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Abstract: The problem of identifying and constructing optimal and e�cient block

designs for comparing several treatments in the presence of (possibly di�erent) linear
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1. Introduction

We consider the problem of comparing v treatments on experimental units

that are divided into b blocks of k units each. The units within each block

are equispaced over time or space. Aside from the treatment and block e�ects,

observations within blocks are also in
uenced by a trend. The problem is to

identify designs that are e�cient for these experiments.

Bradley and Yeh (1980) �rst studied the problem of constructing block de-

signs that are \trend-free". This was followed by several papers (see Lin and

Dean (1991) for a bibliography). A feature of the models in the existing litera-

ture is that the trend is assumed to be the same in each block. Even though it is

realistic in many experiments, this assumption may be di�cult to justify when

the blocks are substantially dissimilar. In agricultural experiments, for example,

the blocks may be located in �elds that are far apart, with di�erent fertility

gradients.

In this paper we consider models in which di�erent blocks can have di�er-

ent trends. Our goal is to identify e�cient designs for these models. Besides

considering trend-free designs, we also study the performance of binary designs.

The latter, it will be seen, are not trend-free. Nevertheless, binary designs are

important for at least two reasons. One is that these designs are expected to

perform well when the trend is weak or if there truly is a common trend in all

blocks. The other is the familiarity that experimenters have with binary designs

due to their wide usage.
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In Section 2 we state the model explicitly and derive the information matrix.

Optimal binary designs are identi�ed in Section 3 and optimal trend-free designs

in Section 4. In Section 5 we compute the e�ciency of optimal designs in Sections

3 and 4 in the class of all designs, as well as identify some optimal designs in the

latter class when k = 3.

2. The Model

A design determines the assignment of treatments to the periods within the

blocks. If a design d assigns treatment i (0 � i � v�1) to period ` (1 � ` � k) of

block j (1 � j � b), then we write d(`; j) = i. For the observation y`j at period

` of block j, we consider the model

y`j = �+ �d(`;j) + �j +

pjX
�=1

��(`)�j� + e`j (2:1)

where �; � and � are the treatment, block and trend parameters, respectively, ��

is the orthogonal polynomial of degree � on 1; � � � ; k and pj (0 � pj � k � 1) is

the degree of the trend in block j. The error e has the properties E(e`j) = 0,

var(e`j) = �
2
; cov(e`j ; e`0j0) = 0 if (`; j) 6= (`0; j0). The di�erence between (2.1)

and the model of Bradley and Yeh (1980, equation (2.3)) is that here the trend

parameter �j� depends on the block j.

A design d will be represented by a k�b array with entries from f0; 1; : : : ; v�

1g, the rows representing periods and the columns blocks. A design d is said to

be connected under model (2.1) provided all treatment di�erences of the form

�p � �q are estimable. Let

D(v; b; k) = fall k � b arrays with entries from f0; 1; : : : ; v � 1g

which are connectedg:

The model (2.1) is quite involved since it has several nuisance parameters. In this

paper we only consider a linear trend in each block, i.e. pj = 1 for all j = 1; : : : ; b.

Writing �j for �j1, the model reduces to:

y`j = �+ �d(`;j) + �j + �1(`)�j + e`j : (2:2)

Here �j is the slope of the trend line in block j. Though most of the results are

quite general, our principal focus is on experiments with k � v.

For d�D(v; b; k), let

�
i
`j = �

i
`j(d) =

�
1; if d(`; j) = i,

0; otherwise.
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Let ndij =
Pk

`=1 �
i
`j , sdi` =

Pb
j=1 �

i
`j , Nd = (ndij); a v � b matrix, rdi =

Pb
j=1 ndij

and Rd = diag(rd0; : : : ; rd;v�1). Further, let hdij =
Pk

`=1 �
i
`j�1(`) and Hd = (hdij),

a v�b matrix. Then it can be seen that the information matrix for the treatment

e�ects (�0; �1; : : : ; �v�1) is:

Cd = Rd � (1=k)NdN
0

d �HdH
0

d: (2:3)

If �j = 0 for j = 1; : : : ; b in (2.2), then the information matrix reduces to Cbd =

Rd� (1=k)NdN
0

d; the information matrix for the additive model with treatments

and blocks only. Hence

Cd = Cbd �HdH
0

d: (2:4)

Throughout the sequel, let HdH
0

d = Gd = (gdii0) where, for treatments i and i
0,

gdii0 =
Pb

j=1 hdijhdi0j :

We use the universal optimality criterion of Kiefer (1975) to derive optimal

designs in various subsets of D(v; b; k). A design d
� is universally optimal when-

ever Cd� is completely symmetric (c.s.) and trCd� is a maximum in the set of

designs under consideration. For a design d with c.s. Cd, we de�ne the e�ciency

of d as:

e(d) = trCd= max
d12D(v;b;k)

trCd1 (2:5)

Comment. The above measure is motivated by the following considerations.

We would like to de�ne e�ciency of a given design d as e0(d) = trC+
d0
= trC+

d

where A+ denotes the Moore-Penrose inverse of A and d0 minimizes trC+
do

over

d 2 D(v; b; k). It is easy to see that trC+
d0
� (v � 1)2= trCd0 � (v � 1)2= trCd1

where d1 maximizes trCd over d 2 D(v; b; k). Further, if Cd is c.s., trC+
d =

(v � 1)2= trCd. Thus

e0(d) = trC+
d0
= trC+

d � trCd= trCd1 = e(d)

and e(d) provides us with a lower bound for the true e�ciency e0(d). It is clearly

easier to obtain max trCd than min trC+
d .

3. E�cient Binary Designs

A design d is called binary if the block design (with columns as blocks) is

binary, i.e., ndij 2 f0; 1g for all i; j. Let

Db(v; b; k) = fd 2 D(v; b; k) : ndij 2 f0; 1g; i = 0; 1; : : : ; v � 1; j = 1; : : : ; bg:

We shall identify some designs in Db(v; b; k) that have a completely symmetric

information matrix with maximal trace, i.e. designs that are universally optimal

among binary designs.
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For a d 2 Db(v; b; k), it follows from (2.4) that

trCd = b(k � 1)� trGd = b(k � 1)�
v�1X
i=0

bX
j=1

(
kX

`=1

�
i
`j�

2
1(`))

= b(k � 1)�
v�1X
i=0

kX
`=1

sdi`�
2
1(`) = b(k � 2);

that is, designs in Db(v; b; k) have constant trCd.

One way to obtain a c.s. Cd is to choose a Balanced Incomplete Block (BIB)

design in Db(v; b; k) with c.s. Gd. This method has the advantage that it is model

robust in the sense that the design is highly e�cient when the trend is absent or

very weak. It is not clear whether or not this is the only way to obtain a d in

Db(v; b; k) with Cd c.s..

The diagonal entries gdii of Gd are equal if and only if

gdii = b=v; i = 0; 1; : : : ; v � 1; (3:1)

since trGd = b. Condition (3.1) is satis�ed whenever d is a Youden design, i.e., a

BIB design having each treatment occurring in each of periods 1; : : : ; k the same

number of times.

For i 6= i
0,

gdii0 =
bX

j=1

hdijhdi0j =
bX

j=1

kX
`=1

kX
`0=1

`0 6=`

�
i
`j�

i0

`0j�1(`)�1(`
0):

Let us de�ne

m
ii0

d``0 =
bX

j=1

�
i
`j�

i0

`0j ;

the number of columns of d that have i in row ` and i
0 in row `

0. Clearly,

gdii0 =
kX

`=1

kX
`<`0

�1(`)�1(`
0)[mii0

d``0 +m
ii0

d`0`]:

Since the row sums of Gd are zero, it follows from (3.1) that Gd is completely

symmetric if and only if

gdii0 = �b=(v(v � 1)) for i 6= i
0
: (3:2)

Lemma 3.1. A necessary condition for a BIB design in Db(v; b; k) to have a

c.s. Gd is:

bk(k2 � 1) �

�
0 (mod 3v(v � 1)); if k is even,

0 (mod 12v(v � 1)); if k is odd.
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Proof. If k is even, �1(`) = �
�

1(`)=(k(k
2 � 1)=3)1=2 with �

�

1(`) 2 Z, where

Z = f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g:

From (3.2) it follows that (b=(v(v � 1)))(k(k2 � 1)=3) 2 Z:

If k is odd, the result follows in the same way since �1(`) = �
�

1(`)=(k(k
2 �

1)=12)1=2 with �
�

1(`) 2 Z.

Example 3.1. Let v = 7 and k = 3. From Lemma 3.1 it follows that b �

0 (mod 21). A universally optimal design in Db(7; 21; 3) is:0
B@

1 2 3 4 5 6 0 4 5 6 0 1 2 3 2 3 4 5 6 0 1

2 3 4 5 6 0 1 1 2 3 4 5 6 0 4 5 6 0 1 2 3

4 5 6 0 1 2 3 2 3 4 5 6 0 1 1 2 3 4 5 6 0

1
CA :

We now give one well known method for constructing universally optimal

designs in classes Db(v; b; k). Let d be a BIB (v; b; r; k; �) design. The matrix Gd

is c.s., i.e. (3.2) is satis�ed, if for all ` 6= `
0, i 6= i

0,

m
ii0

d``0 +m
ii0

d`0` = �; (3:3)

a constant. Designs with property (3.3) were introduced by Rao (1961), who

called them \orthogonal arrays of type II", and later (Rao (1973)) renamed them

\semibalanced arrays". These are also related to \perpendicular arrays" of Lind-

ner (1988). It is easy to see that a design satisfying (3.3) is a BIB design with

columns as blocks. Semibalanced arrays have been used by several authors, such

as Morgan and Chakravarti (1988), Cheng (1988) and Martin and Eccleston

(1991) to design experiments with correlated observations. The design given in

Example 3.1 is a semibalanced array.

For construction of semibalanced arrays see Rao (1961) and Mukhopadhyay

(1972). It is known, for example, that when v or k is a power of a prime, these

arrays can be constructed. Here is an example.

Example 3.2. Let v = 5 and k = 4. The following is a semibalanced array

with m
ii0

d``0 +m
ii0

d`0` = 1 for all ` 6= `
0, i 6= i

0. Hence it is universally optimal in

Db(5; 10; 4).

1 2 2 3 3 4 4 0 0 1

2 4 3 0 4 1 0 2 1 3

3 1 4 2 0 3 1 4 2 0

4 3 0 4 1 0 2 1 3 2

At present, the authors do not know of any other optimal designs in classes

Db(v; b; k) which are not semibalanced arrays or permutations of semibalanced

arrays.
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4. E�cient Trend-Free Designs

A design d may be called trend-free if the presence of a trend results in no

loss of information, that is, Cd = Cbd. But from (2.4), this last equality occurs if

and only if for Hd = (hdij),

hdij = 0 for i = 0; 1; : : : ; v � 1; j = 1; : : : ; b: (4:1)

For the remainder of this paper, let

Dtf (v; b; k) = fd 2 D(v; b; k) : hdij = 0 for i = 0; 1; : : : ; v � 1; j = 1; : : : ; bg:

Condition (4.1) is the same as

kX
`=1

�
i
`j�1(`) = 0; i = 0; 1; : : : ; v � 1: (4:2)

Since �1(`) = c(`� (k + 1)=2) for a normalizing constant c,

kX
`=1

�
i
`j` = ndij(k + 1)=2:

Clearly, from this last expression, a binary design cannot be trend-free. A nec-

essary condition that d is trend-free is:

ndij(k + 1) � 0 (mod 2); i = 0; 1; : : : ; v � 1; j = 1; : : : ; b: (4:3)

A su�cient, though not necessary, condition for (4.2) is:

�
i
`j = �

i
(k�`+1);j ; ` = 1; : : : ; bk=2c; j = 1; : : : ; b; i = 0; 1; : : : ; v � 1 (4:4)

where bac denotes the greatest integer not exceeding a > 0:

For d 2 Dtf (v; b; k),

trCd = bk � (1=k)
bX

j=1

v�1X
i=0

n
2
dij:

To maximize the trace, therefore, one has to minimize
Pb

j=1

Pv�1
i=0 n

2
dij . We will

identify universally optimal designs in Dtf (v; b; k) separately for the two cases: k

even and k odd.

Case I: k even. For d 2 Dtf (v; b; k), it follows from (4.3) that ndij 2 f0; 2; 4; : : :g.

Clearly, d maximizes trCd if

ndij 2 f0; 2g; i = 0; 1; : : : ; v � 1; j = 1; : : : ; b:
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To get a c.s. Cd, it is su�cient to consider designs of the form d = (d1; d2)
T with

nd1ij = nd2ij 2 f0; 1g such that (4.4) holds for d and Cbd1 = (1=2)Cbd is c.s.. This

leads to the following theorem.

Theorem 4.1. Let k be even. Let d0 2 D(v; b; k=2) be any design such that

the columns form a BIB(v; b; r; k=2; �) design and let d
�1
0 be d0 with rows `

and (k=2) � ` + 1 interchanged for each ` = 1; : : : ; k=2. Then the k � b array

d
� = (d0; d

�1
0 )T is universally optimal in Dtf (v; b; k).

For the designs d� given in Theorem 4.1, we have

max
d2Dtf (v;b;k)

trCd = trCd� = 2 trCbd0 = 2b(k=2 � 1) = b(k � 2) = max
d2Db(v;b;k)

trCd:

Thus, the universally optimal trend-free and binary designs are equally e�cient

when k is even! The optimal trend-free design d
�, having fewer combinatorial

restrictions, is expected to exist more often than a universally optimal binary

design of Section 3. On the other hand, a binary design has some attractions,

such as model robustness, as we have mentioned in Sections 1 and 3.

Case II: k odd. Let k = 2q � 1.

Lemma 4.1. For k = 2q � 1, a design d in Dtf (v; b; k) has maximal trCd in

Dtf (v; b; k) if and only if for each j = 1; : : : ; b;

�
i
qj = 1) ndij = 1 and �

i
qj = 0) ndij 2 f0; 2g:

Proof. Since �1(q) = 0; (4.2) is:

q�1X
`=1

�
i
`j�1(`) +

kX
`=q+1

�
i
`j�1(`) = 0:

It follows that, for ` 6= q, if �i`j = 1, then ndij � 2, and if �iqj = 1, then ndij��
i
qj 2

f0; 2; : : : ; kg. Suppose �iqj = 1 and ndij � �
i
qj = t � 2. In column j, if we replace

symbol i in all rows except q by a symbol i0 which does not appear in column

j (we can do this since k � v), then the new column j has a smaller value ofPv
i=1 n

2
dij than the old column j since n2dij + n

2
di0j is 1 + t

2 in the new column j

but it is (1 + t)2 in the old column j and (1 + t)2 > 1 + t
2. Hence the lemma.

If we write d 2 Dtf (v; b; k) as d = (d1; d0; d2)
T , where d0 is 1� b, Nd1 = Nd2

and �
i
`j(d) = �

i
(k�`+1);j(d) for ` = 1; : : : ; q � 1, then Cd = Cbd = Rd � NdN

0

d =

Rd � (2Nd1 +Nd0)(2Nd1 +Nd0)
0. This leads to the following theorem.

Theorem 4.2. Let k = 2q�1. Let d1 2 D(v; b; q�1) be a design whose columns

form a BIB(v; b; r; q�1; �) design, and let d0 2 D(v; b; 1) be such that the columns
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of (d1
d0
) form a BIB(v; b; r0; q; �0) design. Let d�11 be d1 with rows ` and q � `

interchanged for each ` = 1; : : : ; q � 1. Then the k � b array d
� = (d1; d0; d

�1
1 )>

is universally optimal in Dtf (v; b; k).

Example 4.1. Let v = 7 and k = 3. The following design is optimal in

Dtf (7; 21; 3):0
B@

1 1 1 5 6 7 2 2 2 6 7 3 3 3 7 4 4 4 5 5 6

2 3 4 1 1 1 3 4 5 2 2 2 5 6 3 5 6 7 6 7 7

1 1 1 5 6 7 2 2 2 6 7 3 3 3 7 4 4 4 5 5 6

1
CA :

Example 4.2. Let v = 5 and k = 5. The following design is optimal in

Dtf (5; 10; 5): 0
BBBBB@

1 1 1 1 2 2 2 3 3 4

2 3 4 5 3 4 5 4 5 5

5 4 2 3 1 3 4 5 2 1

2 3 4 5 3 4 5 4 5 5

1 1 1 1 2 2 2 3 3 4

1
CCCCCA
:

When v � 3 (mod 4) is a prime power and k = v, there is a general method

for constructing designs of the type described in Theorem 4.2. For this case, it

is well known (c.f. Raghavarao (1971)) that the quadratic residues (mod v) form

a di�erence set. Let D be the complement of the quadratic residues in GF (v);

hence D is a (v; (v+1)=2; �) di�erence set. It can be shown that D0 = D�f0g is

a (v; (v�1)=2; ��1) di�erence set. In Theorem 4.2 take d1 to be the (v�1)=2�v

array with columns fD0 + x : x 2 GF (v)g and (d1
d0
) the (v + 1)=2 � v array with

columns fD + x : x 2 GF (v)g. Then the array d
� in Theorem 4.2 is optimal in

Dtf (v; v; v). (Taking copies of columns, this can be extended to Dtf (v; b; v) with

b � 0 (mod v)).

Example 4.3. Let v = k = 7. For these parameter values, we get the following

optimal design in Dtf (7; 7; 7):0
BBBBBBBBBB@

3 4 5 6 0 1 2

5 6 0 1 2 3 4

6 0 1 2 3 4 5

0 1 2 3 4 5 6

6 0 1 2 3 4 5

5 6 0 1 2 3 4

3 4 5 6 0 1 2

1
CCCCCCCCCCA
:

For a design d
� of Theorem 4.2,

max
d2Dtf (v;b;k)

trCd = trCd� = b(k � 2) + (b=k) > b(k � 2) = max
d2Db(v;b;k)

trCd:
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Thus, a universally optimal trend-free design is more e�cient than a universally

optimal binary design of Section 3 when k is odd.

5. E�ciency and Optimal Designs for k = 3

To get some idea of the e�ciency of designs in Sections 3 and 4, we �rst

determine an upper bound for trCd inD(v; b; k): Note that for any d1 2 D(v; b; k),

trCd1 < b(k � 1): (5:1)

The inequality in (5.1) is always strict since a binary design cannot be trend-free.

Nevertheless, this gives a (conservative) measure of the e�ciency of a design d.

It follows from (2.5), that e(d) > trCd=b(k�1): If d is a binary design, or d is an

optimal trend-free design in Dtf (v; b; k) with k even given by Theorem 4.1, then

e(d) > (k � 2)=(k � 1): (5:2)

If d is an optimal trend-free design in Dtf (v; b; k) with k odd given by Theorem

4.2, then

e(d) > (k � 1)=k: (5:3)

For large k it is evident from (5.2) and (5.3) that the optimal designs given

in Sections 3 and 4 are highly e�cient. When k is small we suspect that (5.2)

and (5.3) are overly conservative. For k = 3; we have the following theorem:

Theorem 5.1. For v � k = 3; the design d
� in Theorem 4:2 is universally

optimal in D(v; b; 3).

Proof. It can be shown by direct computation that trCd is maximized in

D(v; b; 3) if, for each j = 1; : : : ; b; there are two symbols i and i
0
; i 6= i

0
; such

that ndij = 2 and ndi0j = �
i0

2j = 1.

In general, however, an optimal trend-free design need not be optimal in

D(v; b; k) as the following example shows.

Example 5.1. For v = 7 and k = 4 consider two designs in D(7; 21; 4) :

d1 =

0
BBB@

0 1 3 1 2 4 2 3 5 4 3 6 5 4 0 6 5 1 0 6 2

3 0 1 4 1 2 5 2 3 3 6 4 4 0 5 5 1 6 6 2 0

1 3 0 2 4 1 3 5 2 6 4 3 0 5 4 1 6 5 2 0 6

0 1 3 1 2 4 2 3 5 4 3 6 5 4 0 6 5 1 0 6 2

1
CCCA ;

d2 =

0
BBB@

0 0 0 4 5 6 1 1 1 5 6 2 2 5 6 3 3 6 4 6 5

1 2 3 0 0 0 2 3 4 1 1 3 4 2 2 4 5 3 5 4 6

1 2 3 0 0 0 2 3 4 1 1 3 4 2 2 4 5 3 5 4 6

0 0 0 4 5 6 1 1 1 5 6 2 2 5 6 3 3 6 4 6 5

1
CCCA :
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Both Cd1 and Cd2 are c.s., d2 is universally optimal in Dtf (7; 21; 4), but trCd2 =

42 < 50:4 = trCd1 .

Comment. Throughout this paper we have been considering designs which are

connected under model (2.1). In general, one can always verify the connectedness

of a given design d 2 D(v; b; k) by checking to see if Cd has rank v � 1. There

is, to the best of the authors' knowledge, currently no simpler general method

available for determining whether or not a given design d 2 D(v; b; k) is con-

nected. However, if Cd is c.s., then d is connected unless Cd = 0. It is also easy

to see that a trend-free design is connected if and only if the corresponding block

design is connected. The study of connectedness for other types of designs needs

further attention.
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