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Abstract: This paper aims at developing a robust and omnibus procedure for check-

ing the independence of two time series. Li and Hui (1994) proposed a robustified

version of Haugh’s (1976) classic portmanteau statistic which is based on a fixed

number of lagged residual cross-correlations. Hong (1996a) introduced a class of

consistent test statistics which are weighted sums of residual cross-correlations.

These tests provide a generalized Haugh’s test statistic. Hong’s tests are sensi-

tive to outliers, since they are based on the usual cross-correlation function and

least-squares estimators. Here, we introduce a robustified version of Hong’s test

statistics. We suppose that for each series, the true ARMA model is estimated by

a n1/2-consistent method. If outliers are suspected, robust estimators of the pa-

rameters are obtained and the new test statistics rely on the sample robust cross-

correlation function introduced in Li and Hui (1994). Under the null hypothesis

of independence, the new tests asymptotically follow a N(0, 1) distribution. Using

the truncated uniform kernel, our test provides a generalized version of the robust

test statistic of Li and Hui (1994). We also propose a robust procedure for check-

ing independence at individual lags and a descriptive causality in mean analysis in

the Granger sense is discussed. From simulation results, we find that Hong’s and

Haugh’s tests can be severely affected by additive outliers in the time series. The

new robust statistics and the test of Li and Hui have reasonable levels when outliers

are present. However, using a kernel different from the truncated uniform kernel,

our test statistics may be substantially more powerful than the test of Li and Hui.

Finally, the proposed robust procedures are applied to a set of financial data.

Key words and phrases: ARMA model, causality in mean, coherency, independence,

robust estimation, robust serial correlation.

1. Introduction

Several physical and economic phenomena can be described by time series;
see among others Akaike and Kitagawa (1999) for physical applications and
Judge, Hill, Griffiths, Lütkepohl and Lee (1985) for economic applications. When
we have to deal with two time series, the question often arises of describing the
interrelationships existing between them. In economics, for example, elucidation
of causality relationships between time series may be very important in a predic-
tion context. Before applying sophisticated methods for describing relationships
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between two time series, it is important to check whether they are independent
(or serially uncorrelated in the non-Gaussian case) or not. If sufficiently power-
ful methods, both simple to apply and interpret, were available for checking the
independence of two time series, more sophisticated multivariate analyses such
as causality in mean analysis might become redundant. Haugh’s (1976) paper is
to our knowledge the first attempt at developing a procedure based on residual
cross-correlations for checking the independence of two stationary ARMA series.
He considered a portmanteau statistic given by

SM = n
M∑

j=−M

r2ûv̂(j), (1)

where rûv̂(j) =
∑n

t=j+1 ûtv̂t−j/(
∑n

t=1 û
2
t

∑n
t=1 v̂

2
t )

1/2 are the residual cross-corre-
lations for 0 ≤ j ≤ n − 1, rûv̂(j) = rv̂û(−j) for 1 − n ≤ j < 0, and ût, v̂t,
t = 1, . . . , n, are the two residual series of length n, obtained by fitting univariate
models to each of the series. The constant M ≤ n− 1 is a fixed integer and must
be chosen a priori. The asymptotic distribution of SM is chi-square under the
null hypothesis of independence and the hypothesis is rejected for large values
of the test statistic. The constant M cannot be too large in order that the
asymptotic chi-square approximation be satisfactory. However, since SM does
not take into account the cross-correlations at lag j for j > M , it will not
detect serial correlation at high lags and leads therefore to an inconsistent test
procedure.

Haugh’s procedure was extended in various directions. Koch and Yang (1986)
introduced a modification of SM that allows for a potential pattern in the residual
cross-correlation function. El Himdi and Roy (1997) proposed a version of SM for
two stationary vector ARMA (VARMA) that was recently extended to partially
non stationary (cointegrated) VARMA series by Pham, Roy and Cedras (2003).
Hallin and Saidi (2001) have proposed a generalization of the Koch and Yang
procedure for VARMA series.

Hong (1996a) proposed a consistent test which is a generalization of Haugh’s
statistic that takes into account all possible lags. The test statistic is a weighted
sum of residual cross-correlations of the form

Qn =
n
∑n−1

j=1−n k
2(j/m)r2ûv̂(j) −Mn(k)
[2Vn(k)]1/2

, (2)

where Mn(k) =
∑n−1

j=1−n(1 − |j|/n)k2(j/m) and Vn(k) =
∑n−2

j=2−n(1 − |j|/n)(1 −
(|j|+1)/n)k4(j/m). The weighting depends on a kernel function k and a smooth-
ing parameter m as in kernel-based spectral density estimation; this allows a
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flexible weighting. With the truncated uniform kernel, Qn corresponds to a
normalized version of Haugh’s statistic. However several kernels lead to higher
power. Indeed, the so-called Daniell kernel maximizes the asymptotic power of
the test Qn in a certain class of smooth kernels and under some local alterna-
tives. Also, Hong (1996a) avoids the ARMA modeling by fitting autoregressions
of appropriate high orders. Under the null hypothesis, the test statistic Qn is
asymptotically N(0, 1). The test is unilateral and rejects for the large values
of Qn.

In practice, outliers in time series can create serious problems. They can
occur for various reasons, measurement errors or equipment failure, etc. (see,
e.g., Martin and Yohai (1985), Hampel, Ronchetti, Rousseeuw and Stahel (1986)
and Rousseeuw and Leroy (1987)). Haugh and Hong tests for independence are
based on estimation methods that are sensitive to outliers. Furthermore, the
usual cross-correlation function can be considerably affected by outliers. Ro-
bust estimation methods in ARMA models were studied in Bustos and Yohai
(1986), and a robustified autocovariance function introduced. Robust estima-
tion of VARMA models was considered in Ben, Martinez and Yohai (1999). Li
and Hui (1994) proposed a robustified cross-correlation function between two
time series and employed it to develop a robust version of Haugh’s (1976) and
McLeod’s (1979) tests for checking independence. Their robust statistics asymp-
totically follow a chi-square distribution whose degrees of freedom depend on
the autoregressive and moving-average orders. Another approach of the non-
parametric type for checking the independence of two autoregressive time series
based on autoregressive rank scores was studied by Hallin, Jurevcková, Picek and
Zahaf (1999).

The main objective of this paper is to develop a robust version of Hong’s
statistic for checking the independence of two univariate stationary and invert-
ible time series. We suppose that for each series, the true ARMA model is esti-
mated by a n1/2-consistent method. If outliers are suspected in the time series,
robust estimators of the parameters are obtained using, for example, the resid-
ual autocovariances estimators (RA estimators) introduced by Bustos and Yohai
(1986). A robustified version of Qn is obtained by replacing the usual residual
cross-correlation in (2) by the robust cross-correlation function introduced by
Li and Hui (1994). The new test has an asymptotic normal distribution under
the null hypothesis of independence. Using the truncated uniform kernel, we
retrieve Li and Hui’s test statistic. Using a result of Li and Hui (1994), we also
describe a robust procedure for checking independence at individual lags. As
emphasized by Box, Jenkins and Reinsel (1994) and others, it is important not
only to look at the value of a global statistic but also to examine the values of
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the cross-correlations at individual lags. It may well happen that the procedure
based on individual lags lead us to reject the null hypothesis whilst the global
test does not reject. Also, if in a first step we reject with the global test, the tests
at individual lags will identify the lags where there is a significant correlation.

The organization of the paper is as follows. In Section 2, we introduce the
notations and concepts employed thereafter. Our main result is presented in
Section 3, where a robustified version of Hong’s (1996a) statistic is introduced.
Invoking a general result in Li and Hui (1994), we describe in Section 4 a robust
procedure for checking independence at individual lags and we present a robus-
tified version of Haugh’s (1976) statistic. A descriptive approach for causality
in mean analysis in Granger’s (1969) sense is also discussed. In Section 5, we
describe the results of a small Monte Carlo experiment conducted to analyze the
level and power of the robust and non-robust test statistics. It is found that the
Hong and Haugh tests can be severely affected by additive outliers in the time
series. As for Li and Hui’s statistic, the level of the new tests is reasonably well
controlled when outliers are present. However, using a kernel different from the
truncated uniform kernel, our test can be substantially more powerful than the
test of Li and Hui. The new procedures are applied to a set of financial data in
Section 6.

2. Preliminaries

2.1. Assumptions on the process

Let {(Xt, Yt), t ∈ Z} be a bivariate second-order stationary process. Without
loss of generality, we can assume that {(Xt, Yt)} is centered at zero. We further
suppose that {Xt} and {Yt} are invertible ARMA processes, that is φ1(B)Xt =
θ1(B)ut, φ2(B)Yt = θ2(B)vt, where φh(B) =

∑ph
i=0 φhiB

i are the autoregressive
(AR) polynomials, θh(B) =

∑qh
i=0 θhiB

i the moving-average (MA) polynomials
with φh0 = θh0 = 1, h = 1, 2, and B is the backward shift operator. We denote
φh = (φh1, . . . , φhph

)′ and θh = (θh1, . . . , θhqh
)′, h = 1, 2.

The innovation processes {ut} and {vt} are strong white noise, that is the
ut’s and the vt’s are two sequence of independent and identically distributed
(i.i.d.) random variables with mean zero and variance σ2

u and σ2
v , respectively.

It is also supposed that the fourth-order moments of ut and vt exist and that
the probability distributions of ut and vt are symmetric with respect to zero.
The symmetry assumption is frequent in the robustness context, see for example
Denby and Martin (1979), Bustos, Fraiman and Yohai (1984) and Bustos and
Yohai (1986). M-estimation in AR(p) models under nonstandard conditions is
studied in El Bantli and Hallin (2001). Note that in linear regression models
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with asymmetric errors, some M-estimators of the slope parameters are consis-
tent whilst the Generalized M (GM) estimators may be inconsistent (Carroll and
Welsh (1988)). Huber (1981, p.171) gives arguments suggesting that, in general,
the bias of M-estimators should not be too important in many practical applica-
tions; see also Huber (1964, Section 7). An interesting discussion of the role of
symmetry in robust statistics is presented in Hampel, Ronchetti, Rousseeuw and
Stahel (1986, p.401).

2.2. Outliers in time series

In time series, Fox (1972) introduced innovation outliers (IO) and additive
outliers (AO). That terminology is frequently used in robustness studies, see for
example Martin and Yohai (1985), Rousseeuw and Leroy (1987) and Hampel et
al. (1986). Here, we briefly describe these two types of outliers using probability
models as it is often done in distributional studies.

Suppose that {Xt} is an ARMA(p,q) process and that the innovation process
{ut} has an heavy tail distribution F which is not far from the Gaussian distri-
bution, as for example a contaminated normal, F = (1− ε)N(0, σ2) + εN(0, τ2),
where ε > 0 is small, and τ ≥ σ. In this situation, the innovations ut are from
a N(0, σ2) with probability 1− ε, or from a N(0, τ2) with a larger variance with
probability ε. The latter innovations are considered as outliers. The important
point with IO is that the ARMA(p,q) model is still the exact model for the ob-
servations. However, if an outlier occurs at t0, then ut0 will affect not only Xt0 ,
but many future observations. After a while, the effect disappears. Bustos and
Yohai (1986) give several results showing that IO do not affect too seriously the
least squares (LS) estimators of autoregressive and moving average parameters
of an ARMA process.

We now discuss additive outliers. Suppose that the observations are obtained
from the model Xt = X̃t + Vt, where {X̃t} and {Vt} are independent, {X̃t} is
ARMA with innovations ut that are Gaussian with a common variance σ2, the
Vt’s are i.i.d. random variables whose distribution is H = (1 − ε)δ0 + εG, where
δ0 is the degenerate distribution at zero and G is an arbitrary distribution. Here
the ARMA process itself is observed without error with probability 1 − ε and
there is a probability ε that the process ARMA plus an error of distribution
G be obtained. When AO appear, we have an imperfect ARMA process. LS
estimators and even M-estimators are quite sensitive to AO.

Bustos and Yohai (1986) introduced RA estimators (for Residual Autoco-
variances) as an alternative with good behavior when AO are present. These
estimators are obtained by solving a system of equations similar to the one lead-
ing to the LS estimators, except that the usual sample innovation autocorrelation
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function is replaced by a robustified version. Bustos and Yohai (1986) also intro-
duced a class of truncated RA estimators (TRA). An heuristic argument shows
that these estimators are qualitatively robust when a MA component is present
in the ARMA model. The main result of this paper described in Section 3 only
requires that the AR and MA estimators be n1/2-consistent. If outliers are sus-
pected, the estimators need also to be robust, since the LS estimators may be
severely biased when AO are present. For example, GM estimators as well as
RA and TRA estimators are n1/2-consistent and robust. RA estimators with a
Mallows type function are particularly convenient to compute since an iterative
scheme is possible. For rigor and completeness, we state explicitly the consistency
condition in Assumption A.

Assumption A. Let {Xt} and {Yt} be ARMA processes. Let λ̂u = (φ̂
′
1, θ̂

′
1)

′

and ν̂u = (λ̂
′
u, σ̂u)′ be the estimators of the parameters λu = (φ′

1,θ
′
1)′ and

νu = (λ′
u, σu)′, respectively. Similar notations hold for {Yt}. We suppose that

ν̂u − νu = Op(n−1/2) and ν̂v − νv = Op(n−1/2).

With two time series, the cross-correlation function (CCF) is often used to
appreciate the existing dependency between the two processes. However, as with
the usual autocorrelation function, it is sensitive to outliers. Li and Hui (1994)
proposed the following robust CCF:

γuv(j; η) =



n−1∑n

t=j+1 η(ut/σu, vt−j/σv), j ≥ 0,

n−1∑n
t=−j+1 η(ut+j/σu, vt/σv), j < 0,

(3)

where {ut} and {vt} are the two innovation processes, with variances σ2
u and

σ2
v respectively. The function η(·, ·) is to be continuous and odd in each vari-

able. When η(u, v) = uv, we retrieve the usual sample CCF, and we write
γuv(j; η) = ruv(j). Similarly, a robust residual CCF is obtained by replacing
{ut} and {vt} by the residual series {ût} and {v̂t}. The scale parameter σu is
estimated simultaneously from the observations using, for example, the robust
scale estimator

σ̂u = med(|ûp+1|, . . . , |ûn|)/0.6745. (4)

Several choices for the function η are possible, such as Mallows type or Hampel
type functions:

ηM (u, v) = ψ(u)ψ(v), Mallows, (5)

ηH(u, v) = ψ(uv), Hampel, (6)

where the function ψ is continuous and odd. A first example for the function ψ
is the Huber family

ψH(u; c) = sign(u)min(|u|, c); (7)
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we can interpret ψH(ut/σu; c) as a winsorized residual (Martin and Yohai (1985,
p.138)). Another example is the bisquare family proposed by Beaton and Tukey
(1974):

ψB(u; c) =



u(1 − u2/c2)2, if 0 ≤ |u| ≤ c,

0, otherwise.
(8)

Efficiency considerations with respect to LS estimators under a purely Gaussian
model dictate the choice of the robustness constant c. See Table 1 in Bustos and
Yohai (1986). Li and Hui (1994) studied the asymptotic properties of a fixed
length vector of robust residual CCF.

In practical applications, there are situations where it is sufficient to robustly
estimate one equation only, say the first time series, but not the second. Thus if
one source is very reliable but the other one is not, we could use η(u, v) = ψ(u)v.
It means that robust estimation would be used for the first series and ordinary
LS estimation for the second one.

Remark. Note that robustness is not achieved uniquely with the robust CCF. If
non-robust estimators (e.g., the LS estimators) are used in conjunction with (3),
then if AO are present, the estimator bias can be so high that the residuals of
the contaminated time series will not reflect the general dependence structure of
the residuals of the uncontaminated time series. In some sense, it is similar to
classical regression where a single bad leverage point can bring the LS estimators
over any prespecified bound, and therefore the regression line does not reflect
the general relationship between the response and the explanatory variables. See
Rousseeuw and Leroy (1987, Chap. 2).

3. Test Procedure Based on All Lags

For the null hypothesis of independence, Li and Hui (1994) proposed the
portmanteau test statistic

S∗
RM =

n

â

M∑
j=−M

n

(n− |j|)γ
2
ûv̂(j; η), (9)

a robust version of Haugh’s (1976) statistics, where â is a consistent estimator of
a = E[η2(u1/σu, v1/σv)]. For example, when η is of the Mallows type, a consistent
estimator for a is â = [n−1∑n

t=1 ψ
2(ût/σ̂u)]× [n−1∑n

t=1 ψ
2(v̂t/σ̂v)]. As in Haugh

(1976), the correction factor n/(n − |j|) in (9) leads to a better approximation
by the asymptotic distribution under the null hypothesis of independence. Here
we propose a robust version of Hong’s statistic Qn given by (2). It uses a kernel-
based statistic. To satisfy the following assumptions.
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Assumption B. The kernel k : R → [−1, 1] is a symmetric function, continuous
at 0, having at most a finite number of discontinuity points and such that k(0) =
1,
∫∞
−∞ k2(z)dz <∞.

The test statistic is

QRn =
nâ−1∑n−1

j=1−n k
2(j/m)γ2

ûv̂(j; η) −Mn(k)
[2Vn(k)]1/2

, (10)

where Mn(k) and Vn(k) are the same quantities as in (2). The smoothing param-
eter m is such that m = m(n) → ∞, but m(n)/n→ 0 as n→ ∞. Using the trun-
cated uniform kernel, we retrieve a standardized version of Li and Hui’s (1994)
statistic. Since limn→∞m−1Mn(k) = M(k) =

∫∞
−∞ k2(z)dz <∞, under some ad-

ditional assumptions on k and m, limn→∞m−1Vn(k) = V (k) =
∫∞
−∞ k4(z)dz <∞

and therefore Mn(k) and Vn(k) can be replaced by mM(k) and mV (k), respec-
tively, in (10). The resulting test statistic is

Q∗
Rn =

nâ−1∑n−1
j=1−n k

2(j/m)γ2
ûv̂(j; η) −mM(k)

[2mV (k)]1/2
. (11)

When m−1Mn(k) = M(k)+o(m−1/2), (11) is asymptotically equivalent in distri-
bution to QRn. In practice, these substitutions may lead to better finite sample
approximations.

Although QRn and Q∗
Rn are defined in terms of cross-correlations, there

are also coherency-based statistics (in the frequency domain). For a function
g : [−π, π] → C, the normalized L2 norm is

||g||2 = (2π)−1
∫ π

−π
|g(ω)|2dω,

where | · | denotes the modulus of a complex number. To simplify the discus-
sion, assume that η is of the Mallows type. Then, a−1/2γuv(j; η) can be inter-
preted as the sample cross-correlation at lag j of the winsorized series {ψ(ut/σu)}
and {ψ(vt/σv)}. A kernel-based robust estimator of the cross-spectral density
of the winsorized series is f̂uv(ω) = a−1/2∑n−1

j=−n+1 k(j/m)γuv(j; η)e−ijω , where
||f̂uv||2 = a−1∑n−1

j=−n+1 k
2(j/m)γ2

uv(j; η). Therefore, QRn and Q∗
Rn are essen-

tially standardized versions of the estimated coherency. See Priestley (1981) for
the properties of the cross-spectral density and coherency functions.

Under the hypothesis that {ut} and {vt} are mutually independent processes,
the asymptotic distribution of QRn is the following, with convergence in law
denoted →L.

Theorem 1. Let {Xt} and {Yt} be ARMA processes. Suppose that A and B are
satisfied and that m → ∞ and m/n → 0. If the innovation processes {ut} and
{vt} are independent, then QRn →L N(0, 1).
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The proof of Theorem 1 is written in two parts and is an adaptation of
the one in Hong (1996b). First we establish the asymptotic normality of the
pseudo-statistic

Q̃Rn =
na−1∑n−1

j=1−n k
2(j/m)γ2

uv(j; η) −Mn(k)

[2Vn(k)]1/2

which is based on the innovation processes {ut} and {vt}. To derive the asymp-
totic normality, we make use of Brown’s (1971) Central Limit Theorem for mar-
tingale differences that can be found in many textbooks, for example Taniguchi
and Kakizawa (2000, Chap. 1). The ARMA models describing the two series do
not intervene in the first part since Q̃Rn is completely determined by the innova-
tion series {ut} and {vt}. The observed data and the estimated models are taken
into account in the second part, in which it is shown that Q̃Rn − QRn = op(1)
and Theorem 1 follows. A detailed proof can be found in a technical report by
Duchesne and Roy (2001).

4. Tests Based on a Subset of Lags

By making use of a general result of Li and Hui (1994) on the asymptotic
distribution of a vector of robustified residual cross-correlations, we present a
robust procedure for testing the hypothesis of independence based on the robus-
tified cross-correlations at a particular lag or at a finite number of lags. We also
describe a robustified version of the procedure for testing causality in mean in
the Granger (1969) sense, discussed in El Himdi and Roy (1997).

4.1. Asymptotic distribution of robust cross-correlations

The theorem of Li and Hui (1994) is based on RA-estimation of the ARMA
parameters and is a direct generalization of a similar result in McLeod (1979)
for LS estimators. It also extends Haugh’s (1976) theorem. However, when
going through the Taylor series expansions involved in Haugh’s proof (see also
El Himdi and Roy (1997)), it is seen that Haugh’s approach remains valid for any
n1/2-consistent ARMA estimators. That remark leads us to Theorem 2 below,
which is slightly more general than the result of Li and Hui (1994) under the null
hypothesis of independence between the two processes {Xt} and {Yt}.

Let j1, . . . , jm be a sequence of m distinct integers and consider the vector
γη

uv = (γuv(j1; η), . . . , . . . , γuv(jm; η))′.

Theorem 2. Let {Xt} and {Yt} be second-order stationary and invertible ARMA
processes satisfying the assumptions of Section 2.1. Let {ût} and {v̂t} be the
residual series resulting from n1/2-consistent and robust estimation of the param-
eters. If the two processes are independent, then

√
nγη

ûv̂ and
√
nγη

uv have the
same asymptotic distribution Nm(0, aIm), where a = E[η2(u1/σu, v1/σv)].
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A similar result is given in Haugh (1976) for two univariate time series, and
in El Himdi and Roy (1997) for two multivariate time series, when γη

ûv̂ = rûv̂ =
(rûv̂(j1), . . . , rûv̂(jm))′ and the parameters are estimated by conditional LS. In
the next two sections we apply Theorem 2.

4.2. Test based on the robust cross-correlation at a particular lag

Suppose that we want to test in a robust manner that the two stationary
and invertible ARMA processes {Xt} and {Yt} are independent. Let ρuv(j) =
Corr(ut, vt−j) be the population cross-correlation at lag j, between {ut} and {vt}.
Theorem 2 allows us to construct a robust version of the tests studied in Haugh
(1976) and in El Himdi and Roy (1997).

Under the hypothesis of independence H0, we have from Theorem 2 that√
nγûv̂(ji; η)/

√
a, i = 1, . . . ,m, are asymptotically i.i.d. N(0, 1). For the alterna-

tive hypothesis, H1j : ρuv(j) �= 0, it is natural to consider the statistic

S∗
R(j) =

n2

n− |j|γ
2
ûv̂(j; η)/â, (12)

and underH0, S∗
R(j) follows a χ2

1 distribution. The test statistic S∗
R(j) is a robust

version of the following test statistic studied by Haugh (1976):

S∗(j) =
n2

n− |j|r
2
ûv̂(j). (13)

If n/(n − |j|) is replaced by one in (12) and (13), the asymptotic distribution
is unchanged, but Haugh noticed from a simulation study that the exact level
of nr2ûv̂(j) can be much smaller than the asymptotic nominal level, specially for
high lags.

In practice, we are often interested in simultaneously considering several
lags, for example all lags such that |j| ≤ M , where M ≤ n − 1. Thus, the
alternative hypothesis becomes H(M)

1 : There exists at least one j, |j| ≤M , such
that ρuv(j) �= 0. A global test for H0 based on the statistics S∗

R(j), |j| ≤ M ,
rejects H0 if, for at least one lag j, S∗

R(j) > χ2
1,1−α0

. To obtain a global level
α, since the S∗

R(j) are asymptotically independent, the marginal level α0 for
each test must be α0 = 1 − (1 − α)1/(2M+1). That method has the advantage of
individual examination at each lag in a robust way. Portmanteau tests do not
share that property. In Section 6, a graphical procedure as in El Himdi and Roy
(1997) is presented.

4.3. Links with causality in mean

In many economic studies, it is important to identify the causality directions
between two time series when they are correlated at possibly many lags. Fol-
lowing El Himdi and Roy (1997), the robust cross-correlation analysis described
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in the previous section can be pursued further for that purpose. In a general
framework, the process {Xt} does not cause {Yt} in the Granger (1969) sense
if the minimum mean square error linear predictor of Yt based on the informa-
tion set {(Xs, Ys), s ≤ t− 1} is the same as the one based on the information set
{Ys, s ≤ t−1}. In other words, {Xt} does not cause {Yt} if Yt cannot be predicted
more efficiently when the information contained in Xs, s ≤ t− 1 is taken into ac-
count in addition to that in Ys, s ≤ t− 1. More formal definitions of causality
and characterizations of non-causality in vector ARMA models in terms of AR
and MA parameters are given in Boudjellaba, Dufour and Roy (1992, 1994).

Pierce and Haugh (1977) obtained a characterization of the absence of causal-
ity in mean between the ARMA processes {Xt} and {Yt} in terms of the cross-
correlation between the two innovation processes {ut} and {vt}. They showed
that {Xt} does not cause {Yt} if and only if ρuv(j) = 0, ∀j < 0 and {Yt} does
not cause {Xt} if and only if ρuv(j) = 0, ∀j > 0. Therefore, the residual CCF
can be useful for detecting causality in mean directions between {Xt} and {Yt}.

Suppose that we want to test the null hypothesis of independence H0 against
the alternative H+

1M : ρuv(j) �= 0, for at least one j such that 1 ≤ j ≤ M , where
M > 0 is a fixed integer. If we doubt some observations, it is natural to consider
robust residual cross-correlations at positive lags to define the test statistic, and
if H0 is rejected in favor of H+

1M we will conclude that {Yt} causes {Xt}. As in
the previous section, we can do simultaneous tests at lags 1, . . . ,M or employ
the portmanteau type statistic

S+∗
RM =

M∑
j=1

S∗
R(j), (14)

asymptotically χ2
M distribution underH0; the null hypothesis is rejected for large

values of S+∗
RM . Similarly, for the alternative hypothesis H−

1M : ρuv(j) �= 0, for at
least one j such that −M ≤ j ≤ −1, the test statistic is

S−∗
RM =

−1∑
j=−M

S∗
R(j), (15)

asymptotically χ2
M under H0. If H0 is rejected in favor of H−

1M , we conclude that
{Xt} causes {Yt}.

A possible interpretation of the approach leading to the test statistics (14)
and (15) is as follows. Consider the Mallows case for the η function. Since
we suspect outliers, we may want to perform a winsorization of the time series.
Consider the following models

X∗
t = φ̂−1

1 (B)θ̂1(B)u∗t , (16)

Y ∗
t = φ̂−1

2 (B)θ̂2(B)v∗t , (17)
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where u∗t = ψ(ut(λ̂u)/σ̂u)σ̂u and v∗t = ψ(vt(λ̂v)/σ̂v)σ̂v with (λ̂
′
u, σ̂u)′ and (λ̂

′
v, σ̂v)′

denoting the robust parameter estimators of the two models as in Assumption A.
Expressions (16) and (17) can be found in Bustos and Yohai (1986, Section 2.2).
Using Pierce and Haugh’s (1977) result, detecting causality in mean between
X∗

t and Y ∗
t will be in terms of the cross-correlation between the two winsorized

innovation processes {u∗t } and {v∗t }. The usual measure given by (13) based
on the winsorized innovations u∗t and v∗t reduces to the robust measure defined
by (12). Naturally, if no outliers are in the data, we typically have u∗t = ut,
v∗t = vt, and the non-robust and robust cross-correlations will present very similar
pictures as illustrated by Figure 1 of Section 6.

From a theoretical point of view, we must be cautious in doing a causal-
ity analysis based on robust residual cross-correlations. Under the hypothesis
of independence between the two series, it follows from Theorem 2 that the lag
j robust cross-correlation γûv̂(j; η) is still a consistent estimator of ρuv(j) = 0.
However, when ρuv(j) �= 0, we know from Li and Hui (1994, Section 3) that
γûv̂(j; η) is in general an asymptotically biased estimator of ρuv(j). Therefore, it
may well happen, due to the bias, that γûv̂(j; η) be close to zero even if ρuv(j) �= 0.
In such a situation, no causality direction is detected with γûv̂(j; η). In the con-
text of causality analysis, the behavior of the robust auto- or cross-correlations,
and in particular their asymptotic bias, when the corresponding theoretical cor-
relations are different from zero must be studied further but we do not do so here.
In practical applications, it is expected that the bias will be small since without
outliers very few residuals, if any, will be downweighted in (3). Typically, the
usual and robustified cross-correlations will be very similar with outlier-free sam-
ples. Furthermore, when outliers are observed, the robustified measures should
be considerably less biased than the usual cross-correlations based on the LS esti-
mators of the ARMA parameters. A more formal approach, which could probably
avoid the bias induced by the robustified cross-correlation measures in causal-
ity in mean analysis, could rely on the general concept of causality discussed in
Granger (1980).

The procedure described here for causality in mean analysis does not con-
stitute a statistical test in the usual sense, since the hypothesis of non-causality
which is the hypothesis of interest stands for the alternative hypothesis rather
than the null. It is however a robustified version of a similar approach used by,
among others, Pierce (1977) and Pierce and Haugh (1977) to identity causality
in mean directions between univariate time series. From a statistical point of
view, we would like to directly consider the null hypothesis H+

0 : ρuv(j) �= 0, j >
0, or H−

0 : ρuv(j) �= 0, j < 0 versus the simple negation of H+
0 or H−

0 . Li and
Hui (1994) give the asymptotic distribution of the vector of residual robust cross-
correlations γ̂η

ûv̂ in the general case of two correlated univariate ARMA series.
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The asymptotic covariance matrix is quite involved since it depends on the true
models describing the two series and except for the special case of only instan-
taneous causality between the two processes {Xt} and {Yt}, it seems difficult to
exploit in practice.

5. Simulation Results

From a practical point of view, it is natural to inquire after the finite sample
properties of the proposed test statistics, in particular their exact level and power
whether or not there is outliers in the series under study. To partially answer
that question, a small Monte Carlo simulation was conducted. In addition to the
test statistics discussed in the preceding sections, the following modified versions
of Haugh’s (1976) and Hong’s (1996a) statistics S∗

M and Q∗
n were also included

in the experiment:

S∗
M = n

M∑
j=−M

n

(n− |j|)r
2
ûv̂(j), (18)

Q∗
n =

n
∑n−1

j=1−n k
2(j/m)r2ûv̂(j) −mM(k)
[2mV (k)]1/2

. (19)

In our simulation experiment, the empirical levels of S∗
M and Q∗

n were closer to
the nominal levels than those of SM and Qn, respectively. However, the empirical
powers of S∗

M and Q∗
n were similar to those of SM and Qn, respectively. For these

reasons, we only report the results for (18) and (19).

5.1. Description of the experiment

To compare the omnibus robust statistic Q∗
Rn to its non-robust counterpart

Q∗
n and also to the portmanteau statistics S∗

M and S∗
RM , independent realizations

were generated from the following bivariate Gaussian VARMA(1,1) process:(
Xt

Yt

)
=

(
0.5 0.0
0.0 0.5

)(
Xt−1

Yt−1

)
+

(
ut

vt

)
−
(

0.0 θ

θ 0.0

)(
ut−1

vt−1

)
, t ∈ Z. (20)

The covariance matrix of (ut, vt)′ is

Σ =

(
1.0 ρ

ρ 1.0

)
. (21)

We considered (i) (θ, ρ) = (0.0, 0.0), (ii) (θ, ρ) = (0.0, 0.2) and (iii) (θ, ρ) =
(0.25, 0.0). The first case corresponds to the situation where two independent
AR(1) series are generated, and that situation allows us to study the level of the
tests. Under (ii), there is instantaneous correlation between the two innovation
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series of the two marginal processes. The case (iii) is similar to the second
experiment of Li and Hui (1994, p.108), where the two innovation series of the
marginal processes are correlated at lags ±1. The cases (ii) and (iii) allow us to
compare the power of the various tests.

For each kernel, three different rates m were employed: 	log(n)
, 	3.5n0.2

and 	3n0.3
 (	a
 denotes the integer part of a). These rates are discussed in Hong
(1996c, p.849). They lead respectively to the values m = 5, 8, 12 for the series
length n = 100, and to m = 5, 9, 15 with n = 200. We used the same rates for
the portmanteau statistics S∗

M and S∗
RM , that is M = m. Kernels used in the

calculation of the omnibus statistics Q∗
n and Q∗

Rn are given in Table 1. For more
details on the different kernels, see Priestley (1981).

Table 1. Kernels used in the empirical study.

Truncated uniform kernel (TR): k(z) =
{

1 if |u| ≤ 1,
0 elsewhere;

Bartlett (BAR): k(z) =
{

1 − |z| if |z| ≤ 1,
0 elsewhere;

Daniell (DAN): k(z) =
sin(πz)
πz

, z ∈ R.

To investigate the effect of outliers on the robust and non-robust statistics,
10,000 realizations were generated from the Gaussian VAR(1) model (20) for each
series length (n = 100, 200). For each realization, the following three scenarios
were considered.

Scenario 1: No contamination.
Scenario 2: For n=100, we subtracted 10 from observations X26 and Y76. Fur-
thermore, for n = 200, we added 10 to X101 and Y151 and subtracted 10 from
X176.
Scenario 3: In addition to scenario 2, for n = 100, we added 10 to X51 and Y51

and, for n = 200, we subtracted 10 from X126 and Y126.

Similar scenarios were employed in Li (1988) and Li and Hui (1994). The
first allows us to evaluate the performance of the statistics in the context of
Gaussian VAR(1) and VARMA(1,1) series. The second permits us to evaluate
the performance of the procedures when outliers occur at different points in time.
Finally, in the third scenario, outliers occur in both series at the same points in
time.

For the robust statistics, we chose the Mallows type functions η defined
by (5) and two ψ functions were employed: Huber (7) and bisquare (8) families.
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The tuning constant c in the Huber family is 1.65 and in the bisquare family is
5.58. These robustness constants give an efficiency of 95% with respect to the
LS estimators under a perfectly observed Gaussian time series.

In the level study, 10,000 independent realizations were generated from (20)
and (21) with (θ, ρ) = (0.0, 0.0) for each value of n. Computations were made in
the following way, with computer programs written in Fortran 77.
(1) The Gaussian white noise (ut, vt)′, t = 1, . . . , n, was generated using the

subroutine G05EZF from the NAG library.
(2) Initial values (X0, Y0)′ were generated from the exact bivariate Gaussian dis-

tribution using Ansley’s (1980) algorithm. The values (Xt, Yt)′, t = 1, . . . , n,
were obtained by solving the difference equation (20).

(3) For each realization, univariate AR(1) models were separately estimated for
each of the two series and the residual series {ût, t = 1, . . . , n} and {v̂t, t =
1, . . . , n} were obtained. The autoregressive parameter was estimated by LS
for the non-robust statistics and the RA estimator was obtained from the
iterative algorithm described in Bustos and Yohai (1986, Section 2) for the
robust statistics. The Mallows type function η combined with Huber and
bisquare functions ψ were used. The three scenarios for outliers were applied
to each realization, which leads to nine distinct estimates and therefore to
nine residual series {(ût, v̂t)′, t = 1, . . . , n}.

(4) For each realization, the test statistics S∗
M andQ∗

n were computed from the LS
residuals. The value of S∗

RM and Q∗
Rn were obtained from the RA residuals.

(5) For each series of length n and for nominal level 5%, we obtained for each
statistic the number of rejections of the null hypothesis of non-correlation
between the two series, based on 10,000 realizations. The standard error
of the number of rejections is 21.8 for 5%. For example, at the nominal
level 5%, the observed number of rejections is not significantly different from
the expected number of rejections if it lies in the interval [458, 542] at the
significance level α = 0.05 and in the interval [444, 556] at the significance
level α = 0.01.
The power study was conducted in a similar way except that in case (ii)

the correlation between ut and vt is ρ = 0.2 and in case (iii) a VARMA(1,1) is
generated. Note that it is appropriate to estimate AR(1) models under the null
hypothesis and under the two alternatives considered.

For the kernel-based test statistics, we give the results for the Bartlett,
Daniell and truncated uniform kernels (see Table 1) for Q∗

n and Q∗
Rn. The Daniell

kernel is optimal (greatest asymptotic power) kernel in a certain class of smooth
kernels (Hong (1996a), Section 4). Other complementary simulation results for
other statistics, kernels and significance levels can be found in Duchesne (2000,
Chap. 4). We give here the more representative results.



842 PIERRE DUCHESNE AND ROCH ROY

5.2. Discussion of the level study

Since the nominal level is 5%, all the numbers in Table 2 must be compared
to 500. In Tables 2, 3 and 4, S∗

RM (H) and S∗
RM (b) represent the statistic S∗

RM

computed with the Huber and bisquare ψ functions respectively. Under scenario 1
(no outlier), the levels of the portmanteau statistics S∗

M and S∗
RM are very well

controlled. Hong’s statistic Q∗
n tends to overreject. When m = 5, its empirical

level varies around 7% with the BAR and DAN kernels, around 8% with the TR
kernel and becomes closer to 5% as m increases. A similar trend was observed
by Hong (1996a). The behavior of the robustified version Q∗

Rn is similar to that
of Q∗

n, irrespective of the ψ function.

Table 2. Number of rejections under the null hypothesis based on 10,000
realizations at the 5% nominal level. For each value of m = M , the three
lines correspond to the three scenarios.

Q∗
RnQ∗

n Huber bisquare
m S∗

M S∗
RM (H) S∗

RM (b) BAR DAN TR BAR DAN TR BAR DAN TR
n=100

5 443 454 457 753 657 835 776 657 842 769 664 828
49 471 492 175 119 121 737 625 828 748 649 850

3159 552 472 9480 8632 4754 1101 894 988 740 651 822

8 469 460 468 673 555 645 670 542 651 674 544 647
29 464 485 94 70 42 650 552 636 670 556 658

1215 539 454 8581 6722 1876 960 715 750 661 545 654

12 488 487 496 575 432 473 566 425 470 580 438 477
19 510 471 57 31 17 586 427 500 590 437 461
309 544 484 6902 4073 407 767 539 535 565 436 474

n=200
5 504 504 490 781 669 899 764 666 898 779 687 901

27 473 484 156 95 73 714 627 865 762 677 900
8188 744 493 9997 9977 9101 1673 1365 1307 786 678 933

9 494 491 482 678 590 737 677 585 709 676 582 732
12 497 487 62 45 28 636 564 696 671 575 715

4269 658 487 9936 9740 5581 1348 1088 927 701 609 717

15 485 475 465 614 513 546 602 501 525 607 489 531
7 506 504 28 31 10 578 482 557 589 491 554

1069 611 495 9498 9105 1437 1088 827 687 595 478 556
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Under scenarios 2 and 3, it is immediately seen that the unrobustified statis-
tics S∗

M and Q∗
n are very sensitive to outliers. In general, they dramatically

underreject under scenario 2 and overreject under scenario 3. In contrast, the
empirical level of the robustified statistics S∗

RM under scenarios 2 and 3, those of
Q∗

Rn with either Huber or the bisquare function ψ under scenario 2, and those of
Q∗

Rn with the bisquare function are similar to the ones observed under scenario
1 and are therefore reasonably close to 5 %. However, Q∗

Rn with Huber function
overrejects considerably under scenario 3, specially for small values of m, with
the three kernels and for all values of m with the kernel BAR. For that reason,
the bisquare function seems preferable in practice.

Table 3. Number of rejections under the alternative (θ, ρ) = (0.0, 0.2) in (20)
and (21), based on 10,000 realizations at the 5 % nominal level and using
the empirical critical values for scenario 1. For each value of m = M , the
three lines correspond to the three scenarios.

Q∗
RnQ∗

n Huber bisquare
m S∗

M S∗
RM (H) S∗

RM (b) BAR DAN TR BAR DAN TR BAR DAN TR
n = 100

5 2076 1939 1914 4033 3400 2153 3890 3242 2001 3861 3229 1968
136 1666 1839 621 404 143 3241 2700 1709 3565 2995 1901
6568 2626 1856 9894 9692 6864 5226 4526 2727 3702 3131 1919

8 1591 1586 1549 3520 2871 1668 3421 2746 1642 3402 2733 1621
79 1394 1532 403 243 79 2814 2253 1450 3156 2505 1602

3495 2107 1541 9681 9053 3921 4681 3823 2194 3296 2588 1617

12 1382 1315 1310 3067 2488 1460 2918 2325 1417 2926 2311 1398
42 1195 1250 247 127 44 2417 1928 1264 2706 2186 1320

1279 1750 1278 9141 7582 1712 4045 3231 1875 2802 2223 1374
n = 200

5 4039 3881 3881 7145 6394 4103 6919 6157 3945 6902 6137 3933
165 3029 3528 988 699 170 5886 5145 3075 6473 5666 3584
9824 5266 3621 10000 10000 9837 8405 7785 5341 6627 5864 3676

9 3132 2954 3003 6292 5376 3218 6074 5156 3055 6055 5147 3083
82 2361 2752 549 346 83 5016 4114 2440 5625 4676 2832

8389 4098 2848 9999 9994 8544 7660 6727 4224 5768 4859 2908

15 2429 2325 2337 5429 4377 2522 5169 4192 2428 5178 4202 2422
23 1889 2125 260 235 25 4113 3362 1965 4732 3836 2217

4237 3173 2234 9974 9937 4765 6692 5747 3314 4912 3964 2317
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Globally as a function of m, the sizes of the robust statistics get better as
m increases. With respect to the series length, there is no obvious improvement
when n goes from 100 to 200.

Table 4. Number of rejections under the alternative (θ, ρ) = (0.25, 0.0) in
(20) and (21), based on 10,000 realizations at the 5 % nominal level and
using the empirical critical values for scenario 1. For each value of m = M ,
the three lines correspond to the three scenarios.

Q∗
RnQ∗

n Huber bisquare
m S∗

M S∗
RM (H) S∗

RM (b) BAR DAN TR BAR DAN TR BAR DAN TR
n=100

5 5700 5378 5328 7082 7530 5815 6801 7275 5471 6752 7260 5440
620 4544 4897 1461 1635 654 5928 6445 4626 6254 6775 5006
4123 5459 4569 9215 8758 4429 6806 7319 5557 5964 6503 4658

8 4523 4402 4315 7141 7058 4711 6867 6808 4554 6846 6765 4515
306 3738 3938 1316 1194 327 5965 5882 3864 6369 6282 4117
1628 4465 3674 8501 7365 1876 6886 6839 4610 6068 5991 3837

12 3678 3509 3472 6781 6417 3967 6490 6106 3730 6490 6126 3730
164 2940 3133 986 770 183 5583 5257 3141 6002 5661 3372
506 3606 2931 7185 5188 669 6513 6171 3826 5709 5348 3146

n=200
5 9204 9037 9038 9729 9803 9224 9647 9737 9065 9654 9726 9055

1589 8261 8628 3571 3796 1623 9213 9369 8298 9426 9531 8658
9018 9039 8398 9990 9981 9092 9648 9736 9070 9292 9434 8425

9 8422 8169 8185 9689 9654 8487 9614 9558 8239 9607 9561 8271
671 7102 7595 2964 2795 706 9145 9056 7205 9369 9296 7675
5630 8095 7266 9952 9871 5897 9594 9547 8204 9211 9141 7359

15 7335 6966 6998 9525 9304 7487 9398 9175 7152 9412 9172 7164
258 5883 6325 2037 1935 275 8785 8441 6080 9090 8797 6499
1864 7019 6024 9689 9598 2138 9394 9204 7192 8914 8595 6200

5.3. Discussion of the power study

The number of rejections under the alternative hypotheses (θ, ρ) = (0.0, 0.2),
(θ, ρ) = (0.25, 0.0) in (20) and (21) based on 10,000 realizations at the 5 %
nominal level are reported in Table 3 and 4. We used the empirical critical values
obtained from the level study under the first scenario. The powers of S∗

M and Q∗
n



ROBUST TESTS FOR INDEPENDENCE 845

under scenarios 2 and 3 are of limited interest since these statistics are severely
affected by outliers. The only scenario for which all the tests are comparable is
the first. In particular, there we compare the powers of robust and non-robust
tests when there are no outliers. In addition, a satisfactory test should have an
empirical power under scenarios 2 and 3 similar to the one obtained under the
first one.

It is interesting to note that the price to pay for using a robustified statistic
rather than its unrobustified version is rather small, at least for the two alterna-
tives considered in this study. Indeed, as expected, the power of Q∗

Rn is smaller
than that of Q∗

n, but the difference is rather small and the same can be said of
S∗

RM in comparison with S∗
M . Since the behavior of Q∗

n was already discussed in
Hong (1996a), we focus on its robustified version Q∗

Rn.
Among the three kernels, the BAR kernel is in general more powerful than

the DAN kernel under the two alternatives, with the exception of the second
alternative with m = 5 where the DAN kernel is more powerful. This observation
does not contradict the optimality result of Hong (1996a) which says that the
DAN kernel is optimal in a certain class of smooth kernels, since the BAR kernel
is not in that class. The DAN and BAR kernels are considerably more powerful
than the TR kernel, which is essentially the robust test S∗

RM . Note that the
empirical power of Q∗

Rn with the TR kernel differs slightly from the power of the
robust test of Li and Hui (1994). Very likely, the correction factor n/(n− |j|) is
one of the reasons. This illustrates that more powerful tests than the robust test
of Li and Hui (1994) can be obtained by adopting a kernel different from the TR
kernel.

The two ψ functions lead to similar powers in scenarios 1 and 2, specially
for large m. In general under the two alternatives, it seems that the bisquare
function gives the best results. We see from Table 3 that the Huber function
leads to larger powers than the bisquare function. It is very likely related to
the fact that the empirical levels with contaminated series are much larger than
those with non-contaminated series.

As a function of m, the power of Q∗
Rn decreases considerably as m increases

except with the Huber function in scenario 3. As for Hong’s statistic Q∗
n, the

power of Q∗
Rn increases very slightly when n goes from 100 to 200. Finally, among

the three kernels, the TR kernel was the least powerful but still more powerful
than Li and Hui’s (1994) robust portmanteau statistics S∗

M . For n = 100, using
the BAR kernel and a given ψ function, the robust test Q∗

Rn is at least twice
as efficient than S∗

Rn for a given m under case (ii). Under case (iii), Q∗
Rn has a

greater power than S∗
Rn by 27% when m = 5, and the power becomes greater by

87% when m = 12. For n = 200, the differences are smaller but the tests Q∗
Rn

still dominated S∗
Rn, especially for large m.
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In summary, we have seen that the levels of Q∗
n are sensitive to additive

outliers, while those of Q∗
Rn are reasonably well controlled. In our empirical

investigation, the loss of power in using Q∗
Rn rather than Q∗

n is not too important
under a perfectly observed ARMA process. The empirical power of Q∗

Rn is higher
than that of S∗

Rn, using a kernel different from the truncated uniform kernel. The
empirical powers of the robust statistics Q∗

Rn are reasonably close under the three
scenarios. If the outliers are at the same point in time (scenario 3), the bisquare
function seems preferable to the Huber function.

6. Application

6.1. The data

We illustrate here the new robust tests for non-correlation with a data set
coming from the financial literature. It was analyzed by Brockwell and Davis
(1996, Chap. 7) who aimed at developing a stationary bivariate time series model.
However, in practice, before deciding to build a multivariate model, a first im-
portant step is to check for cross-correlation between the series. If we conclude
that they are indeed dependent, it is then appropriate to develop a multivariate
model.

The variables are the closing values of the Dow-Jones Index of stocks (Dt)
on the New York Stock Exchange and the closing values of the Australian All-
ordinaries Index (At) of Share Prices during 251 successive trading days from
September 13, 1993 to August 26th, 1994. See Brockwell and Davis (1996, p.219)
for a picture of the two series. For the purpose of this study, we assume that the
time series {Dt} is obtained from a reliable source but that there are possibly
some outliers in the time series {At}. Therefore, we robustly estimate only the
second time series. We admit that this assumption is somewhat arbitrary, but it
will be useful for our illustration and discussion.

According to the efficient market hypothesis, these two series should behave
individually as random walks with uncorrelated increments. In order to have sta-
tionary series, the data are transformed as percentage relative price changes, that
is (Xt, Yt)′ = 100((Dt − Dt−1)/Dt−1, 100(At − At−1)/At−1)′, for t = 1, . . . , 250.
The sample autocorrelations of each series indicate that both of them can be
considered as white noise since all their autocorrelations are within, or very
close to, the significant limits ±1.96n−1/2 (Brockwell and Davis (1996), Example
7.1.1). The sample cross-correlations are also insignificant except at lag -1 where
rXY (−1) = 0.46, which indicates that Xt−1 and Yt are dependent.

6.2. Correlation analysis

Since stock changes price may display strong volatility clustering, we per-
formed tests for ARCH effects. We used the one-sided test of Hong (1997), based
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on a kernel-based spectral density estimator at the zero frequency. We used the
Bartlett kernel with a smoothing parameter chosen by cross-validation. We pos-
tulated Xt = h

1/2
1t ξ1t and Yt = h

1/2
2t ξ2t, where hit, i = 1, 2 denote the conditional

variances and {ξ1t} and {ξ2t} are i.i.d. processes. We found strong evidence of
ARCH effects in the time series {Xt}. No ARCH effects were found in {Yt}.

The test procedures described in the previous sections can be directly applied
to the two series {Xt/h

1/2
1t } and {Yt/σY } since there is no significant serial auto-

correlation. We formulated a GARCH(1,1) process for the conditional variance
h1t using the S-PLUS GARCH software. The values of the statistics S∗(j) defined
by (13), |j| ≤ 12, are presented in Figure 1 (left side). With tests at individual
lags, we strongly reject the hypothesis of non-correlation at lag j = −1. We also
reject with simultaneous tests at lags −6, . . . ,+6 and even at lags −12, . . . ,+12
at the global level α = 0.05. The values of the robust statistics S∗

R(j), |j| ≤ 12,
are shown in the right side of Figure 1. Again, the non-correlation hypothesis is
rejected by the test at the individual lag j = −1 and by the simultaneous tests
at the global level α = 0.05.

FIgure 1. Values of the statistics S∗(j) (left side) and of S∗
R(j) (right side) for

different lags j. The horizontal dotted lines represent the marginal critical
value at the level α = 0.05. The dashed lines give the critical values at
the global level α = 0.05, for simultaneous tests at lags j = −6, . . . , 6 and
j = −12, . . . , 12.

In order to take into account all possible lags, Hong’s test Q∗
n and its ro-

bustified version Q∗
Rn where carried out. The statistic Q∗

Rn was calculated with
η(u, v) = uψB(v) (the tuning constant was c = 5.58 as in Section 5), the Daniell
kernel and the values 5, 9, 16 for m that correspond to the three rates employed
in Section 5. The scale parameter σY was estimated with the median estima-
tor defined by (4). The values of the statistics are reported in Table 4. At the
1% significance level, these values must be compared to the 99th quantile of the
N(0, 1) distribution and, again, the hypothesis of non-correlation is rejected.
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Since there are no apparent outliers in the two time series under study,
we have replaced Y16 by −9.0 and Y106 by +9.0 which gives rise to two additive
outliers in the Australian series. The contaminated series {Xt} and the series {Yt}
are shown in Figure 2. Visually, the behavior of the Australian series is suspect,
although comparable to many financial time series encountered in practice. The
new series {Yt} can still be considered as a white noise and the cross-correlation
at lag j = −1 is now 0.12 rather that 0.46. We did tests for ARCH effects
in the contaminated time series and such effects were still not present. For
these new series, we have redone the correlation analysis. With the non-robust
procedure, no significant correlation is detected by the simultaneous tests at lags
j = −12, . . . , 12 and j = −6, . . . , 6, or with Hong’s statistic whose values are
reported in Table 5. In fact, no cross-correlation is detected by the tests at
individual lags, Figure 3 (left side). With the robust procedure illustrated in
Figure 3 (right side) for the statistic S∗

R(j) and in Table 5 for the statistics Q∗
Rn,

the hypothesis of non-correlation is strongly rejected once again.

Table 5. Values of the statistics Q∗
n and Q∗

Rn for the data and for the data
contaminated by two outliers.

Real data Contaminated data
m Q∗

n Q∗
Rn Q∗

n Q∗
Rn

5 16.65 14.03 0.31 11.63
9 13.42 11.22 -0.37 9.22
16 10.26 8.69 -1.05 7.05

Figure 2. The two variables Xt and Yt with two outliers. The dotted line
represents the Australian series.
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6.3. A descriptive causality in mean analysis

Once the hypothesis H0 of non-correlation between the two series is rejected,
it is natural to inquire into the directions of causality between the two variables,
especially in economic studies. In Section 4.3, we have seen that {Xt} does not
cause {Yt} if and only if ρuv(j) = 0, ∀j < 0, and {Yt} does not cause {Xt} if
and only if ρuv(j) = 0, ∀j > 0, where {ut} and {vt} are the two corresponding
innovation processes. In the first part of the correlation analysis of the previous
section, we have tested H0 with statistics based on individual lags and it is
immediately seen from Figure 1 that ρuv(−1) is significantly different from zero
and all the other lags, the values of the test statistics are either smaller than the
5% critical value or very close of it. Figure 1 leads us to speculate that the Dow-
Jones Index influenced the Australian Index and that the Australian Index did
not influence the Dow-Jones. At least two factors may explain that conclusion:
the relative size of the two economies and the timing (open and closing hours) of
the two stock markets.

Figure 3. Values of the statistics S∗(j) (left side) and of S∗
R(j) (right side)

for different lags j with the contaminated data. The horizontal dotted line
represents the marginal critical value at the level α = 0.05. The dash lines
give the critical values at the global level α = 0.05, for simultaneous tests at
lags j = −6, . . . , 6 and j = −12, . . . , 12.

In order to simultaneously consider many lags, we can employ the statistic
S+∗

M =
∑M

j=1 S
∗(j) or S−∗

M =
∑−1

j=−M S∗(j), asymptotically χ2
M under H0. For

H0 against H+
1M , the p-values of S+∗

M for various values of M are presented in
Table 6. For H0 against H−

1M , similar results are given for S−∗
M . Thus, for all

the values of M considered, H0 is rejected against H−
1M and not rejected against

H+
1M . These tests confirm the conclusion deduced from the graphical analysis.

The robust statistics S+∗
RM and S−∗

RM defined by (14) and (15), respectively, were
also employed for these data with the same conclusion.
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The causality analysis was redone with the contaminated data and the re-
sulting p-values are shown in Table 6. With the non-robust statistics, H0 is not
rejected against H+

1M as before. However, against H−
1M , H0 is not rejected at the

5% level for any values of M . This contrasts strongly with the robust statistics
since, with them, we retrieve the conclusions obtained with the true data.

Table 6. p-values of the non-robust tests S+∗
M , S−∗

M and of the robust tests
S+∗

RM and S−∗
RM for the real data and for the contaminated data.

Real data Contaminated data
M S+

M S−
M S+

RM S−
RM S+

M S−
M S+

RM S−
RM

1 0.61 0+ 0.60 0+ 0.89 0.07 0.61 0+

2 0.69 0+ 0.68 0+ 0.80 0.18 0.65 0+

3 0.69 0+ 0.71 0+ 0.90 0.31 0.73 0+

6 0.89 0+ 0.89 0+ 0.99 0.41 0.92 0+

12 0.82 0+ 0.77 0+ 0.91 0.84 0.80 0+

Note: 0+ denotes a positive number smaller than 10−5.
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