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Supplementary Material

Section S1 contains all of the proofs, including Theorem 1, 2, 3, and 4.

Some relevant simulations are shown in Section S2.

S1 Proofs

S1.1 Proof of Theorem 1

Before proving the following theorems, we cite the following lemma from

Bai et al. (1991) for readers’ convenience.

Lemma 1. Bai et al. (1991)

Let A = (aik) and B = (bik) be two Hermitian p× p matrices with spectral
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decompositions

A =

p∑
i=1

ξiuiu
∗
i , ξ1 ≥ ξ2 ≥ · · · ≥ ξp,

and

B =

p∑
i=1

λiviv
∗
i , λ1 ≥ λ2 ≥ · · · ≥ λp,

where ξ’s and λ’s are eigenvalues of A and B, respectively, u’s and v’s are

orthonormal eigenvectors associated with ξ’s and λ’s, respectively. Further,

we assume that

λnb−1+1 = · · · = λnb
= λ̃b, n0 = 0 < n1 < . . . < nr = p, b = 1, . . . , r,

λ̃1 > λ̃2 > · · · > λ̃r,

and that

|aik − bik| < α, i, k = 1, . . . , p.

Then there is a constant M independent of α, such that

(a) |ξi − λi| < Mα, i = 1, . . . , p.

(b)

nb∑
i=nb−1+1

uiu
∗
i =

nb∑
i=nb−1+1

viv
∗
i + C(b),

C(b) = (C
(b)
ik ), |C(b)

ik | < Mα, l, k = 1, . . . , p, b = 1, . . . , r. �

(proof of Theorem 1) By (3.3),

(S2
1 − Σ2) = (S1 − Σ)2 + (S1 − Σ)Σ + Σ(S1 − Σ), (S1.1)
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we obtain that S2
1 −Σ2 converges to zero in probability. Assume that there

are r different values of (λ1, . . . , λp), say

λnb−1+1 = · · · = λnb
= λ̃b, n0 = 0 < n1 < . . . < ns = p, b = 1, . . . , r.

By Lemma 1 and (S1.1), we have for any ε > 0,

|λ̂2i − λ2i | < Mε, i = 1, . . . , p, in probability (S1.2)

nb∑
i=nb−1+1

uiu
∗
i −

nb∑
i=nb−1+1

viv
∗
i = C(b) (S1.3)

where C(b) = (C
(b)
lk ) with |C(b)

lk | ≤ Mε in probability for all l, k = 1, . . . , p

and b = 1, . . . , r.

It follows from (S1.2), (S1.3) and Slutsky’s Theorem that

S − Σ =

p∑
i=1

(
|λ̂i|uiu∗i − λiviv∗i

)
=

r∑
b=1

|λ̂b|
nb∑

i=nb−1+1

uiu
∗
i −

r∑
b=1

λb

nb∑
i=nb−1+1

viv
∗
i

=
r∑
b=1

(
|λ̂b| − λb

) nb∑
i=nb−1+1

(uiu
∗
i ) +

r∑
b=1

λb

nb∑
i=nb−1+1

(uiu
∗
i − viv

∗
i )

≤ M ′ε in probability, (S1.4)

which implies S − Σ
P→ 0. �
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S1.2 Proof of Theorem 2

By (3.4) and Slutsky’s Theorem, we have

αn(S2
1 − Σ2) = αn(S1 − Σ)∗(S1 − Σ) + αn(S1 − Σ)∗Σ + αnΣ(S1 − Σ)

= α−1n [αn(S1 − Σ)]∗ [αn(S1 − Σ)]

+ [αn(S1 − Σ)]∗Σ + Σ [αn(S1 − Σ)]

d→ ZΣ + ΣZ. (S1.5)

This implies S2
1 − Σ2 = Op(α−1n ). By Lemma 1 we then have

|λ̂2i − λ2i | < Mα−1n , i = 1, . . . , p, in probability (S1.6)

nb∑
i=nb−1+1

uiu
∗
i −

nb∑
i=nb−1+1

viv
∗
i = C(b) (S1.7)

where C(b) = (C
(b)
lk ) with |C(b)

lk | ≤Mα−1n in probability for all l, k = 1, . . . , p

and b = 1, . . . , r. Then, by (S1.6), (S1.7), Slutsky’s Theorem and an argu-

ment similar to (S1.4), we have

S − Σ ≤M ′α−1n in probability, (S1.8)

where M ′ is some positive constant independent of n.

The condition (S1.8) implies that αn(S − Σ) is tight. Consider a sub-

sequence nk on which αnk
(S − Σ) converges in distribution to a random

variable, say Y (here and below, to save notation we still use S −Σ rather

than their expressions on the subsequence). Therefore, by Slutsky’s Theo-
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rem, it holds that

αnk
(S2 − Σ2) = αnk

(S − Σ)S + αnk
Σ(S − Σ)

d→ Y Σ + ΣY. (S1.9)

Evidently, (S1.9) is equivalent to

vec(αnk
(S2 − Σ2))

d→ (I ⊗ Σ + Σ⊗ I)vec(Y ), (S1.10)

where ⊗ is the Kronecker product and vec(Y ) is the vectorization of a

matrix.

Moreover, (S1.5) can be also rewritten as

vec(αnk
(S2

1 − Σ2)) = vec(αnk
(S2 − Σ2))

d→ (I ⊗ Σ + Σ⊗ I)vec(Z).(S1.11)

Note that the eigenvalues of (I⊗Σ+Σ⊗I) are {λi+λj, i, j = 1, . . . , p}. The

hypothesis Σ > 0 implies that (I⊗Σ+Σ⊗I) is invertible. Therefore, (S1.10)

and (S1.11) ensure that vec(Z)
d
= vec(Y ) and hence Z

d
= Y . This means

that Y is unique. This, together with the tightness of αn(S − Σ) (which

implies that αn(S −Σ) is relatively compact), implies that αn(S −Σ)
d→ Z

which completes the proofs. �
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S1.3 Proof of Theorem 3

Since Ŝ − S0 = Op(n
−1/4), by Lemma 1 we have

|â2i − a2i | < Mn−1/4, i = 1, . . . , p, in probability (S1.12)

nb∑
i=nb−1+1

γ̂iγ̂
∗
i −

nb∑
i=nb−1+1

γiγ
∗
i = C(b) (S1.13)

where C(b) = (C
(b)
lk ) with |C(b)

lk | ≤ Mn−1/4 in probability for all l, k =

1, . . . , p and b = 1, . . . , r.

Define

f(Ztj) =

p∑
i=1

(
R̂i,tij − γ̂>i Ztj

)2
Iij + δn

(
Ztj + 0.5Ẑtj−1

)>
Â−1

(
Ztj + 0.5Ẑtj−1

)
,

where Iij = I{tij ∈ F}. Note that f(Z) is continuous and strictly convex.

Its first derivative is

f ′(Ztj) = −2

p∑
i=1

(
R̂i,tij − γ̂>i Ztj

)
γ̂>i Iij + 2δnÂ

−1
(
Ztj + 0.5Ẑtj−1

)
.

Setting f ′(Ztj) = 0 and solving respective to Ztj , we obtain

Ẑtj = B−1

(
p∑
i=1

R̂i,tij γ̂iIij − 0.5δnÂ
−1Ẑtj−1

)
,

where

B =

p∑
i=1

γ̂iγ̂
>
i Iij + δnÂ

−1.

Recall (3.6), we have Z
(0)
tj = ΓRtj . It follows that

Ẑtj −Z
(0)
tj = B−1

(
p∑
i=1

R̂i,tij γ̂iIij − 0.5δnÂ
−1Ẑtj−1

)
−

p∑
i=1

Ri,tjγi. (S1.14)
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We proceed to prove theorem by induction on j. When j = 1, (S1.14)

becomes

Ẑt1 −Z
(0)
t1 = B−1

p∑
i=1

R̂i,ti1 γ̂iIi1 −
p∑
i=1

Ri,t1γi

= B−1
p∑
i=1

(
R̂i,ti1 γ̂i −Ri,tjγi

)
Ii1 + (B−1 − I)

p∑
i=1

Ri,t1γiIi1

−
p∑
i=1

Ri,t1γi(1− Ii1).

From (S1.12), (S1.13), and the definition of R̂i,ti1 , we conclude that

‖Ẑt1 −Z
(0)
t1 ‖ = Op(n

−1/4) +O(δn) +O(m1),

where we use the fact that

B−1 − I = B−1

(
I −

p∑
i=1

γ̂iγ̂
>
i Iij − δnÂ−1

)
.

Suppose that (3.8) is true for j = k − 1. In other words,

‖Ẑtj −Z
(0)
tj ‖ = Op(n

−1/4) +O(δn) +O(mj)

holds for j = k − 1. Consider j = k now. Similarly, we conclude from

(S1.14) that

‖Ẑtj −Z
(0)
tj ‖ = Op(n

−1/4) +O(δn) +O(mj) +Op(δnmj−1)

= Op(n
−1/4) +O(δn) +O(mj).

The proof is complete. �
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S1.4 Proof of Theorem 4

Let Strue be the multiple pre-averaging estimation based on true but unob-

servable log prices. Namely

Strue =
n

n− kn + 2

12

kn

n−kn+1∑
j=0

Ȳ
n,(0)
tj (Ȳ

n,(0)
tj )> − 12

2nθ2

n∑
j=1

(Y tj − Y tj−1
)(Y tj − Y tj−1

)>,

where Ȳ
n,(0)
tj = 1

kn

(∑kn−1
`=kn/2

Y tj+`
−
∑kn/2

`=0 Y tj+`

)
. In the following, we will

show that S1 of equation (3.9) converges in probability to Strue, and hence,

S1 has the same limiting distribution as Strue.

By using the alternative version of Ȳn
tj

shown in Jacod et al. (2009),

given g(x) = min{x, 1− x}, we have

Ȳn
tj

=
kn−1∑
`=1

g(`/kn)(Ŷ tj+`
− Ŷ tj+`−1

)

=
kn−1∑
`=1

g(`/kn)(X̂ tj+`
− X̂ tj+`−1

+ ε̂tj+`
− ε̂tj+`−1

)

=
kn−1∑
`=1

g(`/kn)(X tj+`
−X tj+`−1

) + k−1n

kn−1∑
`=kn/2+1

εtj+`
− k−1n

kn/2∑
`=1

εtj+`

+
kn−1∑
`=1

g(`/kn)(X̂ tj+`
−X tj+`

− (X̂ tj+`−1
−X tj+`−1

))

+k−1n

kn−1∑
`=kn/2+1

(ε̂tj+`
− εtj+`

)− k−1n
kn/2∑
`=1

(ε̂tj+`
− εtj+`

)

= Ȳ
n,(0)
tj + L1 + L2, (S1.15)
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where

L1 =
kn−1∑
`=1

g(`/kn)(X̂ tj+`
−X tj+`

− (X̂ tj+`−1
−X tj+`−1

)),

L2 = k−1n

kn−1∑
`=kn/2+1

(ε̂tj+`
− εtj+`

)− k−1n
kn/2∑
`=1

(ε̂tj+`
− εtj+`

).

Now we will verify the orders of Ȳ
n,(0)
tj , L1, and L2.

Since Strue − Σ = Op(n
−1/4), we obtain the order α = 1/4 in equation

(3.8) by Theorem 3. Then, for all j = 1, . . . , n,

R̂tj −Rtj = (Γ̂− Γ)>(Ẑtj −Ztj) + Γ>(Ẑtj −Ztj) + (Γ̂− Γ)>Ztj = op(n
−1/8+η/2),

whereas R̂tj − Rtj = X̂ tj −X tj + ε̂tj − εtj . By using assumption (i), it

implies that

X̂ tj −X tj = op(n
−1/8+η/2) and ε̂tj − εtj = op(n

−1/8+η/2). (S1.16)

Therefore, by (S1.15), (S1.16), the orders of Ȳ
n,(0)
tj and L1 are

Ȳ
n,(0)
tj =

kn−1∑
`=1

g(`/kn)(X tj+`
−X tj+`−1

) + k−1n

kn−1∑
`=kn/2+1

εtj+`
− k−1n

kn/2∑
`=1

εtj+`

= O(
√
kn)Op(n

−1/2) +O(k−1n )Op(1) = Op(n
−1/4),

L1 =
kn−1∑
`=1

g(`/kn)(X̂ tj+`
−X tj+`

− (X̂ tj+`−1
−X tj+`−1

)),

= O(
√
kn)Op(n

−1/2)op(n
−1/8+η/2) = op(n

−3/8+η/2), (S1.17)
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and, by assumption (ii), the order of L2 is

L2 = k−1n

kn−1∑
`=kn/2+1

(ε̂tj+`
− εtj+`

)− k−1n
kn/2∑
`=1

(ε̂tj+`
− εtj+`

),

= O(k−1n )op(n
−1/8+η/2) = op(n

−5/8+η/2), (S1.18)

where we set kn = bθ
√
nc = O(n1/2).

Next, for the second term of (3.9), we verify in the similar way.

Ŷtj − Ŷtj−1
= Ytj −Ytj−1

+ (X̂ tj −X tj − (X̂ tj−1
−X tj−1

))

+(ε̂tj − εtj − (ε̂tj−1
− εtj−1

))

= Rtj + L3 + L4, (S1.19)

where the orders of Rtj , L3, and L4 areOp(1), op(n
−5/8+η/2) and op(n

−1/8+η/2),

respectively.
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Finally, combining (S1.15), (S1.17), (S1.18) and (S1.19), we have

‖n1/4(S1 − Strue)‖ = n1/4

∥∥∥∥∥ n

n− kn + 2

12

kn

n−kn+1∑
j=0

[
Ȳ
n,(0)
tj (L1 + L2) + (L1 + L2)

2
]

− 12

2nθ2

n∑
j=1

[
Rtj(L3 + L4) + (L3 + L4)

2
]∥∥∥∥∥

≤ n1/4 n

n− kn + 2

12

kn

∥∥∥∥∥
n−kn+1∑
j=0

Ȳ
n,(0)
tj (L1 + L2)

∥∥∥∥∥
+n1/4 n

n− kn + 2

12

kn

∥∥∥∥∥
n−kn+1∑
j=0

(L1 + L2)
2

∥∥∥∥∥
+n1/4 12

2nθ2

∥∥∥∥∥
n∑
j=1

[
Rtj(L3 + L4) + (L3 + L4)

2
]∥∥∥∥∥

≤ O(n1/2k−2n )O(n)Op(n
−1/4)op(n

−3/8+η/2)

+O(n1/2k−2n )O(n)op(n
−3/4+η)

+O(n1/2n−2)O(n)op(n
−1/8+η/2)

= op(1).

This validates the theorem. �

S2 Relevant Simulations

We propose an eigenvalue correction method (Section 3.1) and a synchro-

nization technique (Section 3.2). In what follows, we confirm our theoret-

ical results by using the limiting distributional property of the proposed

eigenvalue correction method, and compare this method with alternatives,
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such as replacing negative eigenvalues with small positive values (McNeil

et al., 2005; Schaeffer, 2014) or with zeros (Rebonato and Jäckel, 1999)

(Section S2.1). We also consider the finite sample performance of the high

frequency filtration technique relative to the alternative previous tick and

refresh time synchronization techniques (Section S2.2). Finally, simulation

results for p = 10 and p = 15 are discussed in Section S2.3.

S2.1 Property of eigenvalue correction

We first assess the limiting distributional property of the estimator using

the proposed eigenvalue correction method. As shown in Section 3.1, the

proposed eigenvalue correction realized covariance estimator S has the same

limiting distribution as its preliminary estimator S1, which is efficient but

may not be semi-positive definite. In this section, we use the same model

as in Section 4.1 to generate synchronous yet noisy log prices. To obtain

negative-definite estimated covariance matrices, we only consider the Neg-

ative scenario, for which the parameters are listed in Table S4.

For the preliminary estimator S1, we use the multiple pre-averaging

estimator (MPA) as in Christensen et al. (2010). Based on 1 000 replica-

tions, 23% of the preliminary covariance estimators are not semi-positive

definite. Given the preliminary MPA estimator, we evaluate the eigenvalue
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correction estimator S according to (3.2). The chi-square goodness-of-fit

statistic is used to test the null hypothesis that all elements of n1/4(S1−Σ)

and n1/4(S − Σ) have the same distribution. The p-values are obtained as

1 1 1 1 1

1 1 1 0.99 0.99

1 1 1 0.97 1

1 0.99 0.96 0.46 0.99

1 0.99 1 0.99 1


providing strong evidence to accept this hypothesis.

We also consider alternative eigenvalue correction approaches in which

each negative eigenvalue is replaced by a zero Rebonato and Jäckel (1999) or

by a small positive number McNeil et al. (2005). From (3.1), the spectral

decompositions of the preliminary estimator S1 and the true covariance

matrix Σ are given by

S1 = U Λ̂U∗ =

p∑
i=1

λ̂iuiu
∗
i , Σ = V ΛV ∗ =

p∑
i=1

λiviv
∗
i

where λ̂i and λi are the eigenvalues of S1 and Σ, respectively, and ui and

vi are the orthonormal eigenvectors associated with λ̂i and λi. Note that

λ̂i, i = 1, . . . , p, may be negative numbers, whereas λi, i = 1, . . . , p, are all

positive numbers.

The corrected covariance matrices obtained by replacing each negative
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eigenvalue with its absolute value (the proposed eigenvalue correction), by a

zero (Rebonato and Jäckel, 1999), and by a small positive number (McNeil

et al., 2005) are denoted respectively by

S = U |Λ̂|U∗, Z = U Λ̂+U∗, P = U Λ̂(c)U∗,

where |Λ̂| = diag(|λ̂1|, . . . , |λ̂p|), Λ̂+ = diag(max{λ̂1, 0}, . . . ,max{λ̂p, 0}),

and Λ̂(c) = diag(max{λ̂1, c}, . . . ,max{λ̂p, c}). In this case, we specify a

data-driven constant c given by the smallest positive eigenvalue divided by

2; that is, c = min{{max{λ̂1, 0}, . . . ,max{λ̂p, 0}} \ {0}}/2.

We evaluate the performance of these corrected covariance matrices by

computing the mean square error (MSE) of the negative eigenvalues, defined

as

MSE
(r)
i =

∑m
s=1

[
(λ̂

(r)
i − λi)2

]
1{λ̂(s)i < 0}∑m

s=1 1{λ̂(s)i < 0}
, i = 1, . . . , p,

where λ̂
(s)
i denotes the i-th estimated eigenvalue of S1 for the s-th replica-

tion, and λ̂
(r)
i , r = S, Z, P , denotes the i-th corrected eigenvalue of S, Z,

and P , respectively.

For the Negative scenario with p = 5, the estimator S1 is not positive-

semidefinite in 230 out of the 1 000 replicates. The negative eigenvalues

mostly occur for the fifth eigenvalue. The MSEs for S, Z, and P and the

relative efficiencies with respect to S are shown in Table S1. The proposed
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approach is observed to improve the MSEs of the smallest eigenvalues by

43% and 67% compared to the methods of Rebonato and Jäckel (1999)

and McNeil et al. (2005), respectively. We note that there may exist an

alternative data-driven method to determine c that would improve the per-

formance of P . However, empirical results indicate that such a method is

not easy to obtain.

A potential concern regarding the proposed eigenvalue correction ap-

proach is that a large negative eigenvalue may be replaced with a large

positive one. In reality, however, the population eigenvalues (λi) are all

positive and there are no large sample negative eigenvalues. To verify this

assertion, we consider an experiment with p = 10 in which the parameter

settings are doubled the values of all parameters of the Negative scenario

with p = 5. In particular, we repeat the procedures outlined above with

p = 10. The results are shown in Table S2.

On the basis of these results, the proposed eigenvalue correction method

still performs best for the smallest eigenvalue (i = 10), and for the third

smallest eigenvalue (i = 8). However, it is outperformed by the method

of McNeil et al. (2005) for the second smallest eigenvalue (i = 9). This

phenomenon may be due to a choice of the constant c which is suitable

for a particular eigenvalue (e.g. i = 9 in this experiment), but not for



LIANG-CHING LIN, YING CHEN, GUANGMING PAN AND VLADIMIR SPOKOINY

all eigenvalues. Conversely, the proposed eigenvalue correction method is

suitable for all of the estimated negative eigenvalues.

Table S1: The mean square errors (×10−7) of the negative eigenvalue and the corre-

sponding relative efficiencies in the case p = 5.

S Z P

MSE
(r)
5 8.49 12.2 14.1

MSE
(r)
5

MSE
(S)
5

1 1.43 1.67

Table S2: The mean square errors (×10−7) of the negative eigenvalues and the corre-

sponding relative efficiencies in the case p = 10.

i = 8 i = 9 i = 10

S Z P S Z P S Z P

MSE
(r)
i 12.4 12.8 12.8 12.1 12.2 11.8 6.43 8.47 6.67

MSE
(r)
i

MSE
(S)
i

1 1.024 1.024 1 1.004 0.973 1 1.317 1.037

S2.2 Synchronization

In this section, we compare three synchronization techniques: previous tick

(PT), refresh time (RT), and the proposed high frequency filtering (HFF).

Our comparison of these techniques is performed using the Electronic and
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Ex-HF experiments described previously.

For the PT technique, we interpolate the asynchronous series with the

average sample size n =
∑p

i=1 ni/p, where ni is the sample size of i-th di-

mension. We compute the MSE of the synchronized log prices with respect

to the true values based on 1000 replications. It should be noted, however,

that the primary goal in our study is not to look for the “missing” returns.

Rather, it is to filter out the synchronous processes at high sampling fre-

quency without destroying the original cross-dependence in the raw data.

Table S3 contains the average sample sizes of the obtained synchronous

data, and the MSEs across the 1000 replications, for the three considered

techniques. The results indicate that, without exception, the HFF tech-

nique provides the largest sample sizes. In the Electronic experiment, the

interpolated sample size of HFF is 10 times as large as that of RT, and

3.5 times as large as that of PT, with a slightly bigger MSE. In the Ex-HF

experiment, the interpolated sample size of HFF is approximately 6 times

as large as that of RT, and 2.5 times as large as that of PT, with similar

MSEs. Thus, while the alternative techniques deliver slightly more accu-

rate “missing” values, they are tracing not only the efficient returns, but a

combination of the efficient returns and microstructure noise, the latter of

which has the potential to introduce bias in the estimation as illustrated in
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Tables 1 and S5.

Table S3: Synchronization comparison.

Electronic average sample size MSE

Previous ticks 3900.00 1.93× 10−6

Refresh time 1193.29 1.56× 10−6

High frequency filtration 13323.30 2.08× 10−6

Ex-HF case average sample size mean

Previous ticks 7800.00 1.62× 10−6

Refresh time 3183.67 1.21× 10−6

High frequency filtration 18979.40 1.36× 10−6

S2.3 Simulation results on high dimensional cases

In this section, we consider the relative errors and maximum norms of the

efficient multiple pre-averaging (EMP) estimator compared with multiple

kernel (MK) estimator and multiple pre-averaging (MPA) estimator for the

cases p = 10 and p = 15. The results are shown in Tables S5 and S6. With-

out exception, the EMP estimator outperforms MK and MPA in terms of

the relative error for each eigenvalue. In particular, the EMP estimator de-

livers relative enhancements of between 75% and 279% compared to MPA,

and of between 64% and 278% compared to MK. In terms of the maximum
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norm, the EMP estimator outperforms MPA and MK by 97% and 133%,

respectively.

Figures S1 and S2 depict the relative errors and the normalized mean

absolute errors for each estimated eigenvalue of MPA, MPA-E, MPA-H,

and EMP. Comparing MPA-E with MPA, we observe that the proposed

eigenvalue correction contributes mostly to the negative eigenvalues. Com-

paring MPA-H with EMP, we note that the HFF technique will interpolate

too many biased observations if the preliminary covariance matrix is not

positive semidefinite.
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Figure S1: The relative errors (REs) of each eigenvalue based on MPA, MPA-E, MPA-H, and EMP

for p = 10 (upper panel) and p = 15 (lower panel).

The computational times of MPA, MK and EMP for one replication

are 178, 14 and 62 seconds, respectively, using the Mathematica 8 software

on an Intel(R) Xeon(R) CPU E7-4860@2.27GHz, and a total RAM of 252

GB.
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Figure S2: The mean absolute errors (MAEs) of each eigenvalue based on MPA, MPA-E, MPA-H,

and EMP for p = 10 (upper panel) and p = 15 (lower panel).
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Table S4: The parameter setting of the long-term mean of the volatility (µi), the variance of the

microstructure noise (ηi) and the intensities (ψ).

Finance Noisy

i 1 2 3 4 5 i 1 2 3 4 5

µi(×10−4) 1.6 3.2 1.6 4.8 1.6 µi(×10−4) 1.6 3.2 1.6 2.4 1.6

ηi(×10−7) 1 0.6 1 4 0.8 ηi(×10−7) 4 4 4 4 4

ψi 10 6 13 8 8 ψi 3 5 8 10 12

Electronics Ex-Asy

i 1 2 3 4 5 i 1 2 3 4 5

µi(×10−4) 4.8 3.2 1.6 3.2 1.6 µi(×10−4) 4.8 3.2 4.8 3.2 1.6

ηi(×10−7) 4 4 0.4 1 0.4 ηi(×10−7) 4 1 0.8 0.6 0.4

ψi 3 5 8 10 12 ψi 3 6 10 20 60

Food Ex-HF

i 1 2 3 4 5 i 1 2 3 4 5

µi(×10−4) 3.2 4.8 2.8 1.6 1.6 µi(×10−4) 1.6 3.2 1.6 4.8 1.6

ηi(×10−7) 2.5 4 3 0.8 0.8 ηi(×10−7) 1 4 0.6 0.8 4

ψi 10 6 8 12 12 ψi 3 3 5 5 5

Negative

i 1 2 3 4 5

µi(×10−4) 0.4 1.6 0.16 0.04 0.16

ηi(×10−7) 4 4 4 4 4

ψi 3 5 3 5 3
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Table S5: A comparison of EMP with MK and MPA in terms of relative errors (REs) of eigenvalues

and maximum norms (MNs), in the case p = 10.

Finance & Electronics

EMP MK
EMP

MPA
EMP

EMP MK
EMP

MPA
EMP

RE1 0.200 2.674 1.906 RE6 0.159 3.059 3.789

RE2 0.191 2.060 1.806 RE7 0.176 3.782 3.405

RE3 0.176 1.857 1.750 RE8 0.234 3.455 3.318

RE4 0.179 2.029 1.966 RE9 0.302 3.008 3.353

RE5 0.171 2.344 2.853 RE10 0.403 2.422 2.529

MN 1.48E − 4 2.399 1.971

Table S6: A comparison of EMP with MK and in terms of the relative errors (REs) of eigenvalues and

maximum norms (MNs), in the case p = 15.

Finance & Electronics & Food

EMP MK
EMP

MPA
EMP

EMP MK
EMP

MPA
EMP

EMP MK
EMP

MPA
EMP

RE1 0.228 2.882 2.296 RE6 0.169 2.680 2.154 RE11 0.253 2.756 2.283

RE2 0.187 1.987 1.745 RE7 0.156 3.257 3.677 RE12 0.306 2.053 2.541

RE3 0.183 1.638 1.534 RE8 0.164 3.284 3.466 RE13 0.377 2.669 2.821

RE4 0.168 2.114 1.515 RE9 0.188 3.067 2.707 RE14 0.457 2.171 2.276

RE5 0.155 2.864 2.761 RE10 0.220 2.756 3.003 RE15 0.551 1.846 1.855

MN 1.86E − 4 2.338 2.063
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