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Abstract: The estimation of the size of a population using capture-recapture data

if the capture probabilities are heterogeneous is essentially an unsolved problem in

that no nonparametric estimator has been shown to be uniformly applicable. More-

over, often the conditions under which the various nonparametric estimators give

reasonable estimates are either unknown or uncheckable. Here a feasible nonpara-

metric extension of a parametric empirical Bayes method used by Huggins (2001)

is examined. It is concluded that assumptions concerning the distribution of the

capture probabilities are required to successfully estimate the population size. A

byproduct of the procedure is a conditional likelihood based test for time dependent

capture probabilities in the presence of heterogeneous capture probabilities.
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1. Introduction

Many methods have been proposed to estimate the size of a population
using capture-recapture data when the capture probabilities are heterogeneous.
Here we examine an extension of a parametric approach of Huggins (2001) who
assumed a Beta distribution for the capture probabilities. He then used empirical
Bayes methods to estimate individual capture probabilities by the mean of the
posterior distribution of the capture probabilities for each individual, and hence
estimated the population size via a Horvitz-Thompson estimator. A parametric
bootstrap, resampling from the estimated posterior distribution of the capture
probabilities, was used to correct for the bias. The resulting estimators were
comparable to the martingale estimators of Lloyd and Yip (1991) and the non-
parametric sample coverage estimators of Chao, Yip, Lee and Chu (2001).

The work of Waclawiw and Liang (1993) suggests the possibility of a non-
parametric extension of this approach. We explore it here. To do this we apply
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linear empirical Bayes techniques previously developed for random effects mod-
els to capture–recapture experiments. The random effects model for capture-
recapture experiments has been examined in the literature (e.g., Sanathanan
(1972), Darroch, Fienberg, Glonek and Junker (1993), Agresti (1994)) using dif-
ferent methods that those considered here. Our approach is based on the optimal
linear estimators of binomial probabilities developed by Griffin and Krutchoff
(1971) and Waclawiw and Liang (1993). This approach allows the estimation
of time dependent effects and a random effect related to the individual capture
probability for each captured individual. The resulting estimated capture prob-
abilities may then be incorporated in the Horvitz-Thompson (1952) estimator to
obtain an estimate of the population size.

From the point of view of estimating the population size, the results are
disappointing. However, the transparent nature of the method and the lack of
assumptions lead us to conclude that assumptions are required to satisfactorily
estimate the size of a population using capture-recapture data. In compensation,
the conditional likelihood procedure described in Section 3.1 allows us to test
model Mth, with heterogeneous capture probabilities and time dependence, ver-
sus model Mh, which only assumes heterogeneous capture probabilities, of Otis,
Burnham, White and Anderson (1978).

2. The Random Effects Model

One may view capture–recapture data as binary longitudinal or repeated
measures data. Random effects models are commonly used in the analysis of
longitudinal data to allow for heterogeneity (see Diggle, Liang and Zeger (1995)).
Here we adapt these methods to a version of model Mth that allows capture
probabilities to vary according to time and individual. The model analysed here
is a random intercept model.

Consider a population of N individuals and t capture occasions. Let pij be
the probability individual i is captured on occasion j, xij be a vector of time de-
pendent covariates associated with individual i, and let ηi be an individual effect
associated with individual i. Furthermore, let yij take the value 1 if individual i

has been captured on occasion j and zero otherwise, and let ci denote the number
of times individual i is captured.

We consider the logistic model

pij =
exp(x′

ijβ + ηi)
1 + exp(x′

ijβ + ηi)
(1)

and initially regard the ηi as nuisance parameters. This is just a random effects
model (e.g., Diggle et al. (1995)) employed in the analysis of longitudinal binary
data.
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3. Inference

3.1. Inference on β

In the random effects model (1), β is estimated after conditioning on the
sufficient statistics for the ηi, and the resulting contribution to the conditional
likelihood of the ith individual is of the form

Li =
∏t

j=1 p
yij

ij (1 − pij)1−yij

∑
ri∈Ri

∏t
j=1 p

rij

ij (1 − pij)1−rij
, (2)

where Ri is the set of all possible capture histories ri with ci captures, rij the
jth element of ri (Diggle et al. (1995)). Intuitively, Li is the probability i is
captured on the observed occasions given i is captured ci times. The ri are the
capture histories with the same number of captures as i. For example, if there
are 3 occasions and the observed capture history is 101, then Ri consists of the
histories 101, 110, 011. The likelihood is then the probability i is captured on
occasions 1 and 3 (101) given i is captured twice (101, 110, or 011).

After some simplification it is seen that

Li =
exp(

∑t
j=1 x′

ijβyij)∑
ri∈Ri

exp(
∑t

j=1 x′
ijβrij)

, (3)

which does not involve the individual effects ηi. Furthermore, note that any other
effects which are common to all occasions are not included in the conditional
likelihood. Moreover, for individuals that are not captured or are captured t

times, Li ≡ 1.
The conditional likelihood is then L =

∏n
i=1 Li. We use conditional maxi-

mum likelihood estimates and their estimated standard errors arising from the
conditional information matrix to test for homogeneity of the capture probabili-
ties over time.

Remark. A special case of time dependent covariates occurring in capture–
recapture studies is where the probability of capture varies from occasion to
occasion. To model this situation, we take pij = exp(β0 + βj + ηi)/(1+exp(β0 +
βj +ηi)) where β1 = 0. Then Li is given by

exp(
∑t

j=1(β0 + βj)yij)∑
ri∈Ri

exp(
∑t

j=1(β0 + βj)rij)
=

exp(ciβ0 +
∑t

j=2 βjyij)∑
ri∈Ri

exp(ciβ0 +
∑t

j=2 βjrij)

=
exp(

∑t
j=2 βjyij)∑

ri∈Ri
exp(

∑t
j=2 βjrij)

.

Thus, the conditional likelihood allows us to estimate the differences βj , j =
2, . . . , t but not β0.
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3.2. Inference on the ηi

Having estimated β in the first step, we treat it as fixed and estimate the
individual effects ηi for each captured individual. Let

p∗ij =
pij

1 − ∏t
k=1(1 − pik)

denote the probability individual i is captured on occasion j given it is captured
at least once. Let Ci take the value 1 if individual i is captured at least once
in the course of the experiment and 0 otherwise. Let C = σ{C1, . . . , Cn} be the
σ-field generated by the Ci. In what follows we actually estimate ηi + β0. For
simplicity we take β0 = 0 but, for example, we may regard the mean of the ηi as
an estimate of β0.

To estimate the ηi we modify an approach of Griffin and Krutchoff (1971)
and Waclawiw and Liang (1993). We restrict our attention to estimators of p∗ij
of the form ajyij + b and choose aj and b to minimize

E
( t∑

j=1

(
ajyij + b − p∗ij

)2
∣∣∣∣Ci = 1

)
. (4)

Note that aj and b do not depend on i, unlike the approach of Waclawiw and
Liang (1993) but consistent with that of Griffin and Krutchoff (1971). Taking
derivatives of (4) with respect to ak and setting the result equal to zero yields

0 = E

(
yik (akyik + b − p∗ik)

∣∣∣∣Ci = 1
)

= E

(
akp

∗
ik + bp∗ik − p∗2ik

∣∣∣∣Ci = 1
)

,

so that

ak =
E(p∗2ik |Ci = 1) − bE(p∗ik|Ci = 1)

E(p∗ik|Ci = 1)
. (5)

Taking the derivative of (4) with respect to b yields

0 = E
( t∑

j=1

(ajyij + b − p∗ij)
∣∣∣∣Ci = 1

)
= E

( t∑
j=1

ajp
∗
ij + tb −

t∑
j=1

p∗ij

∣∣∣∣Ci = 1
)
,

so that

b =
∑t

j=1 E(p∗ij |Ci = 1)(1 − aj)
t

. (6)

Substituting (5) into (6) yields

b =

∑t
j=1

(
E(p∗ij |Ci = 1) − E(p∗2ij |Ci = 1)

)
t − ∑t

j=1 E(p∗ij |Ci = 1)
. (7)
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Let n denote the number of distinct individuals captured, and nj the num-
ber of distinct individuals captured on occasion j. Now, given Ci = 1, yij ∼
bin(1, p∗ij) so that

E(
nj

n
|C) =

1
n

n∑
i=1

E(yij |Ci) =
1
n

n∑
i=1

E(p∗ij |Ci) = E(p∗1j |C1),

since the ηi are independently and identically distributed as are functions of the
ηi, namely E(p∗ij |Ci). Hence nj/n is an unbiased estimator of E(p∗ij |Ci).

We also need to estimate E(p∗2ij |Ci). As y2
ij = yij, direct estimation of p∗2ij

is not possible. We must therefore make some assumptions. Here we suppose
that p∗ik1

= · · · = p∗ikr−1
= p∗ij for some k1, . . . , kr−1 �= j, ks ∈ {1, . . . ,m},

s = 1, . . . , r − 1. Let Xijr denote the number of times i is captured on the r

occasions k1, . . . , kr−1, j. Then

E
(X2

ijr − Xijr

r2 − r

∣∣∣∣Ci, ηi

)
= p∗2ij ,

E
( 1
n

n∑
i=1

X2
ijr − Xijr

r2 − r

∣∣∣∣C
)

= E(p∗2ij |Ci).

Suppose that the r occasions k1, . . . , kr−1, j have been defined for each j (with

possibly a different r for different j). Let d̂j =
n∑

i=1
(X2

ijr − Xijr)/(r2 − r). Then

we estimate b and aj by

b̂ =

∑t
j=1

(
nj − nd̂j

)
nt − ∑t

j=1 nj
, âj =

nd̂j − b̂nj

nj
,

respectively. Note that it is possible for the âj to be negative. In some cases
this can result in extremely low estimates of the capture probabilities, and hence
large estimates of the population size. This was noted in our simulation study.

Finally, we estimate ηi by choosing η̂i to minimize

R(ηi) =
t∑

j=1

(
âjyij + b̂ − p∗ij(ηi)

)2
, (8)

where β̂ is fixed and p∗ij is regarded as a function of ηi.

Remark. The assumption that that p∗ik1
= · · ·=pikr−1 =p∗ij for some k1, . . . , kr−1

�= j, ks ∈ {1, . . . ,m}, s = 1, . . . , r − 1, necessary to estimate E(p∗2ij |Ci), requires
some thought in practice. However, some guidance is given by the estimated
values of β arising from Section 3.1. We noticed that these estimators were not
particularly sensitive to how the grouping was done.
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3.3. Estimating the population size

Having estimated β and the random effects ηi in the first two steps, we
estimate the probability that individual i is captured on occasion j by

p̂ij =
exp(x′

ij β̂ + η̂i)

1 + exp(x′
ijβ̂ + η̂i)

. (9)

The probability an individual is captured at least once is Pi = 1−∏t
j=1(1− pij)

and, if the Pi were known, we could estimate the size of the population using
the Horvitz–Thompson estimator N̂0 =

∑n
i=1 P−1

i . We could estimate Pi by
P̂i = 1 − ∏t

j=1(1 − p̂ij) and subsequently estimate N by N̂1 =
∑n

i=1 P̂−1
i .

4. An Approximate Standard Error for N̂

The three step nature of the estimator makes an analytic derivation of
the standard error of the estimator difficult. A bootstrap approach is feasi-
ble in theory, but the iterative procedures employed to estimate β and the ηi

largely precludes its use. Here we give an approximate standard error. Let
θ = (β′, η1, . . . , ηn). Then applications of the Mean Value Theorem yields, for
large N ,

N(θ̂) ≈ N(θ) − S(β)′
(

dS(β)
dβ

)−1 dN(β)
dβ

−
n∑

i=1

(η̂i − ηi)P−2
i

dPi

dηi
.

The Central Limit Theorem shows that asymptotically each of the terms in this
approximation has a normal distribution (we have supposed the η̂i are inde-
pendent to approximate the distribution of the third term). A heuristic argu-
ment that the three terms are uncorrelated is that the second term has zero
expectation given the sufficient statistics for the individual effects, and hence is
uncorrelated with the other two terms. The individual effects are estimated con-
ditional on capture at least once and hence are uncorrelated with the first term.
The variances of the three terms may be estimated by v1 =

∑n
i=1(1 − P̂i)/P̂ 2

i ,
v2 = (dN/dβ)′(dS(β)/dβ)−1 = (dN/dβ), v3 = σ2

η

∑n
i=1 P−4

i (dPi/dηi)2. We then
take an approximate standard error of N̂ as

√
v1 + v2 + v3.

5. Examples

5.1. Example 1

Our first example is a data set previously discussed in Otis et al. (1978, p.62)
and Huggins (1989) concerning 173 animals captured on 10 occasions, capture
occasions alternating between morning and evening. The methods of Otis et al.
lead to a model where the capture probabilities are heterogeneous and depend
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on time. Huggins examined this data set and modelled the individual hetero-
geneity as a function of the sex and age category of the individuals. He found
a difference in the capture probabilities between morning and evening with an
increased probability of capture in the mornings, no evidence of a behavioural
response to capture, and estimated the population size as 176.9 with a standard
error of 2.01. Applying the methods of Chao et al. (1992) for model Mth to this
data set using the program CAPTURE yielded an estimated population size of
170 with a standard error of 0.

Table 1 gives the estimated occasion effects arising from the first part of our
procedure. As noted above, we need to make assumptions about the capture
probabilities. We supposed pi1 = pi3, pi2 = pi4, pi5 = pi7, pi6 = pi8, pi7 = pi9,
and pi8 = pi10. In Table 2 we give the mean and standard deviation of the
estimated capture probabilities for each occasion. The estimated population size
was 176.4, the approximate standard error was 2.47.

Table 1. Estimate occasion effects for Example 1, where E denotes evening
and M denotes morning capture occasions.

Occasion 2 3 4 5 6 7 8 9 10
Time of day E M E M E M E M E

effect -0.17 -0.15 -0.41 0.14 -0.75 0.19 -0.92 0.19 -0.81
s.e. 0.23 0.24 0.23 0.19 0.24 0.21 0.25 0.22 0.24

Table 2. Mean and standard deviation of the estimated capture probabilities
on each occasion for Example 1.

Occasion 1 2 3 4 5 6 7 8 9 10
average 0.38 0.34 0.34 0.28 0.41 0.22 0.42 0.19 0.42 0.21
St.Dev. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

5.2. Example 2

We also consider an example concerning the capture of deer mice by S.
Hoffmann, originally examined in Otis et al. (1978). A total of 110 animals were
captured on 5 occasions. The data is included with the program CAPTURE. Otis
et al. determined that the most appropriate model for this data is Mtbh which
allows capture probabilities to vary by time, capture history and individual.
Using model Mb the program CAPTURE estimated the populations size as 142
with standard error 16.4. Model Mt gave 113 with standard error 1.76. Fitting
model Mth, according to Chao (1992), gave an estimate of 139 with a standard
error of 9.6.

In the first part of our procedure, the estimated occasion effects, with stan-
dard errors in parentheses, were 0.66 (0.28), 0.81 (0.28) 1.07 (0.29) and 0.73
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(0.28), suggesting that the capture probabilities increased after the first occa-
sion. We supposed pi1 = pi2 and pi3 = pi4 = pi5. Our procedure resulted in an
estimate of the population size of 114.6 with a standard error of 3.1, similar to
the estimate arising from model Mt.

6. Simulations

Our simulations were based on a population of 100 individuals and 5 capture
occasions. We let β2, . . . , β5 take the values 0.0, −0.3, −0.3, −0.3 for all simula-
tions. The capture probabilities were given by (1). The random effects ηi were
independent observations from N(µ, σ2) distributions for various values of µ and
σ2. At each step we simulated a population of 100 individuals and then generated
a capture experiment for each population. To estimate the η̂i we pooled occa-
sions 1 and 2 and occasions 3, 4 and 5. We conducted 100 simulations and report
the mean of N̂1, the standard deviation of the estimates and the average of the
estimated standard errors. We also give the average and standard deviations of
the probabilities of being captured at least once, which are computed separately
by simulating 1000 random effects and taking the average of the corresponding
probabilities.

Table 3. Models for the simulations using normal random effects, average
and standard deviation of the probability an individual is captured at least
once, and the means of the estimators from 100 simulations. The model for
the capture probabilities is a Beta distribution with no occasion effect to
simulate the captures. NH is the parametric empirical Bayes estimator with
a bootstrap bias correction of Huggins (2001). (∗ 4 extremely large estimates
omitted ∗∗. In 18 cases the variance could not be computed.)

α,β 10,10 5,5 3,5 3,10
av(Pi), (s.e.(Pi)) 0.95 (0.05) 0.94 (0.08) 0.84 (0.16) 0.67 (0.20)
av(N̂1) 98.45 96.10 90.60 88.50∗

s.d.(N̂1) 2.32 2.53 4.02 11.8
av(s.e.(N̂1)) 2.13 2.04 3.76 8.97∗∗

av(N̂H) 100.1 99.9 97.7 103.6
s.d.(N̂H) 3.4 3.9 13.6 22.0
av(s.e.(N̂H)) 5.18 6.4 11.8 17.2

The models from which the data was simulated are summarized in Table
3(a), as are the results of the simulations. We also simulated capture probabilities
according to a beta distribution. In this case we set βj = 0, j = 1, . . . , 5 for the
simulations but estimated it in the inference procedure. The results are given in
Table 3(b). For comparison we also give some results concerning the estimator of
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Huggins (2001). We note that the performance of the estimator is disappointing
when the mean capture probability decreases and the variability increases. The
proposed estimator of the standard error tends to slightly underestimate the
standard deviation of the simulated population size estimates.

7. Discussion

The poor performance of the estimator when the capture probabilities are low
is common amongst nonparametric estimators of population size (for example, see
the simulations of Chao et al. (2001)). However, the performance of the current
estimator is disappointing when compared with the estimator of Huggins (2001).
The performance of the latter estimator was consistent with that of a range of
estimators including the optimal estimating function estimators of Chao et al.
(2001) and the martingale estimators of Lloyd and Yip (1991). In the Chao
et al. simulations, the percent bias in the four cases (Beta(10,10), Beta(5,5),
Beta(3,5) and Beta(3,10)) examined were: for the jackknife, 7.0%, 7.2%, 5.5%,
7.5%; for the estimator of Chao et al., −0.7%, −0.5%, −2.7% and −4.0%; for the
estimator of Huggins, 0.01%, −0.01%, −2.7% and 3.6%. The percent biases for
the method examined here were −1.6%, −3.9%, −9.4% and −11.5%. Thus our
nonparametric approach with minimal assumptions compares poorly with these
other methods.

The difficulties with our approach appear to arise from assigning all individ-
uals with the same capture histories the same capture probabilities: in our case,
the mean of the posterior distribution. In reality, the conditional distributions of
the capture probabilities given the capture history may be quite variable. The
result of this is that, unlike the parametric bootstrap approach of Huggins (2001)
where it was possible to resample from the posterior distribution rather than just
the posterior means, it is not possible to use a bootstrap procedure to estimate
and correct for the bias. This was also evident in further simulations that are
not reported here. Thus it appears that to improve the estimator, assumptions
that allow more detailed estimation of the posterior distribution of the capture
probabilities are required.

We note that assumptions are implicit in other approaches. The sample cov-
erage estimators of Chao (e.g., Chao et al. (1992), Lee and Chao (1994), Chao
et al. (2001)) depend on the validity of an approximation. Huggins and Chao
(2000) show that for some Beta distributions the bias in the sample coverage
estimators of Chao et al. (2001) can be quite large. The jackknife estimator of
Burnham and Overton (1978) requires conditions but Cormack (1989) pointed
out that there is no theoretical advantage in using their estimator. The ap-
proaches of Lloyd and Yip (1991), Yip (1991) and Huggins (2001) make the
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explicit assumption that the capture probabilities have a Beta distribution. Nor-
ris and Pollock (1996) place lower bounds on the capture probabilities and an
upper bound on the estimated population size.

Combined with the results of Huggins (2001), this work emphasizes that in
order to estimate the size of a population using capture–recapture data some
assumptions on the capture probabilities are required. As noted above our ap-
proach does yield, through inference on β in Section 3.1, a test for Model Mth

against model Mh of practical importance. Moreover, the variability of the pos-
terior means provides information on the degree of heterogeneity in the capture
probabilities.
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