ ε

8

√
α′x

}

≤ CM exp
{

− ε2α′x2n2αL(n)

2 · 128(n/M)2αL(n/M)

}

≤ CM exp(−x2) (2.11)

for some C > 0, provided n is large enough. It is clear that for large M

P

{ 1

M
|Sn|/σn ≥ ε

4

√
α′x

}

≤ exp
{

− ε2α′M2x2

32
} ≤ exp(−x2). (2.12)

Combining (2.9)−(2.12) yields P{R(n)/σn ≥ (1 + ε)
√

α′x} ≤ C1 exp { − (1 +

ε)x2/2} with C1 = M2 + C + 1. The lemma is proved.

We need the well-known Slepian lemma.

Lemma 2.4. Let G(t) and G∗(t) be Gausssian processes on [0, T ] for some 0 <

T < ∞, possessing continuous sample path functions with EG(t) = EG∗(t) = 0,

EG2(t) = EG∗2
(t) = 1, and let ρ(s, t) and ρ∗(s, t) be their respective covariance

functions. Suppose that ρ(s, t) ≥ ρ∗(s, t) for s, t ∈ [0, T ]. Then for any x,

P{ sup0≤t≤T G(t) ≤ x} ≥ P{ sup0≤t≤T G∗(t) ≤ x}.
Proof of Theorem 2.1. We first prove (2.1). Let θ > 1, k′ = [θk] and Lk =

min(k−1)′≤n≤k′ L(n). For (k − 1)′ < n ≤ k′, write

|R(k′) − R(n)| ≤ max
(k−1)′≤j<k′

{

2
∣

∣

∣Sj −
j

k′
Sk′

∣

∣

∣ + |Sk′ − Sj|
}

≤ 3 max
(k−1)′≤j<k′

|Sk′ − Sj | + 2(1 − (k − 1)′/k′)|Sk′ |, (2.13)

and hence
√

1

2σ2
n log log n

R(n)

≤
√

1

2(k − 1)′
2α

Lk log log(k − 1)′

{

R(k′) + 3 max
(k−1)′≤j<k′

|Sk′ − Sj|

+2
(

1 − (k − 1)′

k′
)|Sk′ |

}

. (2.14)

Using the property of a slowly varying function we have Lk ∼ L(k′), which implies

(k − 1)′
2α

Lk/σ
2
k′ ∼ θ−2α as k → ∞. (2.15)
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Then, using Lemma 2.3 and taking θ to be near enough to one, we obtain

P

{

R(k′)/σk′ ≥ (1 +
ε

2
)
√

(k − 1)′2αLk/σ
2
k′ ·

√

2α′ log log(k − 1)′
}

≤ P

{

R(k′)/σk′ ≥ (1 +
ε

4
)
√

2α′ log log(k − 1)′
}

≤ C1 exp
{

− (1 +
ε

4
) log log(k − 1)′

}

. (2.16)

Similarly to (2.15), (k − 1)′
2α

Lk/σ2
k′−(k−1)′ ∼ (θ − 1)−2α. Then, using Lemma

2.1, we obtain

P

{

3 max
(k−1)′≤j<k′

|Sk′ − Sj|
σk′−(k−1)′

≥ ε

4

√

√

√

√

(k − 1)′2αLk

σ2
k′−(k−1)′

·
√

2α′ log log(k − 1)′
}

≤ C exp { − 2 log log(k − 1)′} (2.17)

for some C > 0, provided θ is near enough to one. Similarly

P

{

2(1 − (k − 1)′

k′
)
|Sk′ |
σk′

≥ ε

4

√

(k − 1)′2αLk

σ2
k′

·
√

2α′ log log(k − 1)′
}

≤ C exp { − 2 log log(k − 1)′}. (2.18)

Combining (2.16)−(2.18) with (2.14) yields

P

{

R(n) ≥ (1 + ε)
√

2α′σ2
n log log n}

≤ (C1 + 2C) exp { − (1 +
ε

4
) log log(k − 1)′}

= (C1 + 2C)((k − 1) log θ)−(1+ε/4),

which implies (2.1) by the Borel-Cantelli lemma.

In order to prove (2.3), it is enough to show

lim sup
n→∞

√

1

2σ2
n log log n

R(n) ≥
√

α′ a.s..

under (2.2). This is a consequence of

lim sup
n→∞

√

1

2σ2
2n log log n

|1
2
S2n − Sn| ≥

√
α′ a.s.. (2.19)

We have E((1/2)S2n −Sn)2 = (1/4)ES2
2n +ES2

n −ES2nSn = −(1/4)ES2
2n +ES2

n ∼
−(1/4)(2n)αL(2n) + nαL(n), and hence E((1/2)S2n − Sn)2/σ2

2n ∼ −(1/4) +

(1/2)α = α′.
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For m < n, we have

2E
(Sm

σm
· Sn

σn

)

=
E(S2

m + S2
n − (Sn − Sm)2)

σmσn
=

σm

σn
+

σn

σm
− σ2

n−m

σmσn

∼ mαL(m)1/2

nαL(n)1/2
+

nαL(n)1/2

mαL(m)1/2

(

1 − L(n − m)

L(n)

)

+
nαL(n − m)

mαL(n)1/2L(m)1/2

(

1 − (n − m)2α

n2α

)

=: p1(m,n)+p2(m,n) + p3(m,n).

Let θ>0 be a large integer and nj =θj. By (2.4), for i<j, we have p1(nki, nkj)=

θ−k(j−i)αL(θki)1/2/L(θkj)1/2 → 0 as k → ∞. Using condition (2.2), we have

p2(nki, nkj)→0 as k→∞. Moreover p3(nki, nkj)≤2αθ−k(j−i)(1−α) ·[(L(θkj − θki))

/(L(θkj)L(θki))] → 0 as k → ∞. Hence

E

(S2nki

σ2nki

·
S2nkj

σ2nkj

)

→ 0 as k → ∞. (2.20)

Clearly from (2.20) we have that, as k → ∞,

E

( Snki

σ2nki

·
S2nkj

σ2nkj

)

→ 0, E

(S2nki

σ2nki

·
Snkj

σ2nkj

)

→ 0. (2.21)

Let Zi = ((1/2)S2ni − Sni)/σ2ni and rij = EZiZj . From (2.20) and (2.21),

for any given δ > 0, we have |rki,kj| ≤ δ provided k is large enough. Now let

{ξj, j ≥ 1} and η be independent normal random variables with means zero,

Eξ2
j = EZ2

kj − δ and Eη2 = δ. Define ζj = ξj + η. Then Eζ2
j = EZ2

kj and

EZkiZkj ≤ Eζiζj for i 6= j. Let Ai = {Zi/
√

2α′ log log ni ≤ 1 − 3ε}. For small

ε > 0, taking integer k large enough and δ > 0 small enough, with Slepian’s

lemma we have

P

{

M
⋂

i=m

Aki

}

≤ P

{

M
⋂

i=m

(
ζi√

2α′ log log nki
≤ 1 − 3ε)

}

≤ P

{

M
⋂

i=1

(
ξi√

2α′ log log nki
≤ 1 − 2ε)

}

+ P{η ≥ ε
√

2α′ log log nkm}

≤
M
∏

i=1

(

1 − P{N(0, 1) ≥ (1 − ε)
√

2 log log nki}
)

+P

{

N(0, 1) ≥ ε√
δ

√

2α′ log log nkm

}

≤ exp { −
M
∑

i=1

(log nki)
−(1−ε)} + exp{−2 log log nkm}. (2.22)
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Note that
∑∞

i=1(log nki)
−(1−ε) = ∞. (2.22) implies that, for km ≥ N ,

P

{

∞
⋂

i=N

Ai

}

≤ P

{

∞
⋂

i=m

Aki

}

≤ exp{−2 log log nkm}.

Letting k → ∞, we obtain P{⋂∞
i=N Ai} = 0, and hence P{∪∞

N=1 ∩∞
i=N Ai} = 0,

which implies (2.19). This proves Theorem 2.1.

Now we turn to the proof of Theorem 2.2. To this end we need the well-

known Borell inequality.

Lemma 2.5. Let {Xt, t ∈ T} be a centered separable Gaussian process with

almost surely bounded sample paths. Let ‖X‖ = supt∈T Xt. Then for all x > 0,

P{|‖X‖ − E‖X‖| > x} ≤ 2 exp { − x2/(2σ2
T )},

where σ2
T = supt∈T EX2

t .

Proof of Theorem 2.2. From Theorem 2.1, to show Theorem 2.2 it suffices to

prove that

S2(n)/σ2
n →







0 for α ∈ (1/2, 1),

∞ for α ∈ (0, 1/2).
(2.23)

Using Lemma 2.2, (2.23) is equivalent to

∞
∑

j=1

X2
j /σ2

n →







0 for α ∈ (1/2, 1),

∞ for α ∈ (0, 1/2).
(2.24)

It is well-known that (
∑n

j=1 X2
j )1/2 = sup∗

∑n
j=1 ajXj , where sup∗ =

sup(a1 ,...,an):
∑n

i=1
a2

i ≤1. By Borell’s inequality, we have that for any x > 0,

P

{

|(
n

∑

j=1

X2
j )1/2 − E(

n
∑

j=1

X2
j )1/2| ≥ x

}

= P

{

| ∗
sup

n
∑

j=1

ajXj − E
∗

sup
n

∑

j=1

ajXj| ≥ x
}

≤ 2 exp
{ −x2

2 sup∗ E(
∑n

j=1 ajXj)2

}

. (2.25)

Putting σ2 = EX2
j , we have

∗
supE(

n
∑

j=1

ajXj)
2 = σ2 + 2

∗
sup

∑

1≤i<j≤n

aiajEXiXj

∼ σ2 + 2
∗

sup
∑

1≤i<j≤n

aiaj(j − i)2α−2L(j − i). (2.26)
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Obviously, there is a constant c0 such that for any i < j, (j− i)2α−2L(j− i) ≤ c0.

Put n1 = [
√

n] and L1(n) = maxn1<j≤n L(j). Clearly, L1(n) ≤ c1n
(1−α)/2 for

some c1 > 0. Therefore

∗
sup

∑

1≤i<j≤n

aiaj(j − i)2α−2L(j − i)

≤ c0
∗

sup
n−1
∑

i=1

i+n1
∑

j=i+1

aiaj +
∗

supnα−1L1(n)
n−n1
∑

i=1

n
∑

j=i+n1+1

aiaj

=: β1 + β2, (2.27)

where, using Cauchy-Schwarz’s inequality,

β1 ≤ c0
∗

sup
n

∑

i=1

ain
1/2
1 (

i+n1
∑

j=i+1

a2
j )

1/2 ≤ c0n
1/2n

1/2
1

∗
sup (

n−1
∑

i=1

a2
i )

1/2 ≤ c0n
3/4,

(2.28)

and similarly,

β2 ≤ nαL1(n) ≤ c1n
(1+α)/2. (2.29)

Combining (2.26)−(2.29) with (2.25) shows that for any ε > 0,

∞
∑

n=1

P

{

|(
n

∑

j=1

X2
j )1/2 − E(

n
∑

j=1

X2
j )1/2| ≥

√
nε

}

≤ 2
∞
∑

n=1

exp
{

− ε2

2c0n−1/4 + 2c1n(α−1)/2

}

< ∞,

which, in combination with the Borel-Cantelli lemma, implies that as n → ∞,

(
1

n

∞
∑

j=1

X2
j )1/2 − E(

1

n

∞
∑

j=1

X2
j )1/2 → 0 a.s..

Hence, noting that 0<b := (1/n)
∑n

j=1 E|Xj | ≤ ((1/n)
∑n

j=1 EX2
j )1/2 =(EX2

1 )1/2

= σ, we have b2
1 ≤ lim infn→∞(1/n)

∑n
j=1 X2

j ≤ lim supn→∞(1/n)
∑n

j=1 X2
j ≤ σ2

a.s., which yields (2.24) by recalling (2.6). This completes the proof of Theorem

2.2.
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