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EXACT A-OPTIMAL DESIGNS FOR QUADRATIC REGRESSION

Fu-Chuen Chang and Yu-Rong Yeh

National Sun Yat-sen University

Abstract: For quadratic regression on [−1, 1], exact n-point A-optimal designs are

determined when n ≡ 0, 1, 3 (mod 4). Some conjectures for the exact A-optimal

designs when n ≡ 2 (mod 4) are stated. For the case [−a, a], a > 0, the properties of

exact A-optimal designs are discussed on grounds of an intensive numerical study.
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1. Introduction

Consider the quadratic regression model

y(x) = β0 + β1x + β2x
2, x ∈ [a, b],

and suppose that the experimenter takes n uncorrelated observations with ex-
pectation y(x1), . . . , y(xn) and variance σ2 > 0. Such a vector xn = (x1, . . . , xn)
is called an exact n-point design ξn. Denote

M(ξn) =


 µ0 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4


 ,

where µk =
∑n

i=1 xk
i /n, 0 ≤ k ≤ 4, and Ξn = {ξn : M(ξn) is nonsingular}. A

design ξn for which ni components are equal to ai, 1 ≤ i ≤ m, n1 + · · ·+nm = n,
will be denoted by

ξn =
(

a1 · · · am

n1 · · · nm

)
.

Note that ξn ∈ Ξn if and only if ξn has at least three different design points.
It is well known that for ξn ∈ Ξn the covariance matrix of the least

squares estimates β̂(ξn) = (β̂0(ξn), β̂1(ξn), β̂2(ξn))T for the parameter vector β =
(β0, β1, β2)T is given by

Cov(β̂(ξn)) =
σ2

n
M−1(ξn) =

σ2

n
(mij(ξn))0≤i,j≤2;

in particular, Var(β̂i(ξn)) = σ2

n mii(ξn), 0 ≤ i ≤ 2, and
∑2

i=0 Var(β̂i(ξn)) =
σ2

n tr M−1(ξn). The purpose of this note is to determine the n-point A-optimal
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design ξ∗n which minimizes the sum of variances of the estimators β̂i(ξn), i.e.

tr M−1(ξ∗n) = min
ξn∈Ξn

tr M−1(ξn).

In Section 2 we present the exact n-point A-optimal design for the case [a, b] =
[−1, 1].

The exact n-point D-optimal designs for quadratic regression were solved by
Gaffke and Krafft (1982). Some numerically approximate φp-optimal designs for
quadratic regression were studied by Preitschopf and Pukelsheim (1987). Con-
stantine, Lim and Studden (1987) derived a necessary condition for an exact
design to be admissible under the polynomial regression model. They showed
that Salaevskii’s conjecture (1966) holds true for cubic regression, but not for
quartic regression. Recently Krafft and Schaefer (1995) obtained the exact n-
point EMM-designs (Elfving-minimax designs) on the interval [−1, 1]. Imhof
(1996) independently obtained the exact n-point A-optimal designs for quadratic
regression when n = 4k − 1, 4k, 4k + 1 and n = 4k + 2 (k > 3).

2. n-Point A-Optimal Designs on [−1, 1]

We are going to prove the following theorem.

Theorem 2.1. Let n = 4k+q, k ∈ N and q ∈ {−1, 0, 1}. Then the exact n-point
A-optimal designs for quadratic regression on [−1, 1] are given by

ξ∗n =
(−1 0 1

k 2k − 1 k

)
if n = 4k − 1,

ξ∗n =
(−1 0 1

k 2k k

)
if n = 4k,

ξ∗n =
(−1 0 1

k 2k + 1 k

)
if n = 4k + 1.

Two lemmas will be needed in the proof of Theorem 2.1.

Lemma 2.2. If M and M̄ are positive definite matrices of the form

M =
(

M11 M12

M21 M22

)
and M̄ =

(
M11 0
0 M22

)

where M11 ∈ Rr×r and M22 ∈ Rs×s, then tr M−1 ≥ tr M̄−1, with equality if and
only if M12 = 0.

The proof of Lemma 2.2 follows easily from the fact that

tr M−1 = tr M−1
11 + tr AT

1 A1 + tr M−1
22 + tr AT

2 A2

≥ tr M−1
11 + tr M−1

22 ,
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where A1 =(M22−M21M
−1
11 M12)−1/2M21M

−1
11 and A2 =(M11−M12M

−1
22 M21)−1/2

M12M
−1
22 . For a reference of the inverse formula for a partitioned matrix, the

reader is referred to Graybill (1983), Theorem 8.2.1.

Lemma 2.3. Let Sn be the range of the first two moments of the n design
points on [0, 1], i.e. Sn = {(τ1, τ2)|τ1 =

∑n
i=1 zi/n, τ2 =

∑n
i=1 z2

i /n, zi ∈ [0, 1], i =
1, . . . , n}. Then Sn = {(τ1, τ2)|τ2

1 ≤ τ2 ≤ (k/n) + n(τ1 − k/n)2; k = �nτ1�} where
�α� is the greatest integer which is smaller than or equal to α.

Proof. Obviously one has 0 ≤ τ1 ≤ 1. Now fixing τ1 = τ0
1 , τ2 is a continuous

function defined in the intersection of [0, 1]n and the plane z1+z2+ · · ·+zn = nτ0
1

which is a convex region. Therefore, the intersection of Sn and the straight line
τ1 = τ0

1 is a segment of the straight line τ1 = τ0
1 . By Jensen’s inequality one gets

τ2 ≥ (τ0
1 )2 and equality can be obtained for z1 = z2 = · · · = zn = τ0

1 . Since τ2 is
convex, its maximum must be attained on the boundary of the domain. Suppose
that the maximizer has k components 1, then it has n− k− 1 components 0 and
one component x ∈ [0, 1]. From the relation τ0

1 = k/n + x/n and maxτ1=τ0
1

τ2 =
k/n + n(τ0

1 − k/n)2, Lemma 2.3 is proved.

Proof of Theorem 2.1. The proof of the case n = 4k is trivial because it is
well known that the approximate A-optimal design for quadratic regression on
[−1, 1] is given by ξ∗(±1) = 1/4, and ξ∗(0) = 1/2, (Pukelsheim and Torsney
(1991)). The proofs of the other two cases n = 4k ± 1 are similar. Thus, we will
only prove the case n = 4k− 1 and defer the proof for the case n = 4k + 1 to the
Appendix.

Note that tr M−1(ξn) is invariant in permutation of regressors. Therefore,
we may assume f(x) = (x, 1, x2)T , and the information matrix

M(ξn) =


 µ2 µ1 µ3

µ1 µ0 µ2

µ3 µ2 µ4


 .

Putting µ1 = µ3 = 0 in M , one gets

M̄(ξn) =


 µ2 0 0

0 µ0 µ2

0 µ2 µ4


 .

Take a square transformation z = x2 which transforms a design ξ on [-1,1] to
a design ηn on [0,1]. Then one has τ1 =

∑n
i=1 zi/n = µ2, and τ2 =

∑n
i=1 z2

i /n = µ4

where zi = x2
i , 1, . . . , n. Let

φ(τ1, τ2) = tr M̄−1(ξn) =
1
µ2

+
µ4 + 1
µ4 − µ2

2

=
1
τ1

+
τ2 + 1
τ2 − τ2

1

.
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From Lemma 2.2 one has tr M−1(ξn) ≥ tr M̄−1(ξn). To find the minimizer of
tr M−1(ξn) over Ξ, it suffices to show that there exists a design ξn such that
tr M−1(ξn) = min(τ1,τ2)∈Sn

φ(τ1, τ2) where the set Sn is given in Lemma 2.3 and
the plots of Sn when n = 5, 6, 7 and 8, are depicted in Figure 1.
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Figure 1. Moment set Sn on [0,1], for n = 5, 6, 7 and 8.

Note that the minimizer of φ(τ1, τ2) over Sn must occur on the arc ((m +
x)/n, (m + x2)/n), 0 ≤ x ≤ 1, by Lemma 2.3 and the fact that for a fixed τ1 and
τ2 ≥ τ2

1 , φ(τ1, τ2) decreases in τ2, and φ(τ, τ) = 2/[τ(1− τ)] decreases on (0, 1/2],
increases on [1/2, 1). Now we are going to prove that min(τ1,τ2)∈Sn

φ(τ1, τ2) =
φ(τ∗

1 , τ∗
2 ) where (τ∗

1 , τ∗
2 ) = (m/n,m/n) or ((m + 1)/n, (m + 1)/n).

Plugging (τ1, τ2) = ((m + x)/n, (m + x2)/n) into φ(τ1, τ2), one gets

ϕ(x) =
n[2mn + (n − m)x + (n + m − 1)x2 + x3]
(m + x)[m(n − m) − 2mx + (n − 1)x2]

,

and dϕ(x)/dx = g(x)/h(x), where

g(x) = n(−1 − 2m + 2n − n2)x4 + 2n(−m − 3m2 + n + 2mn − n2)x3

+2mn(−3m2 + 4n + mn − 3n2)x2 + 2m2n(m − m2 + 5n − n2)x

+m2n(m2 + 4mn − n2),

and h(x) = (m+x)2[m(n−m)− 2mx+(n− 1)x2]2 > 0. Substituting n = 4k− 1
and m = 2k − 1, one obtains

g(x) = −2(2k − 1)(4k − 1)2x4 − 4(3k − 1)(2k − 1)x3

+2(4k − 1)(2k − 1)(52k2 − 46k + 9)x2
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−4(2k − 1)2(4k − 1)(10k2 − 17k + 4)x

+4(2k − 1)2(4k − 1)(5k2 − 5k + 1),

and

d2

dx2
g(x) = −24(2k − 1)(4k − 1)2

[
x +

3k − 1
2(4k − 1)

]2

−2(2k − 1)(416k3 − 499k2 + 182k − 21) < 0, for all k ≥ 1.

Moreover, for any k ≥ 1, one has

g(0) = 4(2k − 1)2(4k − 1)(5k2 − 5k + 1) > 0

and g(1) = 4(1 − 4k)k2(−1 + 4k)(−3 + 10k) < 0.

It follows that on [0, 1], ϕ(x) is increasing first and then decreasing. Therefore,
one gets minx∈[0,1] ϕ(x) = ϕ(0) = ϕ(1) = (4k − 1)2/[k(2k − 1)]. Thus, for the
optimal moments one has µ2 = µ4 ∈ {(2k − 1)/n, 2k/n} and µ1 = µ3 = 0.
However µ2 = µ4 is only possible when x ∈ {−1, 0, 1}n and since µ1 vanishes, −1
and 1 must appear equally often in x. The proof of the statement is complete.

Remark. For the case n=4k+2, the technique used in the proof of Theorem 2.1
does not go through. On grounds of an intensive numerical study, one observes

that there are two optimal designs ξ∗n = (
−1 x0 1
k 2k + 1 k + 1

) and (
−1 −x0 1

k + 1 2k + 1 k
)

where x0 is the unique zero in (0, 1) of

p(x) = (1 + 2k)x4 − 4(1 + 2k)2x3 + 6(1 + 2k)x2 − 4(1 + 8k + 8k2)x + (1 + 2k).

This conjecture with k > 3 is proved by Imhof (1996).

Remark. From a numerical study, all of the n-point A-optimal designs on [a, b]
appear to have three support points and contain at least one end point. If the
design interval is [−a, a], a > 0, then the optimal designs seem to enjoy the
following interesting properties:
1. When a < a∗n, there is a unique symmetric optimal design supported at 0 and

±a, except for a few cases like n = 4k + 2.
2. When a > a∗n, there are two asymmetric optimal designs:

(
u v a

1 n − 2 1

)
and

(−a −v −u

1 n − 2 1

)
,

where −a < u < 0 < v < a and v < −u.
3. When a = a∗n, there are two optimal designs, a symmetric and an asymmetric

one.
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4. When a is close to a∗n and a < a∗n, the optimal designs have the form of

(
−a 0 a

1 n − 2 1
).

5. The numerical values of a∗n for some cases of n are given in Table 1 . One can
see that a∗n/n is greater than 1.135 and increases very slowly in n.

Table 1. Critical values a∗
n

n 3 4 5 6 7 8 9 10 20
a∗

n 3.405 4.608 5.876 7.174 8.486 9.807 11.133 12.461 25.804
a∗

n/n 1.135 1.151 1.175 1.196 1.212 1.226 1.237 1.246 1.290
n 30 40 50 60 70 80 90 100 200
a∗

n 39.171 52.542 65.915 79.289 92.663 106.038 119.413 132.787 266.528
a∗

n/n 1.306 1.306 1.318 1.321 1.324 1.325 1.327 1.328 1.333

A referee asked for the proofs of property 3 and the existence of limn→∞ a∗n/n.
Property 3 may be partially explained by properties 1-2 and the fact that
tr M−1(ξ∗n) is continuous in a if one scales the optimal design on [−an, an]
when an is close to a∗n to a design on [−a∗n, a∗n]. The proof of the existence
of limn→∞ a∗n/n seems to be impossible. More details on numerical results are
given in Chang and Yeh (1996).
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Appendix

Proof of the case n = 4k + 1 in Theorem 2.1.

Let dϕ(x)/dx = g(x)/h(x). If n = 4k + 1 and m = 2k, then

g(x) = −4k(1 + 4k)2x4 − 4k(1 + 4k)(1 + 6k)x3 + 4k(1 + 4k)(1 − 6k − 52k2)x2

+16k2(1 + 4k)(2 + 7k − 10k2)x + 4k2(1 + 4k)(−1 + 20k2),

and

d2

dx2
g(x) = −48k(1 + 4k)2

[
x +

1 + 6k
4(1 + 4k)

]2

+k(11 + 20k − 500k2 − 1664k3) < 0, for all k ≥ 1.

Moreover, for k ≥ 1, one has

g(0) = 4k2(1+4k)(−1+20k2) > 0 and g(1) = −4k(1+2k)2(1+4k)(1+5k) < 0.
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It follows that on [0, 1], ϕ(x) is increasing first and then decreasing. Thus,
one gets minx∈[0,1] ϕ(x) = ϕ(0) = ϕ(1) = (4k + 1)2/[k(2k + 1)]. Hence, the
optimal moments µ2 = µ4 ∈ {2k/n, (2k + 1)/n} and µ1 = µ3 = 0. However
µ2 = µ4 is only possible when x ∈ {−1, 0, 1}n and since µ1 vanishes, −1 and 1
must appear equally often in x. The assertion of the theorem is proved.
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