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Abstract. The problem of identifying and constructing optimal and efficient block
designs for comparing several treatments in the presence of (possibly different) linear
trends within the blocks is studied. Special emphasis is on efficient designs within the
classes of binary and trend-free designs.

Key words and phrases: Binary designs, BIB design, difference set, semibalanced
array, trend-free designs, universally optimal designs, Youden design.

1. Introduction

We consider the problem of comparing v treatments on experimental units
that are divided into b blocks of k units each. The units within each block
are equispaced over time or space. Aside from the treatment and block effects,
observations within blocks are also influenced by a trend. The problem is to
identify designs that are efficient for these experiments.

Bradley and Yeh (1980) first studied the problem of constructing block de-
signs that are “trend-free”. This was followed by several papers (see Lin and
Dean (1991) for a bibliography). A feature of the models in the existing litera-
ture is that the trend is assumed to be the same in each block. Even though it is
realistic in many experiments, this assumption may be difficult to justify when
the blocks are substantially dissimilar. In agricultural experiments, for example,
the blocks may be located in fields that are far apart, with different fertility
gradients.

In this paper we consider models in which different blocks can have differ-
ent trends. Our goal is to identify efficient designs for these models. Besides
considering trend-free designs, we also study the performance of binary designs.
The latter, it will be seen, are not trend-free. Nevertheless, binary designs are
important for at least two reasons. One is that these designs are expected to
perform well when the trend is weak or if there truly is a common trend in all
blocks. The other is the familiarity that experimenters have with binary designs
due to their wide usage.
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In Section 2 we state the model explicitly and derive the information matrix.
Optimal binary designs are identified in Section 3 and optimal trend-free designs
in Section 4. In Section 5 we compute the efficiency of optimal designs in Sections
3 and 4 in the class of all designs, as well as identify some optimal designs in the
latter class when k& = 3.

2. The Model

A design determines the assignment of treatments to the periods within the
blocks. If a design d assigns treatment i (0 <4 < wv—1) to period £ (1 < ¢ < k) of
block j (1 < j <b), then we write d(¢, j) = 4. For the observation y,; at period
¢ of block 7, we consider the model

pj

Yo = 1+ Taeg) + B + D da()bia + € (2.1)

a=1

where 7, 8 and @ are the treatment, block and trend parameters, respectively, ¢,
is the orthogonal polynomial of degree @ on 1,---,k and p; (0 < p; <k —1) is
the degree of the trend in block j. The error e has the properties E(e;;) = 0,
var(es) = 0%, cov(ey,ep) =0 if (£,5) # (¢',7'). The difference between (2.1)
and the model of Bradley and Yeh (1980, equation (2.3)) is that here the trend
parameter 6;, depends on the block j.

A design d will be represented by a k x b array with entries from {0,1,...,v—
1}, the rows representing periods and the columns blocks. A design d is said to
be connected under model (2.1) provided all treatment differences of the form
T, — T, are estimable. Let

D(v,b, k) ={all k x b arrays with entries from {0,1,...,v — 1}

which are connected}.

The model (2.1) is quite involved since it has several nuisance parameters. In this
paper we only consider a linear trend in each block, i.e. p; = 1forallj =1,...,0b.
Writing 6; for 6;;, the model reduces to:

Yeoj = B+ Tageg) + B + ¢1(£)0; + ey (2.2)

Here 0, is the slope of the trend line in block j. Though most of the results are
quite general, our principal focus is on experiments with £ < v.

For deD(v, b, k), let

i i ]., lfd g, 1) = 'L‘,
0y; = 0¢;(d) = {0 (£,4)

otherwise.
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Let ng; = Sy, Of;» Saie = E;’-:l 045 Na = (naij), a v x b matrix, rq; = E;’-:l Naij
and R, = diag(rao, ..., Ta,—1). Further, let hg;; = S5, 6i;¢1(£) and Hy = (haij),
a v X b matrix. Then it can be seen that the information matrix for the treatment
effects (7o, 7y,...,7y_1) is:

If 6; =0 for j =1,...,bin (2.2), then the information matrix reduces to C,q =
R, — (1/k)N;N}, the information matrix for the additive model with treatments

and blocks only. Hence
Cd - de - HdHél (24)

Throughout the sequel, let H;H), = G4 = (g4:) where, for treatments 7 and 7',
Gdiir = E?:l haijhair -

We use the universal optimality criterion of Kiefer (1975) to derive optimal
designs in various subsets of D(v, b, k). A design d* is universally optimal when-
ever Cy. is completely symmetric (c.s.) and tr Cy- is a maximum in the set of
designs under consideration. For a design d with c.s. Cy, we define the efficiency
of d as:

e(d) =trCy/ dle%la)’(b’k) tr Cy, (2.5)
Comment. The above measure is motivated by the following considerations.
We would like to define efficiency of a given design d as ey(d) = trCy /tr Cf
where AT denotes the Moore-Penrose inverse of A and dy minimizes tr Cjo over
d € D(v,b,k). Tt is easy to see that trC; > (v —1)?/trCy, > (v —1)?/trCy,
where d; maximizes tr C; over d € D(v,b, k). Further, if C, is c.s., trCj =
(v —1)*/tr Cy. Thus

eo(d) =tr Cf /tr Cf > tr Cy/ tr Cy, = e(d)

and e(d) provides us with a lower bound for the true efficiency ey(d). It is clearly
easier to obtain max tr Cy than min trC; .

3. Efficient Binary Designs
A design d is called binary if the block design (with columns as blocks) is
binary, i.e., ng; € {0,1} for all 4, j. Let
Db(U,b,k) = {d € D(U,b,k) © Ngij € {0,1}, 1= 0,1,...,’0 — 1, ] = 1,,b}

We shall identify some designs in Dy(v, b, k) that have a completely symmetric
information matrix with maximal trace, i.e. designs that are universally optimal
among binary designs.
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For a d € Dy(v,b, k), it follows from (2.4) that

v—1 b k
trCy =b(k — 1) — tr Gy = b(k — 1) = 3. S (3 6,4 (£)
i=0 j=1 (=1
v—1 k
= Z de¢1 =b(k - 2),

i =1

I§
=)

that is, designs in Dy(v, b, k) have constant tr Cj.

One way to obtain a c.s. Cy is to choose a Balanced Incomplete Block (BIB)
design in Dy (v, b, k) with c.s. G4. This method has the advantage that it is model
robust in the sense that the design is highly efficient when the trend is absent or
very weak. It is not clear whether or not this is the only way to obtain a d in
Dy(v,b, k) with Cy c.s..

The diagonal entries gq;; of G4 are equal if and only if

gdii:b/v, i:(),l,...,v—l, (31)
since tr G, = b. Condition (3.1) is satisfied whenever d is a Youden design, i.e., a
BIB design having each treatment occurring in each of periods 1,..., k the same
number of times.
For ¢ # ¢,

b b ok k
9divr = Z haijhaij = Z Z Z 5},;]'5?]’(]51 (€)1 (£).
j=1 J=1e=t 6=

Let us define ,
My = 0400,
j=1
the number of columns of d that have ¢ in row £ and ¢’ in row £'. Clearly,
Gdiz = Z Z b1 ()1 (€1) [ e 4 Migyn]-
=1 <t

Since the row sums of G, are zero, it follows from (3.1) that G, is completely
symmetric if and only if

gaiv = —b/(v(v —1)) fori #7'. (3.2)
Lemma 3.1. A necessary condition for a BIB design in Dy(v,b,k) to have a

c.s. Gq is:

> 1y - JO (mod3v(v—1)), ifk iseven,
b(k” —1) = {0 (mod 12v(v — 1)), if k is odd.
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Proof. If k is even, ¢,(¢) = ¢ (¢)/(k(k*> — 1)/3)'/? with ¢ (¢) € Z, where
Z=1{..,-3-2-1,01,23,...}.

From (3.2) it follows that (b/(v(v — 1)))(k(k* —1)/3) € Z.
If k£ is odd, the result follows in the same way since ¢,(¢) = ¢7(¢)/(k(k* —
1)/12)Y/? with ¢*(¢) € Z.

Example 3.1. Let v = 7 and £ = 3. From Lemma 3.1 it follows that b =

0 (mod 21). A universally optimal design in D,(7,21,3) is:
1 23456045601 232345601
23 4560112345604 5¢60123
456 012323456 011234560

We now give one well known method for constructing universally optimal
designs in classes Dy(v, b, k). Let d be a BIB (v,b,7,k, \) design. The matrix G4
is c.s., i.e. (3.2) is satisfied, if for all £ # ¢', 7 # i/,

i i
Mgy + My, = Q, (3.3)

a constant. Designs with property (3.3) were introduced by Rao (1961), who
called them “orthogonal arrays of type II”, and later (Rao (1973)) renamed them
“semibalanced arrays”. These are also related to “perpendicular arrays” of Lind-
ner (1988). It is easy to see that a design satisfying (3.3) is a BIB design with
columns as blocks. Semibalanced arrays have been used by several authors, such
as Morgan and Chakravarti (1988), Cheng (1988) and Martin and Eccleston
(1991) to design experiments with correlated observations. The design given in
Example 3.1 is a semibalanced array.

For construction of semibalanced arrays see Rao (1961) and Mukhopadhyay
(1972). Tt is known, for example, that when v or k is a power of a prime, these
arrays can be constructed. Here is an example.

Example 3.2. Let v = 5 and k = 4. The following is a semibalanced array
with mij,, +mij,, = 1 for all £ # ¢', i # i'. Hence it is universally optimal in
Dy(5,10,4).

12 2 3 3 4 40 01
2 43 0410213
31 42 031 4 20
4 3 0410 2 1 3 2

At present, the authors do not know of any other optimal designs in classes
Dy(v,b, k) which are not semibalanced arrays or permutations of semibalanced
arrays.
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4. Efficient Trend-Free Designs

A design d may be called trend-free if the presence of a trend results in no
loss of information, that is, Cy = Cyy. But from (2.4), this last equality occurs if
and only if for Hy = (ha;;),

hgij =0 for ¢ =0,1,...,0—-1, 7=1,...,b. (4.1)
For the remainder of this paper, let
Dys(v,b,k) ={d € D(v,b,k) : hg;j =0 for ¢ =0,1,...,0v—-1, j=1,...,b}.

Condition (4.1) is the same as

k
S 6idi(6) =0, i=0,1,...,0-1. (4.2)
=1

Since ¢, (¢) = ¢(¢ — (k + 1)/2) for a normalizing constant c,

k

(=1

Clearly, from this last expression, a binary design cannot be trend-free. A nec-
essary condition that d is trend-free is:

naij(k+1)=0(mod2), i=0,1,...,0—1; j=1,...,b. (4.3)
A sufficient, though not necessary, condition for (4.2) is:
0 = 0lk—sryyp L=1,0 0, [K/2],5=1,...,0,i=0,1,...,0—1 (4.4)

where |a| denotes the greatest integer not exceeding a > 0.
For d € Dyy(v,b, k),

|
—

v

ter:bk—(l/k)Z Ny

=14

Il
=]

.. C. . b _1 .
To maximize the trace, therefore, one has to minimize }7;_, >°/"; nZ;;. We will

identify universally optimal designs in D;;(v, b, k) separately for the two cases: k
even and £ odd.

Case I: k even. For d € Dy;(v,b, k), it follows from (4.3) that ng; € {0,2,4,...}.
Clearly, d maximizes tr C if

ndijE{O,Q}, iZO,l,...,U—l, ]:1,,b
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To get a c.s. Cy, it is sufficient to consider designs of the form d = (d,,d,)T with
Tayij = Nayij € {0,1} such that (4.4) holds for d and C,4, = (1/2)Cyy is c.s.. This
leads to the following theorem.

Theorem 4.1. Let k be even. Let dy € D(v,b,k/2) be any design such that
the columns form a BIB(v,b,r,k/2,)\) design and let dy' be dy with rows ¢
and (k/2) — £+ 1 interchanged for each ¢ = 1,...,k/2. Then the k x b array
d* = (do,dy")? is universally optimal in Dys(v, b, k).

For the designs d* given in Theorem 4.1, we have

max trCy=trCy = 2trCyy, =2b(k/2 —1) =b(k —2) = max trC,.

dGth(’U,b,k) dGDb(’U,b,k)

Thus, the universally optimal trend-free and binary designs are equally efficient
when k is even! The optimal trend-free design d*, having fewer combinatorial
restrictions, is expected to exist more often than a universally optimal binary
design of Section 3. On the other hand, a binary design has some attractions,
such as model robustness, as we have mentioned in Sections 1 and 3.

Case II: k£ odd. Let k£ =2q — 1.

Lemma 4.1. For k = 2q — 1, a design d in D;;(v,b,k) has mazimal tr Cy in
Dy (v,b, k) if and only if for each j =1,...,b,

(52]- =1= Ngij = 1 and (5;] =0= Ngij c {0, 2}

Proof. Since ¢,(q) =0, (4.2) is:

-1

=

k
511.;1"]51 (E) + Z 6§j¢1 (E) =0.

1 {=q+1

~
Il

It follows that, for £ # ¢, if 6}, = 1, then ngy; > 2, and if 07, = 1, then ng;; — 8}, €
{0,2,...,k}. Suppose d.; =1 and ng;; — d;; =t > 2. In column j, if we replace
symbol ¢ in all rows except g by a symbol 7' which does not appear in column
J (we can do this since k < v), then the new column j has a smaller value of
>i— n%; than the old column j since nj;; +n7;; is 1 +#* in the new column j
but it is (1 + ¢)? in the old column j and (1 +¢)? > 1 + ¢*. Hence the lemma.

If we write d € Dy (v,b, k) as d = (d1,dy, d»)”, where dy is 1 x b, Ny, = N,
and 0;(d) = d(,_4,,);(d) for £ = 1,...,qg = 1, then Cy = Cpqy = Ry — NuN,; =
Ry — (2Ng4, + N4y )(2Ny4, + Ng,)'. This leads to the following theorem.

Theorem 4.2. Letk =2q—1. Letd; € D(v,b,q—1) be a design whose columns
form a BIB(v,b,7r,q—1,\) design, and let dy € D(v,b, 1) be such that the columns
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of (g;) form a BIB(v,b,7',q,\') design. Let di' be dy with rows ¢ and q — ¢
interchanged for each £ =1,...,q — 1. Then the k x b array d* = (dy,dy,d;") "
is universally optimal in Dy (v, b, k).

Example 4.1. Let v = 7 and k& = 3. The following design is optimal in
D, (7,21,3):

11156 722267333744 45 5 6
234111345 22256356 7¢6 77
11156 722267333744 45 5 6

Example 4.2. Let v = 5 and k¥ = 5. The following design is optimal in
D, (5,10, 5):

11112 2 2 3 3 4
2345 3 45 45 5
5 42 313 45 21
2 3453 45 45 5
111122 23 3 4

When v = 3 (mod 4) is a prime power and k = v, there is a general method
for constructing designs of the type described in Theorem 4.2. For this case, it
is well known (c.f. Raghavarao (1971)) that the quadratic residues (mod v) form
a difference set. Let D be the complement of the quadratic residues in GF'(v);
hence D is a (v, (v+1)/2,\) difference set. It can be shown that D' = D — {0} is
a (v, (v—1)/2,\—1) difference set. In Theorem 4.2 take d; to be the (v—1)/2xv
array with columns {D' 4+ z: 2 € GF(v)} and (3(1)) the (v +1)/2 x v array with
columns {D + z : z € GF(v)}. Then the array d* in Theorem 4.2 is optimal in
Dy (v,v,v). (Taking copies of columns, this can be extended to D, (v, b,v) with
b =0 (modw)).

Example 4.3. Let v = k = 7. For these parameter values, we get the following
optimal design in D;f(7,7,7):

345 6 01 2
5 6 01 2 3 4
6 01 2 3 4 5
01 2 3 45 6
6 01 2 3 4 5
5 6 01 2 3 4
345 6 01 2

For a design d* of Theorem 4.2,
max trCy=trCy =b(k—2)+ (b/k) > b(k—2)= max trCy.

de,Dif('U!bvk) dGDb(v,b,k)
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Thus, a universally optimal trend-free design is more efficient than a universally
optimal binary design of Section 3 when £ is odd.

5. Efficiency and Optimal Designs for k =3

To get some idea of the efficiency of designs in Sections 3 and 4, we first
determine an upper bound for tr C,; in D(v, b, k). Note that for any d; € D(v, b, k),

trCy, < bk —1). (5.1)

The inequality in (5.1) is always strict since a binary design cannot be trend-free.
Nevertheless, this gives a (conservative) measure of the efficiency of a design d.
It follows from (2.5), that e(d) > tr Cy/b(k —1). If d is a binary design, or d is an
optimal trend-free design in Dy (v, b, k) with k even given by Theorem 4.1, then

e(d) > (k —2)/(k — 1). (5.2)

If d is an optimal trend-free design in D, (v, b, k) with k odd given by Theorem
4.2, then
e(d) > (k—1)/k. (5.3)

For large k it is evident from (5.2) and (5.3) that the optimal designs given
in Sections 3 and 4 are highly efficient. When £ is small we suspect that (5.2)
and (5.3) are overly conservative. For k = 3, we have the following theorem:

Theorem 5.1. For v > k = 3, the design d* in Theorem 4.2 is universally
optimal in D(v,b,3).

Proof. It can be shown by direct computation that trC; is maximized in
D(v,b,3) if, for each 7 = 1,...,b, there are two symbols 7 and i',i # 7', such
that ng; =2 and ngy; = 5;; =1.

In general, however, an optimal trend-free design need not be optimal in
D(v,b, k) as the following example shows.

Example 5.1. For v = 7 and k = 4 consider two designs in D(7,21,4) :

0131242335 43635 40¢635 106 2
d, = 3 01 4125 23364405516 6 20
1302413526 430541625206 ]|’
0131242335 43635 40635106 2
00045611156 225633646 5
dy = 123 000234113422 45 35 46
123 000234113422 45 35 46
00045611156 223563 3¢646 5
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Both Cy, and Cy, are c.s., ds is universally optimal in D,;(7,21,4), but tr Cy, =
42 < 50.4 = tr O,

Comment. Throughout this paper we have been considering designs which are
connected under model (2.1). In general, one can always verify the connectedness
of a given design d € D(v,b, k) by checking to see if C; has rank v — 1. There
is, to the best of the authors’ knowledge, currently no simpler general method
available for determining whether or not a given design d € D(v,b, k) is con-
nected. However, if Cy is c.s., then d is connected unless C; = 0. It is also easy
to see that a trend-free design is connected if and only if the corresponding block
design is connected. The study of connectedness for other types of designs needs
further attention.
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