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Abstract: High-dimensional vector autoregressions with measurement errors are fre-

quently encountered in scientific and business applications. We study the statistical

inference of the transition matrix under such models. Although numerous works

have examined sparse estimations of the transition matrix, relative few provide in-

ference solutions, especially in the high-dimensional setting. We study both global

and simultaneous testing of the transition matrix. We first develop a new sparse

expectation-maximization algorithm to estimate the model parameters, and care-

fully characterize the estimation precision. Next, we construct a Gaussian matrix,

after proper bias and variance corrections, from which we derive the test statistics.

Then, we develop the test procedures and establish their asymptotic guarantees.

Finally, we use simulations to investigate performance of our tests, and apply the

tests to a neuroimaging-based brain connectivity analysis.

Key words and phrases: Brain network analysis, covariance inference, expectation-

maximization, global testing, simultaneous testing, vector autoregression.

1. Introduction

We study statistical inference for a high-dimensional vector autoregression

(VAR) with measurement errors. We consider the model

yt = xt + εt,

xt+1 = A∗xt + ηt,
(1.1)

where yt = (yt,1, . . . , yt,p)
> ∈ Rp is the observed multivariate time series, xt =

(xt,1, . . . , xt,p)
> ∈ Rp is a multivariate latent signal that admits an autoregressive

structure, εt = (εt,1, . . . , εt,p)
> ∈ Rp is the measurement error for the observed

time series, ηt = (ηt,1, . . . , ηt,p)
> ∈ Rp is the white noise of the latent signal, and

A∗ = (A∗,ij) ∈ Rp×p is a sparse transition matrix that encodes the directional

relations among the variables of xt. Here, we focus on the case ‖A∗‖2 < 1,
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such that the VAR model of xt is stationary. The error terms εt and ηt are

independent and identically distributed (i.i.d.) multivariate normal with mean

zero and covariances σ2
ε,∗Ip and σ2

η,∗Ip, respectively, and are independent of xt.

Here, we focus on the lag-1 autoregressive structure and homoscedastic errors.

We discuss potential extensions to our work in Section 7.

Models such as (1.1) are frequently employed in scientific and business appli-

cations in, for example, finance, engineering, and neuroscience. The motivation

for this study is brain effective connectivity analysis based on functional magnetic

resonance imaging (fMRI). The brain is a highly interconnected dynamic system

in which the activity and temporal evolution of neural elements are triggered and

influenced by the activities of other elements (Garg, Cecchi and Rao (2011)).

Of great interest in neuroscience is determining the directional relations among

the neural elements using an fMRI, which measures synchronized blood oxygen-

dependent signals at different brain locations. Researchers often use the VAR for

such relations, which are encoded by the transition matrix A∗, while assuming

stationarity (Bullmore and Sporns (2009); Chen et al. (2011)). However, unlike a

typical VAR model, the observed time series yt is a contaminated version of the

true signal xt, incorporating a measurement error εt (Zhang et al. (2015); Cao,

Sandstede and Luo (2019)).

We address the statistical inference problem of the transition matrix A∗
under model (1.1), focusing on a high-dimensional setting in which p2 exceeds

the length of the series T . We first test the global hypotheses

H0 : A∗,ij = A0,ij , for all (i, j) ∈ S versus

H1 : A∗,ij 6= A0,ij , for some (i, j) ∈ S,
(1.2)

for a given A0 = (A0,ij) ∈ Rp×p and S ⊆ [p] × [p], where [p] = {1, . . . , p}. A

common choice is A0 = 0p×p and S = [p] × [p]. We next test the simultaneous

hypotheses

H0;ij : A∗,ij = A0,ij , versus H1;ij : A∗,ij 6= A0,ij , for all (i, j) ∈ S. (1.3)

Although numerous works have investigated sparse estimations of A∗ in VAR

models (Hsu, Hung and Chang (2008); Song and Bickel (2011); Negahban and

Wainwright (2011); Han, Lu and Liu (2015) among many others), they all assume

there is no measurement error εt, that is, xt is fully observed. Furthermore, al-

though an estimation and an inference can both produce a sparse representation of

A∗, they are quite different problems. Sparse estimation usually does not explic-

itly control the false discovery rate (FDR, or type-I error), and does not produce
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an explicit significance quantification (p-value). There are relatively few infer-

ence methods for A∗ in VAR models, with existing solutions focusing mostly on

the low-dimensional VAR setting. For instance, Staudenmayer and Buonaccorsi

(2005) studied inferences for a one-dimensional VAR model; see Tsay and Chen

(2018) for a review. More recently, for high-dimensional VAR settings, Krampe,

Kreiss and Paparoditis (2021) proposed bootstrapping the de-biased Lasso es-

timator, and Zheng and Raskutti (2019) extended the de-correlated score test

of Ning and Liu (2017). However, they address only the global testing problem

(1.2), but not the simultaneous testing problem (1.3). In addition, it is unclear

how to adapt their tests for additional measurement errors. To the best of our

knowledge, no existing solutions directly address the global and simultaneous

testing problems in a high-dimensional VAR setting with errors.

Our proposal is built on two key ingredients: a sparse expectation-maximi-

zation (EM) algorithm, and a high-dimensional covariance inference. The EM al-

gorithm estimates the model parameters in the presence of measurement errors.

However, early EM methods only justified the convergence to a local optimum,

and did not consider sparsity. Recently, Balakrishnan, Wainwright and Yu (2017)

provided sufficient conditions to guarantee the convergence of the standard EM

to a global optimum, but only in a low-dimensional setting. Later, Cai, Ma

and Zhang (2019) extended the guarantee to a high-dimensional sparse Gaus-

sian mixture model; see also Wang et al. (2015) and Yi and Caramanis (2015).

Furthermore, the aforementioned solutions all assume i.i.d. observations, whereas

our problem involves temporally highly dependent data. An extension from in-

dependent to dependent observations is not trivial. High-dimensional covariance

inferences have been studied intensively, including both global testing (Chen,

Zhang and Zhong (2010); Cai and Jiang (2011); Xiao and Wu (2013)) and simul-

taneous testing (Liu (2013); Cai, Liu and Xia (2013)). However, they all assume

that the data from which the covariance is constructed are fully observed. In con-

trast, our inference focuses on the transition matrix A∗ of the latent unobserved

xt. In addition, the covariance of the observed yt is a nonlinear transformation

of A∗, making it difficult to trace back to A∗. Consequently, we cannot simply

apply existing covariance inference tools to our setting.

Here, we develop inferential procedures for the global and simultaneous test-

ing problems, (1.2) and (1.3), respectively, for high-dimensional VAR models with

measurement errors. Our proposal includes three main steps. First, we develop

a new sparse EM algorithm to estimate the relevant model parameters. Next, we

construct a Gaussian matrix on the domain of the transition matrix, from which

we derive the test statistics. Finally, we develop global and simultaneous testing
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procedures, with proper theoretical guarantees.

In the first step, we develop a new sparse EM algorithm to estimate both

the transition matrix A∗ and the error variances σ2
ε,∗ and σ2

η,∗. In particular, the

maximization step uses a generalized Dantzig selector for the Yule–Walker equa-

tion, which can be solved efficiently using parallel linear programming (Candes

and Tao (2007); Han, Lu and Liu (2015)). We then establish the convergence

of our sparse EM estimators to the true parameters within the statistical preci-

sion required for the test statistics and the transition matrix inferences in later

steps. Note that existing EM theory adopts the log-likelihood in an infinite-

sample scheme as a key analytical tool, which becomes an expectation at a single

observation, given i.i.d. observations (Balakrishnan, Wainwright and Yu (2017);

Cai, Ma and Zhang (2019)). However, the temporal dependence in our model

means the expectation of the log-likelihood changes with the sample size. To

address the issue, we consider the expectation in a finite-sample scheme instead,

which introduces additional technical difficulties. We then derive several new con-

centration inequalities to establish the statistical error under some weak sparsity

assumptions.

In the second step, we construct a Gaussian matrix for the test statistics

for the transition matrix inference. This is based on the key observation that

the inference on A∗ is equivalent to that on the lagged auto-covariance of some

noise term. Because this noise is not observed directly, we employ the sparse

EM algorithm in the first step to reconstruct the noise. We then study the

nonasymptotic behavior of the sample lagged auto-covariance of the reconstructed

noise, and explicitly characterize its bias and variance. This, in turn, leads to the

construction of the test statistic matrix, the entries of which marginally follow a

standard Gaussian distribution under the null.

In the third step, we develop a global testing procedure based on the extreme

distribution of the maximal entry of the test statistic matrix from the second step,

and develop a simultaneous testing procedure by thresholding at a level that con-

trols the FDR. From a theoretical viewpoint, we obtain the asymptotic size and

power of the global test, which together establish the consistency of our test. We

also show that our simultaneous test achieves consistent FDR control. Our test-

ing procedures are extensions of the covariance inference methods of, for example,

Cai and Jiang (2011), Liu (2013), and Cai, Liu and Xia (2013). However, unlike

these methods, which are built on the sample covariance of fully observed data,

we obtain our tests from the sample lagged auto-covariance of the reconstructed

noise. This requires that we derive new concentration inequalities and Gaussian

approximations to disentangle the reconstruction error, lag effect, and temporal
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dependence. These new theoretical results themselves are of independent interest.

We employ the following notation throughout this paper. Let |S| denote

the cardinality of a set S. For a scalar a ∈ R, let dae and bac denote the

smallest and largest integers greater than or smaller than a, respectively. For

two scalars a, b ∈ R, let a ∨ b and a ∧ b denote the maxima and minima,

respectively. For a vector a = (a1, . . . , ap)
> ∈ Rp, define ‖a‖1 =

∑p
i=1 |ai|,

‖a‖2 = (
∑p

i=1 |ai|2)1/2 and ‖a‖∞ = max1≤i≤p |ai|. For an index set S ⊆ [p], let

aS denote the sub-vector of a containing only the coordinates indexed by S. For

a matrix M = (Mij) ∈ Rp1×p2 , define ‖M‖1 =
∑

ij |Mij |, ‖M‖2 = λ
1/2
max(M>M),

‖M‖F = (
∑

ijM
2
ij)

1/2, ‖M‖max = maxij |Mij |, ‖M‖l1 = maxj∈[p2]

∑p1
i=1 |Mij |,

‖M‖l∞ = maxi∈[p1]

∑p2
j=1 |Mij |, and ‖M‖r,2 = maxi∈[p1]

√∑p2
j=1 |Mij |2 as its

element-wise `1 norm, spectral norm, Frobenius norm, max norm, maximum

absolute column sum, maximum absolute row sum, and maximal row-wise Eu-

clidean norm, respectively. Let Mi: and M:j denote the ith row and jth column,

respectively. Let λmin(M) and λmax(M) denote its smallest and largest eigenval-

ues, respectively, tr(M) the trace, and |M| the determinant. Define D(M) as a

diagonal matrix, the diagonal elements of which are those of M.

The rest of this paper is organized as follows. Section 2 presents the sparse

EM algorithm and the estimation accuracy guarantees. Section 3 constructs

the test statistic matrix. Section 4 develops the testing procedures and their

theoretical guarantees. Section 5 presents our simulations, and in Section 6, we

apply our tests to a brain functional network example. Section 7 concludes with

a discussion. All proofs and additional numerical results are relegated to the

Supplementary Material.

2. Sparse EM Estimation

2.1. Sparse EM algorithm

Let {yt,xt}Tt=1 denote the complete data, where T is the total number of

observations, and yt is observed, but xt is latent. Let Θ =
{
A, σ2

η, σ
2
ε

}
collect all

the parameters of interest in model (1.1), and let Θ∗ =
{
A∗, σ

2
η,∗, σ

2
ε,∗
}

denote

the true parameters. The goal is to estimate Θ∗ by maximizing the log-likelihood

function of the observed data, `(Θ|{yt}Tt=1), with respect to Θ. However, the

computation of `(Θ|{yt}Tt=1) is highly nontrivial. The standard EM algorithm

becomes an auxiliary function, called the finite-sample Q-function,

Qy(Θ|Θ′) = E
[
`
(
Θ|{yt,xt}Tt=1

)
|{yt}Tt=1,Θ

′] ,
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which is defined as the expectation of the log-likelihood function for the com-

plete data `(Θ|{yt,xt}Tt=1), conditioning on a parameter set Θ′ and the observed

data yt, and the expectation is taken with respect to the latent data xt. The Q-

function can be computed efficiently, and provides a lower bound of the target log-

likelihood function `(Θ|{yt}Tt=1) for any Θ, with equality if Θ = Θ′. Maximizing

the Q-function provides an uphill step of the likelihood. Starting from an initial

set of parameters Θ̂0, the EM algorithm then alternates between the expectation

step (E-step), which computes the Q-function Qy(Θ|Θ̂k) conditioning on the pa-

rameters Θ̂k of the kth iteration, and the maximization step (M-step), which up-

dates the parameters by maximizing the Q-function Θ̂k+1 = argmaxΘQy(Θ|Θ̂k).

For our problem, we carry out the E-step using the standard Kalman filter

and smoother (Ghahramani and Hinton (1996)). For the M-step, the maximizer

A of Qy(Θ|Θ̂k) satisfies (T − 1)−1
∑T−1

t=1 Et,t+1;k = {(T − 1)−1
∑T−1

t=1 Et,t;k}A>,

where Et,s;k = E{xtx>s |{yl}Tl=1, Θ̂k−1}, for s, t ∈ [T ], is obtained from the E-step.

The standard EM algorithm directly inverts the matrix involving Et,t;k, which is

computationally challenging when the dimension p is high. In addition, it yields a

dense estimator of A∗, leading to a divergent statistical error. To overcome these

problems, we propose a sparse EM algorithm that deals with the high dimen-

sionality and produces a sparse estimate of the transition matrix. Specifically,

we consider a generalized Dantzig selector for the Yule–Walker equation (Candes

and Tao (2007)),

Âk = argmin
A∈Rp×p

‖A‖1,

such that

∥∥∥∥∥ 1

T − 1

T−1∑
t=1

Et,t+1;k −
1

T − 1

T−1∑
t=1

Et,t;kA
>

∥∥∥∥∥
max

≤ τk,
(2.1)

where τk ≥ 0 is the tolerance parameter that is tuned in a data-driven manner.

The optimization problem (2.1) is solved using linear programming in a row-by-

row parallel fashion. We next update the variance estimates as

σ̂2
η,k =

1

p(T − 1)

T−1∑
t=1

{
tr(Et+1,t+1;k)− tr

(
ÂkEt,t+1;k

)}
,

σ̂2
ε,k =

1

pT

T∑
t=1

{
y>t yt − 2y>t Et;k + tr(Et,t;k)

}
,

(2.2)

where Et;k = E{xt|{ys}Ts=1, Θ̂k−1}, for t ∈ [T ], and (2.2) comes from taking the

derivative on Qy(Θ|Θ̂k). We terminate the algorithm when the estimates are close
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Algorithm 1 Sparse EM algorithm for model (1.1).

Initialization: Θ̂0 = {Â0, σ̂
2
η,0, σ̂

2
ε,0}, and the iteration number k = 1.

repeat
1. E-step: Obtain Et;k, Et,t;k, and Et,t+1;k using the Kalman filter and smoothing,

conditional on {yt}t∈[T ] and Θ̂k−1.
2. M-step:

2.1. Compute Âk using (2.1).
2.2. Compute σ̂2

η,k and σ̂2
ε,k using (2.2).

3. Collect Θ̂k = {Âk, σ̂
2
η,k, σ̂

2
ε,k}, and set k = k + 1.

until the stopping criterion is met.

enough in two consecutive iterations, for example, min
{
‖Âk − Âk−1‖F , |σ̂η,k −

σ̂η,k−1|, |σ̂ε,k − σ̂ε,k−1|
}
≤ 10−3.

We summarize our sparse EM procedure in Algorithm 1.

2.2. Estimation consistency

We next establish the estimation precision for our sparse EM estimators,

which is required for subsequent global and simultaneous testing. The technical

assumptions and proof are relegated to the Supplementary Material.

Theorem 1. Suppose the following conditions hold:

(a) The initial parameter set Θ̂0 = {Â0, σ̂
2
η,0, σ̂

2
ε,0} lies in a local neighborhood of

Θ∗, satisfying Assumptions S1–S4 in the Supplementary Material.

(b) The number of iterations K satisfies K ≥ cdlog(Tp)e, for some constant

c > 0.

(c) The tolerance parameter τk in (2.1) satisfies τk = ck
√

log(p)/T , for some

positive constant ck, for all k ≤ K.

(d) The dimension of the time series p and the length of the series T satisfy

C log p ≤ T, for some positive constant C.

Then, the sparse EM estimator Θ̂K = {ÂK , σ̂
2
η,K , σ̂

2
ε,K} at the Kth iteration

satisfies the following: for any constant c0 > 0, there exist positive constants c1

to c5 such that the following events occur with probability at least 1− p−c0:

|σ̂2
ε,K − σ2

ε,∗| ≤ c1

√
log p

Tp
, |σ̂2

η,K − σ2
η,∗| ≤ c2

√
log p

Tp
,

‖ÂK −A∗‖max ≤ c3

√
log p

T
, ‖ÂK −A∗‖l∞ ≤ c4

(
log p

T

)1/4

,
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‖ÂK −A∗‖r,2 ≤ c5

(
log p

T

)3/8

.

We make some remarks. First, we require the initialization to be reasonably

close to the true parameter, as stated in condition (a). See Section S1 of the

Supplementary Material for further discussion. Second, after a sufficient number

of iterations k, we find that the errors of the sparse EM estimators are dominated

by the statistical error, which decays fast in terms of p and T . Finally, we observe

the “blessing of dimensionality”, because the errors of σ2
ε,∗ and σ2

η,∗ decrease when

the dimension p grows under a fixed sample size T .

3. Test Statistic

We next construct a Gaussian matrix as our test statistic for the transition

matrix inference in our high-dimensional VAR with measurement errors. From

model (1.1), we observe a time series of yt that follows an autoregressive structure,

yt+1 = A∗yt + et, with the error term et = −A∗εt + εt+1 + ηt. Then, the lag-1

auto-covariance of the error et is of the form

Σe = Cov(et, et−1) = −σ2
ε,∗A∗.

This equality leads to a key observation that we can apply the covariance testing

methods on Σe to infer the transition matrix A∗. However, et is not observed

directly. Define the generic estimators of Θ∗ by {Â, σ̂2
ε , σ̂

2
η}. We use these to

reconstruct this error, and obtain the sample lag-1 auto-covariance estimator

Σ̂e =
1

T − 2

T−1∑
t=2

êtê
>
t−1, where êt = yt+1 − Âyt −

1

T − 1

T−1∑
s=1

(ys+1 − Âys).

Nevertheless, this sample estimator Σ̂e involves some bias due to the reconstruc-

tion of the error term, and an inflated variance due to the temporal dependence

of the time series data. We next explicitly quantify the bias and variance by

characterizing the nonasymptotic behavior of Σ̂e, which eventually leads to our

Gaussian matrix test statistic.

Denote the maximal row-wise `1 estimation error as ∆1 = ‖A∗ − Â‖`∞ , and

the maximal row-wise Euclidean estimation error as ∆2 = ‖A∗−Â‖r,2. The next

proposition characterizes the nonasymptotic behavior of Σ̂e.

Proposition 1. For any constant c > 0, there exist positive constants c1, c2, and

c3, such that, when T ≥ c1 log p,
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P

{∥∥∥∥Σ̂e + (σ2
η,∗ + σ2

ε,∗)Â− σ2
η,∗A∗ −

1

T − 2

T−1∑
t=2

(
ete
>
t−1 − Eete

>
t−1

)∥∥∥∥
max

≤ c2

(
∆1sr

√
log p

T
+ ∆2

2 +
log p

T

)}
≥ 1− c3p

−c,

where sr = maxi∈[p] |{j : A∗,ij 6= 0}| is the maximal row-wise sparsity of A∗.

This proposition suggests using (
√
T − 2)Σ̂e to construct the test statistic, be-

cause (T − 2)−1/2
∑T−1

t=2

(
ete
>
t−1 − Eete

>
t−1

)
converges to a zero-mean Gaussian

matrix, by the central limit theorem. The max norm error of the sparse EM esti-

mator ÂK implies that the nonvanishing bias of (
√
T − 2)Σ̂e is

√
T − 2{−(σ2

η,∗+

σ2
ε,∗)Â+σ2

η,∗A∗}, which can be estimated by
√
T − 2{−(σ̂2

η+σ̂2
ε )Â+σ̂2

ηA0} under

the null hypothesis. Then, after the bias correction and some direct calculation

of the entry-wise variance of (T −2)−1/2
∑T−1

t=2

(
ete
>
t−1 − Eete

>
t−1

)
, the entry-wise

limit variance of (
√
T − 2)Σ̂e is

σ2
∗,ij =

(
σ2
ε,∗ + σ2

η,∗
)2

+ σ4
ε,∗A

2
∗,ij + 2σ4

ε,∗A∗,iiA∗,jj + σ4
ε,∗‖A∗,i:‖22‖A∗,j:‖22

+
(
σ4
ε,∗ + σ2

ε,∗σ
2
η,∗
) (
‖A∗,i:‖22 + ‖A∗,j:‖22

)
, i, j ∈ [p].

Plugging the estimators {Â, σ̂2
ε , σ̂

2
η} into the above equation, we obtain the corre-

sponding estimator σ̂2
ij . Note that one can use any generic estimators {Â, σ̂2

ε , σ̂
2
η}

to estimate the bias and variance of (
√
T − 2)Σ̂e. Later, we present sufficient

conditions on the estimation precision of the generic estimators to achieve the

desired theoretical properties of the inference. We then show that the sparse EM

estimators satisfy those conditions.

We now construct the Gaussian matrix test statistic H, with the entry

Hij =

∑T−1
t=2 {êt,iêt−1,j +

(
σ̂2
η + σ̂2

ε

)
Âij − σ̂2

ηA0,ij}√
T − 2 σ̂ij

, i, j ∈ [p].

Denote the estimation errors ∆ε = |σ̂2
ε − σ2

ε,∗|, ∆η = |σ̂2
η − σ2

η,∗| and ∆σ =

maxi,j∈[p] |σ̂2
ij −σ2

∗,ij |. The next theorem provides sufficient conditions that guar-

antee the asymptotic standard normality of Hij under the null.

Theorem 2. Suppose the following conditions hold:

(a) The estimation errors satisfy ∆1 = op
{
s−1
r (log p)−1/2

}
, ∆2 = op(T

−1/4),

∆ε = op(T
−1/2), ∆η = op(T

−1/2), and ∆σ = op(1).

(b) The dimension and length of the time series satisfy log p = o(T 1/2).
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Then, for all i, j ∈ [p], as p, T →∞, we have that∑T−1
t=2 {êt,iêt−1,j +

(
σ̂2
η + σ̂2

ε

)
Âij − σ̂2

ηA∗,ij}√
T − 2 σ̂ij

d→ N(0, 1).

Consequently, H serves as the test statistic for our inference procedures.

4. Transition Matrix Inference

4.1. Global inference

We first develop a testing procedure for the global hypotheses (1.2). The key

observation is that the squared maximum entry of a zero-mean normal vector

converges to a Gumbel distribution (Cai and Jiang (2011)). Specifically, we

construct the global test statistic as

GS = max
(i,j)∈S

H2
ij .

The next theorem states that the asymptotic null distribution of GS is Gumbel.

We again first state the sufficient conditions required for the generic estimators

{Â, σ̂2
ε , σ̂

2
η}, and then show later that the sparse EM estimators satisfy these

conditions.

Theorem 3. Suppose the following conditions hold:

(a) The estimation errors satisfy ∆1 = op
{

(sr log p)−1
}
, ∆2 = op

{
(T log p)−1/4

}
,

∆ε = op
{

(T log p)−1/2
}
, ∆η = op

{
(T log p)−1/2

}
, and ∆σ = op

{
(log p)−1

}
.

(b) The dimension and length of the time series satisfy log p = o
(
T 1/7

)
.

Then, under the global null hypothesis (1.2), for any S ⊆ [p]× [p], x ∈ R,

lim
|S|→∞

P
(
GS − 2 log |S|+ log log |S| ≤ x

)
= exp

{
−exp(−x/2)√

π

}
.

Note that condition (a) about the estimation consistency in Theorem 3 is stronger

than that in Theorem 2 for the asymptotic normality. This is because the Gumbel

convergence is built on the normality property, which needs to be guaranteed first.

Moreover, the rate log p = o
(
T 1/7

)
in condition (c) is needed to establish the

Gaussian approximation of the test statistic Hij while dealing with the temporal

dependence.

Based on Theorem 3, we define the asymptotic α-level test as

Ψα = 1
[
GS > 2 log |S| − log log |S| − log π − 2 log{− log(1− α)}

]
.
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We reject the global null if Ψα = 1.

Next, we study the asymptotic power of the test Ψα. Toward that end, we

introduce the following parameter class of alternatives:

A(c,S) =

{{
A∗, σ

2
η,∗, σ

2
ε,∗
}

: max
(i,j)∈S

σ2
η,∗δij

σ∗,ij
≥ c
√

log |S|
T

}
,

where δij = |A∗,ij−A0,ij | is the distance between the null and the true transition

matrix. The class A(c,S) requires that at least one entry in S has a proper signal-

to-noise ratio against the null. Note that this is a very large class, because the

imposed magnitude
√

log |S|/T is vanishing and it requires satisfying one entry

only. The next theorem shows that Ψα has power converging to one uniformly

over A(2
√

2,S). Together, Theorems 3 and 4 establish the asymptotic size and

power, and thus the consistency of the global test Ψα.

Theorem 4. Suppose the same conditions in Theorem 3 hold. Then,

inf
{A∗,σ2

η,∗,σ
2
ε,∗}∈A(2

√
2,S)

P(Ψα = 1)→ 1, as |S| → ∞.

Next, we show that adopting the sparse EM estimators developed in Section 2

to construct the tests yields the same results as those in Theorems 3 and 4. Recall

that the sparse EM estimators at iteration K are denoted as {ÂK , σ̂
2
η,K , σ̂

2
ε,K}.

Plugging in these estimators yields the corresponding sparse EM estimator σ̂2
ij,K

of σ2
∗,ij . Denote the global test statistic and the α-level test based on these

estimators as GS,sEM and Ψα,sEM, respectively. The next proposition establishes

their size and power properties. The conditions for this proposition essentially

combine those of Theorems 1 and 3. The new condition on the row-wise sparsity

allows sr to diverge with T .

Proposition 2. Suppose the following conditions hold:

(a) Suppose conditions (a), (b), and (c) of Theorem 1 hold.

(b) Suppose log p = o(T 1/7) and s4
r log5 p = o(T ).

Then, under the global null hypothesis (1.2), for any S ⊆ [p]× [p], x ∈ R,

lim
|S|→∞

P
(
GS,sEM − 2 log |S|+ log log |S| ≤ x

)
= exp

{
−exp(−x/2)√

π

}
,

inf
{A∗,σ2

η,∗,σ
2
ε,∗}∈A(2

√
2,S)

P(Ψα,sEM = 1)→ 1, as |S| → ∞.
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Algorithm 2 Simultaneous inference with FDR control.

1. Calculate Hij , for all (i, j) ∈ S.
2. Compute the thresholding value

t̂ = inf

{
0 < t ≤

√
2 log |S| : {2− 2Φ(t)}|S|

RS(t) ∨ 1
≤ β

}
.

If t̂ does not exist, set t̂ =
√

2 log |S|.
3. For all (i, j) ∈ S, reject H0;ij if |Hij | > t̂.

4.2. Simultaneous inference with FDR control

We next develop a testing procedure for the simultaneous hypotheses (1.3)

with a proper FDR control. Let H0 = {(i, j) : A∗,ij = A0,ij , (i, j) ∈ S} denote

the set of true null hypotheses, and H1 = {(i, j) : (i, j) ∈ S, (i, j) /∈ H0} denote

the set of true alternatives. The test statistic Hij follows a standard normal

distribution when H0;ij holds, and as such, we reject H0;ij if |Hij | > t for some

thresholding value t > 0. Let RS(t) =
∑

(i,j)∈S 1{|Hij | > t} denote the number

of rejections at t. Then, the false discovery proportion (FDP) and the FDR in

our simultaneous testing problem are

FDPS(t) =

∑
(i,j)∈H0

1{|Hij | > t}
RS(t) ∨ 1

and FDRS(t) = E {FDPS(t)} .

An ideal choice of the threshold t rejects as many true positives as possible, while

controlling the FDR at the prespecified level β. That is, we choose inf{t > 0 :

FDPS(t) ≤ β} as the threshold. However, H0 in FDPS(t) is unknown. Observing

that P(|Hij | > t) ≈ 2{1−Φ(t)}, by Theorem 2, where Φ(·) is the cumulative distri-

bution function of a standard normal distribution, we estimate the false rejections∑
(i,j)∈H0

1{|Hij | > t} in FDPS(t) using {2−2Φ(t)}|S|. Moreover, we restrict the

search of t to the range (0,
√

2 log |S|], because P(t̂ exists in (0,
√

2 log |S|])→ 1,

as we show later in the proof of Theorem 5. We summarize our simultaneous

testing procedure in Algorithm 2.

Next, we study the asymptotic FDR control of Algorithm 2.

Assumption 1. Suppose there exist positive constants u1 and u2, such that∣∣∣∣{(i, j) : (i, j) ∈ H1,
σ2
η,∗δij

σ∗,ij
> (4 + u1)

√
log p

T

}∣∣∣∣ ≥ u2

√
log log |S|.

In addition, suppose |H0| ≥ c1|S|, for some positive constant c1.
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This assumption requires that the number of alternatives cannot be too small.

Otherwise,
∑

(i,j)∈H0
1{|Hij | > t} ≈ RS(t), for any t, and the resulting FDR is

close to one, regardless the thresholding value. This requirement is rather mild,

because the required number is the logarithm of the logarithm of |S|. Liu and

Shao (2014) showed that this is nearly necessary, in that the FDR control for

large-scale simultaneous testing fails if the number of true alternatives is fixed.

In addition, this assumption requires that the number of nulls cannot be too

small, which again is a mild condition.

Assumption 2. For some constants 0 < v < (1− σ̄)/(1 + σ̄), γ > 0, and u > 0,

suppose
∣∣{{(i1, j1), (i2, j2)} : |σ̃i1j1,i2j2 | > (log |S|)−2−γ ; (i1, j1) 6= (i2, j2); (i1, j1),

(i2, j2) ∈ H0

}∣∣ ≤ u |S|1+v, where σ̃i1j1,i2j2 is the limit covariance between Hi1j1

and Hi2j2, for (i1, j1) 6= (i2, j2) ∈ S, and σ̄ = max(i1,j1) 6=(i2,j2);(i1,j1),(i2,j2)∈H0

|σ̃i1j1,i2j2 |.

This assumption bounds the number of strongly correlated entries in the null

hypotheses. The bound |S|1+v is weak, because there are |S|2 pairs in total, the

majority of which are allowed to be strongly correlated. A similar assumption is

adopted in Xia, Cai and Cai (2018) to ensure the FDR control consistency. The

explicit expression of σ̃i1j1,i2j2 is given in the proof of Theorem 5.

The next theorem shows that the simultaneous testing procedure in Algo-

rithm 2 controls both the FDR and the FDP. We again first state the sufficient

conditions required for any estimators {Â, σ̂2
ε , σ̂

2
η}, and then show that the sparse

EM estimators satisfy these conditions.

Theorem 5. Suppose the following conditions hold:

(a) Suppose Assumptions 1 and 2 hold.

(b) The estimation errors satisfy the precisions in (a) of Theorem 3.

(c) The dimension and length of the time series satisfy p ≤ T c2 , for some c2 > 0.

Then, for the simultaneous hypotheses (1.3), for any S ⊆ [p]× [p],

lim
|S|→∞

FDRS( t̂ )

β|H0|/|S|
= 1, and

FDPS( t̂ )

β|H0|/|S|
p→ 1 as |S| → ∞.

Compared with the global testing, the estimation consistency condition (b) re-

mains the same for the simultaneous testing. However, the simultaneous testing

places some additional requirements on the numbers of nulls and alternatives, as

in Assumption 1, the entry dependence, as in Assumption 2, and the trade-off
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between p and T , as in (c). These requirements are reasonable because, intu-

itively, global testing deals only with the maximum entry, whereas simultaneous

testing tackles every individual entry. As such, simultaneous testing relies more

on the dependence structure among the entries, and needs a larger sample size

than global testing does. Finally, the slight deflation β|H0|/|S| in the limiting

FDR comes from substituting |H0| with |S| in the false rejection approximation.

Next, we show that, when employing the sparse EM estimators in Section 2,

we can obtain the same properties as those in Theorem 5.

Proposition 3. Suppose the following conditions hold:

(a) Suppose Assumptions 1 and 2 hold.

(b) Suppose conditions (a), (b), and (c) of Theorem 1 hold.

(c) Suppose |H0| ≥ c1|S|, for some positive constant c1.

(d) Suppose s4
r log5 p = o(T ) and p ≤ T c2, for some positive constant c2.

Then, for the simultaneous hypotheses (1.3), for any S ⊆ [p]× [p],

lim
|S|→∞

FDRS( t̂ )

β|H0|/|S|
= 1, and

FDPS( t̂ )

β|H0|/|S|
p→ 1 as |S| → ∞.

The conditions for this proposition combine those of Theorems 1 and 5. The

requirement on the sparse EM algorithm is the same as that for global testing.

5. Simulations

5.1. Setup

We carry out intensive simulations to study the finite-sample performance of

our proposed method. We generate the data following model (1.1), and consider

four common network structures for the transition matrix A∗: banded, Erdös–

Rényi, stochastic block, and hub, as shown in Figure 1. We first fix σε,∗ = ση,∗ =

0.2 and ‖A∗‖2 = 0.97, and vary the dimension and sample size (p, T ) = (30, 500),

(50, 500), (50, 1000), (70, 1000), where p2 > T . Next, we fix p = 50, T = 1000,

and σε,∗ = ση,∗ = 0.2, and vary the signal strength ‖A∗‖2 = 0.7, 0.8, 0.9, 0.97.

Finally, we fix p = 50, T = 1000, and ‖A∗‖2 = 0.97, and vary the noise level

(σε,∗, ση,∗) = (0.2, 0.2), (0.3, 0.3), (0.4, 0.4), (0.5, 0.5).

5.2. Parameter estimation

We first report the estimation accuracy of our sparse EM. We tune the tol-

erance parameter τk in (2.1) by minimizing the average prediction error of the
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Figure 1. Structures of the transition matrix A∗. Dots represent nonzero entries.

testing samples, where we use the first 25% of the data points for testing and the

last 60% for training, and the middle 15% are discarded to reduce the temporal

dependence between the training and testing samples. We initialize the transition

matrix to 0.1Ip, and the error variances to 1×10−5. We experimented with other

initializations in Section S4.2 of the Supplementary Material, and found that the

results are relatively stable. We also found that our algorithm converges fast,

usually within 10 iterations.

We compare our method with three alternative solutions, namely the stan-

dard EM without a sparsity constraint, the Lasso estimator (Hsu, Hung and

Chang (2008)), and the Dantzig estimator (Han, Lu and Liu (2015)). The lat-

ter two methods were designed for a VAR without measurement errors. We

evaluate the estimation accuracy using the Frobenius error
∥∥Â −A∗

∥∥
F

. Figure

2 reports the average estimation accuracy out of 200 data replications for the

varying (p, T ), signal strength ‖A∗‖2, and noise level (σε,∗, ση,∗). The proposed

sparse EM achieves the smallest estimation error across all settings. Moreover,

our method shows similar and relatively robust performance across different net-

work structures.

5.3. Global and simultaneous inferences

We next evaluate the performance of our global and simultaneous inference

procedures. The alternative matrix is of the form A∗ + C, where the (i, j)th

entry of C is 20(σ∗,ij/σ
2
η,∗)
√

log |S|/T , and the rest are zero. The positions of

the nonzero entries are sampled randomly in each data replication. Table 1 re-

ports the empirical size and power of the global inference, based on 200 data

replications, with the significance level set at α = 5%. In general, our global test

maintains a reasonable control of the size, while achieving good power. Table 2

reports the average FDP and the average true positive rate for the simultaneous

inference, based on 200 data replications, with the FDR level set to 5%. Here,

our simultaneous test achieves both a high true positive rate and a low FDP
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Figure 2. Frobenius estimation error of the transition matrix A∗ for four network struc-
tures, and varying (p, T ) (top row), signal strength ‖A∗‖2 (middle row), and noise level
(σε,∗, ση,∗) (bottom row). Four methods are compared: the proposed sparse EM (solid
line), the standard EM (dotted line), the Lasso estimator (dot-dashed line), and the
Dantzig estimator (dashed line).

in all cases. We compare our simultaneous inference with some sparse estima-

tion solutions in Section S4.1 of the Supplementary Material, and show that our

method achieves competitive performance. We also present an additional simu-

lation example to investigate the empirical size of our test in Section S4.3 of the

Supplementary Material.

6. Brain Connectivity Analysis

We illustrate the proposed method using data from a brain connectivity

study based on task-evoked fMRI. The data are part of the Human Connectome

Project (HCP, Van Essen et al. (2013)), the overarching objective of which is

to understand the brain connectivity patterns of healthy adults. We study the

fMRI scans of two individual subjects of the same age and sex, both of whom

participate in the same story math task. The task consists of blocks of auditory

stories and addition-subtraction calculations, and requires the participant to an-
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Table 1. Empirical size and power, in percentage, of the global test for four network
structures, while varying (p, T ) (left column), the signal strength ‖A∗‖2 (middle col-
umn), and the noise level (σε,∗, ση,∗) (right column). The standard errors are shown in
parentheses.

(p, T ) Size Power ‖A∗‖2 Size Power (σε,∗, ση,∗) Size Power

banded (30,500) 2.5 88.5 0.7 7 79.5 (0.2,0.2) 5.5 91.0

(0.16) (0.32) (0.26) (0.40) (0.23) (0.29)

(50,500) 3.5 86.5 0.8 6.5 84.0 (0.3,0.3) 5.5 100

(0.18) (0.34) (0.25) (0.37) (0.23) (0)

(50,1000) 5.5 91.0 0.9 5.5 89.0 (0.4,0.4) 5 100

(0.23) (0.29) (0.23) (0.31) (0.22) (0)

(70,1000) 1.5 92.5 0.97 5.5 91.0 (0.5,0.5) 5.5 100

(0.12) (0.26) (0.23) (0.29) (0.23) (0)

Erdös-Rényi (30,500) 3.5 89.0 0.7 1.5 80.5 (0.2,0.2) 1.5 92.5

(0.18) (0.31) (0.12) (0.40) (0.12) (0.26)

(50,500) 4 93.5 0.8 1.5 87.0 (0.3,0.3) 1 100

(0.2) (0.25) (0.12) (0.34) (0.1) (0)

(50,1000) 1.5 92.5 0.9 1 91.0 (0.4,0.4) 1 100

(0.12) (0.26) (0.1) (0.29) (0.1) (0)

(70,1000) 3.5 91.0 0.97 1.5 92.5 (0.5,0.5) 1.5 100

(0.18) (0.29) (0.12) (0.26) (0.12) (0)

stochastic block (30,500) 3 90.0 0.7 3 81.5 (0.2,0.2) 3.5 92.0

(0.17) (0.30) (0.17) (0.39) (0.18) (0.27)

(50,500) 4 86.0 0.8 3.5 86.0 (0.3,0.3) 3.5 100

(0.2) (0.35) (0.18) (0.35) (0.18) (0)

(50,1000) 3.5 92.0 0.9 3.5 89.0 (0.4,0.4) 3 100

(0.18) (0.27) (0.18) (0.31) (0.17) (0)

(70,1000) 3 91.0 0.97 3.5 92.0 (0.5,0.5) 3.5 100

(0.17) (0.29) (0.18) (0.27) (0.18) (0)

hub (30,500) 3 86.5 0.7 5.5 76.5 (0.2,0.2) 4 87.0

(0.17) (0.34) (0.23) (0.43) (0.2) (0.34)

(50,500) 2.5 88.5 0.8 5 80.5 (0.3,0.3) 4 100

(0.16) (0.32) (0.22) (0.40) (0.2) (0)

(50,1000) 4 87.0 0.9 5 84.5 (0.4,0.4) 4 100

(0.2) (0.34) (0.22) (0.36) (0.2) (0)

(70,1000) 3.5 87.0 0.97 4 87.0 (0.5,0.5) 5.5 100

(0.18) (0.34) (0.2) (0.34) (0.23) (0)

swer a series of questions. An accuracy score is given at the end based on the

participant’s answers. The performance of the two subjects differs considerably,

with one achieving a perfect score and the other getting only about half correct.

We aim to estimate and infer the brain connectivity networks of the two sub-

jects, and then to compare them. We pre-process the fMRI data following the

pipeline of Glasser et al. (2013). The resulting data for each subject comprise

p = 264 time series, corresponding to 264 brain regions of interest, following the
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Table 2. Average false discovery proportion (FDP) and true positive rate (TPR), in
percentage, of the simultaneous test for four network structures, while varying (p, T )
(left column), the signal strength ‖A∗‖2 (middle column), and the noise level (σε,∗, ση,∗)
(right column). The standard errors are shown in parentheses.

(p, T ) FDR TPR ‖A∗‖2 FDR TPR (σε,∗, ση,∗) FDR TPR

banded (30,500) 4.44 73.72 0.7 4.96 71.85 (0.2,0.2) 4.22 92.27

(0.03) (0.05) (0.03) (0.05) (0.02) (0.02)

(50,500) 3.83 67.48 0.8 4.78 82.58 (0.3,0.3) 4.21 92.24

(0.02) (0.05) (0.02) (0.04) (0.02) (0.02)

(50,1000) 4.22 92.27 0.9 4.44 88.91 (0.4,0.4) 4.19 92.25

(0.02) (0.02) (0.02) (0.03) (0.02) (0.02)

(70,1000) 3.78 88.54 0.97 4.22 92.27 (0.5,0.5) 4.2 92.19

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

Erdös-Rényi (30,500) 4.05 75.66 0.7 4.69 70.94 (0.2,0.2) 3.93 97.21

(0.03) (0.07) (0.02) (0.05) (0.02) (0.02)

(50,500) 3.9 65.83 0.8 4.51 87.21 (0.3,0.3) 3.94 97.19

(0.02) (0.05) (0.02) (0.03) (0.02) (0.02)

(50,1000) 3.93 97.21 0.9 4.14 94.5 (0.4,0.4) 3.92 97.16

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

(70,1000) 4.18 91.42 0.97 3.93 97.21 (0.5,0.5) 3.99 97.19

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

stochastic block (30,500) 4.16 74.2 0.7 4.88 66.87 (0.2,0.2) 4.3 89.56

(0.03) (0.05) (0.03) (0.04) (0.02) (0.03)

(50,500) 3.68 61.16 0.8 4.81 79.01 (0.3,0.3) 4.27 89.53

(0.02) (0.05) (0.02) (0.04) (0.02) (0.02)

(50,1000) 4.3 89.56 0.9 4.54 86.17 (0.4,0.4) 4.27 89.54

(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

(70,1000) 3.94 84.6 0.97 4.3 89.56 (0.5,0.5) 4.26 89.47

(0.02) (0.02) (0.02) (0.03) (0.02) (0.02)

hub (30,500) 4.43 80.93 0.7 4.73 64.95 (0.2,0.2) 4.34 95.37

(0.03) (0.05) (0.03) (0.06) (0.02) (0.02)

(50,500) 3.6 59.05 0.8 4.68 81.64 (0.3,0.3) 4.36 95.38

(0.02) (0.06) (0.02) (0.04) (0.02) (0.02)

(50,1000) 4.34 95.37 0.9 4.53 91.66 (0.4,0.4) 4.32 95.34

(0.02) (0.02) (0.02) (0.03) (0.02) (0.02)

(70,1000) 4.48 77.16 0.97 4.34 95.37 (0.5,0.5) 3.56 95.46

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02)

brain atlas of Power et al. (2011). The length of each time series is T = 316. The

264 brain regions are further grouped into 14 functional modules (Smith et al.

(2009)): auditory (AD), cerebellar (CR), cingulo-opercular task control (CO), de-

fault mode network (DMN), dorsal attention (DAT), fronto-parietal task control

(FP), memory retrieval (MR), salience (SA), sensory/somatomotor hand (SMH),

sensory/somatomotor mouth (SMM), subcortical (SC), uncertain (UN), ventral

attention (VA), and visual (VS). Each module possesses a relatively autonomous
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Figure 3. Heatmaps of the identified brain connectivity patterns for the high-accuracy
subject (left column) and low-accuracy subject (right column). The fourteen functional
modules are indicated by the blocks (bottom row). From top left block to bottom right
block along diagonal are SC, MR, VS, CO, SA, DM, AD, FP, CR, DAT, SMH, SMM,
UN, and VA. The eight modules that demonstrate the most within-module connections
are highlighted and amplified (top row). The colored entries indicate the selected connec-
tions, and the color scale ranges from blue (negative statistics) to red (positive statistics).

functionality, and complex brain tasks are believed to be performed by coordi-

nated collaborations among the modules.

We apply the proposed tests and verify that, for these data, the key model

assumptions hold reasonably well; see Section S4.4 of the Supplementary Material

for more details. We begin with the global test for each subject separately. The p-

values for the global test for both subjects are smaller than 10−15, indicating that

at least one pair of brain regions have statistically significant connectivity. We

then apply the simultaneous test, with the FDR set to 0.001. First, we identify

more within-module connections than we do between-module connections (294

out of 7,700, or 3.8%, versus 961 out of 61,936, or 1.6%, for the high-accuracy

subjects, and 376 out of 7,700, or 4.9%, versus 1,350 out of 61,936, or 2.2%, for
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Figure 4. Visualization of the identified brain regions and the within-module connections
of the high-accuracy and low-accuracy subjects for the eight functional modules.

the low-accuracy subjects). The partitioning of the brain regions into the func-

tional modules is based fully on biological knowledge, and our finding lends some

numerical support to this partition. Second, the majority of the within-module

connections are concentrated on eight functional modules. Moreover, when com-
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paring the two subjects between the modules, we find that the high-accuracy

subject has more within-module connections than the low-accuracy subject does

for the following functional modules: visual (118 versus 27 out of 961), salience

(29 versus 11 out of 324), cingulo-opercular task control (17 versus 3 out of 196),

and memory retrieval (6 versus 2 out of 25) modules. These findings suggest

that the high-accuracy subject exhibits more intensive neural activities for pro-

cessing visual imagery, memory retrieval, tonic alertness, and executive control

when performing the story math task, which agrees with findings in the literature

(Sadaghiani and D’Esposito (2015); Luo et al. (2014)). On the other hand, we find

that the high-accuracy subject has fewer connections than the low-accuracy sub-

ject does for the following functional modules: default mode network (25 versus

200 out of 3,364), fronto-parietal task control (15 versus 37 out of 625), auditory

(2 versus 8 out of 169), and subcortical (19 versus 49 out of 169) modules. These

findings again agree with those in the literature, in that these modules are found

to be strongly associated with language- and reasoning-type tasks (Schultz and

Cole (2016), and the high-accuracy subject exhibits less brain activity interplay

related to auditory processing and mind wandering (van Praag et al. (2017)).

Figure 3 shows the identified connectivity patterns for the two subjects, and Fig-

ure 4 shows the corresponding brain regions visualized using BrainNet Viewer

(Xia, Wang and He (2013)).

7. Discussion

We have examined global and simultaneous inferences of a transition matrix

under the high-dimensional vector autoregression model with measurement er-

rors. There is no existing solution for this type of problem. Thus our proposal

is useful in scientific applications such as brain connectivity analysis. Our tech-

nical tools are of independent interest, and facilitate general inferences for other

models involving latent variables or correlated observations.

In Theorem 2, we establish the marginal asymptotic normal distribution for

each element of the transition matrix estimator. Furthermore, our model and reg-

ularity conditions ensure that the correlations among the entries of the transition

matrix are not overly strong. Thus we can perform both global and simultaneous

inferences for the entire transition matrix based on the marginal characteriza-

tion in Theorem 2. More specifically, for the global test, the spectral condition

‖A∗‖2 < 1 ensures that the correlations among the entries of the transition ma-

trix satisfy the eigenvalue condition of the Gumbel convergence for the maxima

of the joint distribution (Cai, Liu and Xia (2013)). For the simultaneous test, in
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addition to the spectral condition, Assumption 1 regulates the size of the null and

the alternative hypotheses, whereas Assumption 2 bounds the number of strongly

correlated entries in the nulls. Together, these conditions guarantee a sufficient

number of weakly dependent entries to ensure an accurate FDR cutoff estima-

tion. Note that Krampe, Kreiss and Paparoditis (2021) proposed a bootstrap

method for the global inference of a sparse VAR model without measurement

errors. They imposed a similar condition to ‖A∗‖2 < 1, along with some other

stronger conditions, to control the correlations among the entries of the transition

matrix.

Our numerical experiments show that our inference procedures work well

across a range of network structures. This robustness occurs because the inferen-

tial guarantees rely mainly on the row-wise sparsity, the estimation accuracy of

the transition matrix and the error variances, the spectral condition of A∗, and

the regularity conditions on the null and alternative hypotheses, as in Assump-

tions 1 and 2. Recall that the test statistic Hij is constructed from the sample

auto-covariance Σ̂e of the residual êt. Its deviation from the auto-covariance Σe

of the true error et is controlled by the row-wise sparsity sr and the sparse EM

estimation errors, as specified in Proposition 1. As long as we properly specify

the relations between the row-wise sparsity sr, dimension p, and number of time

points T , as in condition (b) of Proposition 2, or condition (c) of Proposition

3, and the sparse EM estimators of
{
A, σ2

ε , σ
2
η

}
are reasonably accurate, we can

obtain the asymptotic normality of the test statistic, and then the asymptotic

guarantees of the tests, regardless of any particular network structure for A∗.

We have focused on a lag-1 autoregressive structure. However, our pro-

posal can be extended in a relatively straightforward fashion to a more gen-

eral lag structure. Specifically, suppose the number of lags is d. Then, the

latent process in model (1.1) becomes xt =
∑d

l=1 Al,∗xt−l + ηt−1, and the prob-

lem of interest becomes one of testing A1,∗, . . . ,Ad,∗. This lag-d VAR model

can be equivalently rewritten as a lag-1 model, such that x̃t = Ã∗x̃t−1 + η̃t−1,

x̃t = (x>t , . . . ,x
>
t−d+1)> ∈ Rpd, η̃t = (η>t ,0

>
p , . . . ,0

>
p )> ∈ Rpd, and

Ã∗ =


A1,∗ A2,∗ . . . Ad,∗
Ip 0p×p . . . 0p×p

0p×p Ip . . . 0p×p
0p×p 0p×p . . . Ip


pd×pd

.

We can then apply our test to the first block row of Ã∗, which in turn tests

A1,∗, . . . ,Ad,∗.
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We have assumed a homoscedastic and independent error structure for both

error terms εt and ηt. This is essentially a trade-off. Under such an error struc-

ture, the individual variables in xt are still non-identically distributed and highly

correlated, given the autoregressive structure of the model. In applications such

as brain connectivity analysis, it is often reasonable to keep a simplified error

structure (Zhang et al. (2015)), and our real-data analysis yields reasonable find-

ings. In the VAR literature, more general error structures have been considered.

However, when estimating the transition matrix, no existing methods estimate

this error structure directly. In contrast, our inference hinges on a good estimate

of the error terms. A more general form of the error structure would introduce ad-

ditional unknown parameters, and requires a considerable amount of extra work

to characterize the estimation precision. We thus keep a simple error structure

in this work on statistical inference, and leave the more general form of the error

terms for future research.

In brain connectivity analysis, early experiments usually focused on a single

subject (Friston (2011)). However, data involving multiple subjects are becoming

more prevalent. Thus, it is of interest to extend our modeling framework to

include multiple subjects. The key is to capture subject-to-subject variability by

incorporating subject-specific covariates, while integrating common information

shared across different subjects. A full pursuit of this topic is beyond the scope

of this study, and so is left to future research.

Supplementary Material

The Supplementary Material contains the proofs of our theoretical results,

and additional numerical results.
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