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Abstract: For the problem of estimating a multivariate normal mean, it is known
that confidence sets recentered at shrinkage estimators offer strictly larger coverage
probability than the usual confidence set. Unfortunately, the conventional frequentist
report of a constant confidence coefficient (infimum of the coverage probabilities) fails
to communicate the gain of these improved confidence sets. Through an empirical
Bayes argument we introduce a confidence report for the recentered confidence set
which is strictly larger than the conventional infimum report. This confidence report
is shown to dominate the infimum report according to an appropriate risk criterion.
By using this new confidence report, the improved confidence region provides an
informative frequentist measure of precision for the shrinkage estimator about which
it has been recentered.

Key words and phrases: Conditional confidence, loss estimation, shrinkage estimation,
Stein estimator.

1. Introduction and Summary '

An important companion problem for the point estimation of a multivariate
normal mean is to provide associated confidence regions. More precisely, based
on the observation of a p-dimensional multivariate normal vector

X ~ N,(6,1), (1.1)
the classical confidence set for 6 is of the form
Co(X)=1{0:16 - X|<c}. (1.2a)
For all 8, the coverage probability of this set estimator is constant,
Py0 € Co(X) = P(x2<P)=1—-aq, (1.2b)

and the practitioner reports that Cy(X ) contains § with confidence 1 —a. Hwang
and Casella (1982, 1984) showed that for p > 3 the set Cy(X) can be improved
by recentering at a positive part Stein estimator

6.(X) =ua(|X|)X, where wu,(r)=max{[l— (a/r?)],0} (1.3)
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to obtain
CalX) = {8: 16 = 6,(X)| < c}. (1.4)

This set dominates Co(X) in the sense that both sets are of equal volume but
for a in a certain range, C,(X) has uniformly higher coverage probability for all
6, that is,

Py(0 € Co(X)) > Po(0 € Co(X)) =1 — a. (1.5)

For this situation the statistician is better off reporting C,(X) than Co(X) as
a 1 — a confidence region for §. Table 1 and Figure 1 display values of Py(6 €
Cp—2(X)) for 1—ar = .90 and a variety of p and || so the reader can appreciate the
potential improvement offered by C,(X). Note that the improvement increases as
¢ gets closer to the shrinkage target 0 where 6,(X) provides the most shrinkage.

The conventional frequentist confidence report of the infimum of the coverage
probabilities is woefully inadequate for C,. Unfortunately, both C, and C, have
the same infimum confidence report since

i%ng(G €EC(X)=1-a. (1.6)

As is clear from Table 1 and Figure 1, reporting confidence 1 — o in C, is not
only misleading, but also fails to communicate to the user the potential improve-
ment offered by C,. It is the purpose of this paper to propose an alternative
(post-experimental) report to 1 — a which better reflects the coverage of C,(X).
Furthermore, coupled with C,(X), this new confidence report can provide an
informative frequentist measure of precision for the Stein estimator 6,(X).

The new confidence report which we propose to accompany C,(X), is of the
form

Vo.a(X) = Plxg < ¢ /upa(|X )], (1.7a)

where for some constants d > b > 0,
ub,d(r) = [1 - b/(d -+ 7'2)]. (17b)

Note that u;q is similar to the shrinkage factor of the Stein estimator 6,(X)
in (1.3). However, instead of being truncated at 0 when |X|?> = a, this factor
decreases continuously as |X| — 0, where it is bounded by (d — b)/d > 0. As
opposed to the infimum report in (1.6), this confidence report has the properties
that v, ,(X) > 1—a, and ~, ,(X) increases with the amount of shrinkage provided
by 6,(X). Table 1 and Figure 1 illustrate how, for appropriate choices of b and
d, v, .(X) will on average be much closer to Py(6 € C,(X)) than 1 — a.
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Table 1. For 1 —a = .9, coverage probabilities of Cp,_5 and expected values of confidence
estimators v, ,(X) and 7, ,(X). The constants used are a = p—2, b = (p — 2)?/p, and
d = dmn from (2.16). The constants for «,,(X) are those recommended by Lu and

Berger. Both v, ,(X) and v, ,(X) were truncated at -y, of (2.15).
p=35 p=28 p=15
16] Ps Vo.d Vs Ps Yo.d TLB Pe Vo.g Vim

0.0 .988 .957 .959 .998 978 .969 1.00 .993 .981
1.0 .986 .953 .955 .997 975 .966 1.00 .992 .980
2.0 981 .944 .945 .996 .969 .959 1.00 .990 977
3.0 .969 .934 .934 991 .959 .950 1.00 .985 972
4.0 .933 .925 925 971 .949 941 .999 979 .966
5.0 921 .918 918 952 .940 934 .993 972 .960
6.0 915 914 914 .938 .932 927 .985 .964 .953
7.0 911 .910 .910 .930 926 922 .975 .956 .947
8.0 .909 .908 908 .923 921 918 .963 .949 942
9.0 .907 .906 .906 918 917 914 .954 .942 .936
10.0 .906 .905 .905 914 914 912 .945 .937 932
15.0 .902 .902 .902 .906 .906 .905 917 917 916
20.0 .901 .901 .901 .902 .903 .902 .908 .908 .907
25.0 .901 .900 .900 .901 .901 .901 .903 .903 .903
30.0 .900 .900 .900 .900 .900 .900 .900 .900 .900

Expected Confidence
1.00

T T T T

0.98

0.96
Confidence
0.94
0.92
0.90
Euclidean norm of ©
Figure 1. For 1 — o = .9, coverage probabilities of Cp,_» (dotted lines) and expected values

of confidence estimators 7, ,(X) (solid lines) and <, 5 (X) (dashed lines). The constants used
area=p—2,b=(p-2)?/p, and d = dms from (2.16). The constants for v, ,(X) are those
recommended by Lu and Berger. Both v, ,(X) and =y, 5 (X) were truncated at 7., of (2.15).
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The formal approach that we take in this paper is to consider a confidence
procedure as a pair (C(X),v(X)) where C(X) is a set estimator and v(X) is
a quoted confidence estimator, the confidence that 6 is in the set C(X). Such
an approach is natural in both the Bayesian and conditional frequentist setting
(see Kiefer (1977) and Berger and Wolpert (1984)). By taking this approach the
problem of reporting post-experimental “confidence” can be put in a decision
theory framework and treated as an additional estimation problem. In Section
2.1, we argue that the relevant estimation problem for this purpose is the es-
timation of the indicator of realized coverage under squared-error loss. This is
contrasted with the alternative approach of estimating pre-experimental coverage
probability.

In Section 2.2, the confidence report v, , is motivated by an empirical Bayes
argument similar to that used by Efron and Morris (1973) and Morris (1983)
to motivate 6,(X). In this context, Cy(X) can be seen as an empirical Bayes
estimate of a highest posterior density credible set. The confidence report v, ,
is then obtained as an empirical Bayes estimate of the corresponding posterior
probability associated with such a region. In effect, a complete frequentist con-
fidence report is derived as a complement to the complete Bayes credible set
report.

In Section 2.3, the report v, , is supported by a comparison of Py(f € C,(X )
and Epv, ,(X). We show that for an appropriate choice of b, (depending on a,
Py(0 € C,(X)) and Ey, ,(X) will agree for large |6|. In Section 2.4, choices of
d are suggested to guarantee that +, ,(X) < maxy Py(6 € C,(X)). Otherwise,
reporting v, , could result in negatively biased relevant betting procedures (see
Casella (1987, 1988)). The proposed choices of b and d seem to lead to substantial
practical improvements as is borne out, for example, in Table 1 and Figure 1.
Similar improvements were obtained by Robert and Casella (1994) for the usual
confidence set.

In Section 3, we evaluate v, , in a number of ways. We first consider, in
Section 3.1, the evaluation of V..« according to the risk criteria described in
Section 2.1. It is shown that, for certain choices of a, b, d, 7,.. uniformly dominates
1—a as a confidence report for C,. In Section 3.2, we show that for certain choices
of a,b,d,, , has the property of frequentist validity, namely (see Berger (1988)),

Eg7, (X) < Py(8 € Co(X)) for all 6. (1.8)

This property, like the infimum report (1.6), insures that in the long run the
confidence report will not overstate the true coverage probability. Although some
authors believe this is a crucial property, (for example Lu and Berger (1989), or
Hwang and Brown (1991)), we do not view the property of frequency validity
as a main desideratum of a confidence estimator, and are really not sure of the
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overall value of the property. In particular, to deliberately underestimate (on
average) the true coverage seems to conflict with our goal of obtaining small risk.

In Section 3.3, the practical potential of ~, , is substantiated by simulating
its expectation and risk for some special cases. Furthermore, we also compare
7,.. With a confidence report for C,(X) proposed by Lu and Berger (1989). They
showed that a report of the form

bp

X)=1-— _—
7LB( ) a+dp+|X|2a:

(1.9)
for some positive b and d, uniformly dominates the infimum report 1 — « in terms
of communication risk R; (defined in Section 2). Although it is not obtained by
Bayesian considerations, v, , does have the intuitively desirable properties that
v,5(X) >1—aand 7v,,(X) increases with the amount of shrinkage provided by
8.(X). Lu and Berger show that -y, also has the property of frequentist validity.
However, our numerical results show that v, ,(X) compares favorably with v, .

Section 4 contains concluding remarks. Finally, to improve the readability
of the paper, the necessary technical lemmas have been placed in an Appendix.

2. Confidence Estimation

As described in the introduction, we consider a confidence procedure as a
pair (C(X),v(X)) where C(X) is a set estimator and (X)) is a quoted confidence
estimator, the confidence that 6 is in the set C(X). In this setting, the selection
of 7(X) can be put in a decision theory framework by identifying the problem
of reporting confidence with the estimation of an unknown “parameter”. In the
next section, we consider which “parameter” best serves this purpose.

2.1. Confidence as an estimate of coverage

In order to treat the choice of a confidence report v(X) as an estimation
problem, we note that the key concern of the experimenter is whether, for a
given realization X = z, the parameter 6 is in the set {§ : § € C(z)}. This
suggests that the indicator function

1, if 8 e C(x),

Il§ € C(z)] = {0’ if ¢ C(x),

(2.1)
is the primary object of interest. Indeed, the only concern of the experimenter
(with respect to set estimation) is whether the realized set covers the parameter,
which is exactly the information captured by I[# € C(z)]. The problem of confi-
dence estimation is thus identified with the problem of estimating the unknown
“parameter” I € C(z)].
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When evaluating an estimator of I[0 € C(z)] from a frequentist view, we
must evaluate estimation of I{§ € C(X)], as X has not yet been realized. A
decision theoretic approach to estimation of I[§ € C(X)] leads us to consider the
risk function

R;(6,(C(X),v(X))) = Eq[I[6 € C(X)] — v(X))*, (2.2)

called the communication risk by Lu and Berger (1989). This risk function is
also used by Robinson (1979) in considering conditional properties of procedures,
and by Godambe (1961).

An alternative to estimating I[f € C(X)] as an approach to confidence es-
timation, and one we consider less useful, is to estimate instead the coverage
probability Ps(6 € C(X)). In doing so, one may consider the risk function

Rp(8,(C(X),v(X))) = Eg [Ps(6 € C(X)) — v(X)]*. (2.3)

Compared to I[§ € C(X)], the pre-experimental coverage probability Ps(6 €
C(X)) is of only secondary importance. Perhaps the most severe criticism of
Ps(6 € C(X)) as a confidence measure is that it has no meaning as a post-data
measure (after X = z is observed), which is what an experimenter is concerned
with. After the data are observed, and the experimenter constructs C(z), the
probability Ps(6 € C(X)) becomes irrelevant. Moreover, the post-data analog
Py(0 € C(z)) is meaningless as a probability — it is an indicator function.
On a more technical side it is revealing to consider the identity

R (6,(C(X),7(X))) =Rp(8, (C(X),7(X))) — 2Cov[I[f € C(X)],v(X)]
+ Py(6 € C(X))[1 - Po(8 € C(X))), (2.4)

where Cov[I[f € C(X)],v(X)] is the covariance between I[§ € C(X)] and ~v(X).
Since the third term in (2.4) is beyond our control, the R; criterion is com-
posed of the Rp criterion and a covariance criterion. Intuitively, Cov[I[§ €
C(X)],7(X)] > 0 is a desirable property for v, and R; imposes a penalty if this
is not the case. This quantity is not taken into account by Rp.

Another reason for preferring R; to Rp is that squared error loss in I[f €
C(X)] is a proper scoring rule. In the Bayesian setting, minimizing the posterior
risk with this loss would yield the posterior probability of C(X) as the optimal
7. More precisely, for a fixed set estimator C(X), consider the class of Bayes
rules against the loss

[116 € C(X)] = ~(X))*. (2.5)
For X ~ f(z|@) and prior m(6), the Bayes rule is the posterior probability
VT (z) = Jo f(=|0)7(6)d6 (2.6)

- Jo f(z|60)m(6)do
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So for this estimation problem, that of estimating I[6 € C(X)], the Bayes (and
thus some admissible) rules against squared error loss are posterior, or post-
data, coverage probabilities. In contrast, estimation of Ps(f8 € C(X)) will not
yield Bayes rules as posterior probabilities.

In spite of our marked preference for R; over Rp as an evaluation crite-
rion for a confidence report, we show in Section 3 that the confidence proce-
dure (Co(X),7,.(X)) for certain choices of a,b,d, performs very well with re-
spect to both criteria. In particular, for some a,b,d, (C,(X),~, ,(X)) dominates
(Ch(X),1 — ) both in terms of R; and Rp in the following usual sense. For a
set estimator C(X), the confidence report v;(X) is said to dominate v,(X) with
respect to the risk R if

for all 6 with strict inequality for some 6.

2.2. Empirical Bayes motivation

A popular and often successful approach for discovering estimators with good
risk properties is the empirical Bayes approach, (see Berger (1985)). Johnstone
(1988) used an empirical Bayes argument to derive an improved loss estimate and
establish its minimaxity. In this section, we show that the confidence procedure
(Ca(X),,..(X)) defined by (1.4) and (1.7) can be motivated as an empirical
Bayes approximation to a Bayes credible region and its associated posterior cov-
erage probability. The approximated Bayes procedure is obtained by assuming
that @ is a realization from a conjugate normal prior

8 ~ N,(0,72I). (2.8a)

Following the development in Efron and Morris (1973), the posterior distribution
for # under (2.8a) is :

9|X ~ N,((1 - B)X,(1— B)I), where B=1/(1+72). (2.8b)

Based on this distribution the highest posterior density credible interval estimate

for 8 is
Cp(X)={6:16—(1-B)X|<c} (2.9a)

with posterior coverage probability
Paxlf € Co(X)] = Pl < /(1 - B)] (2.9)

Adopting the perspective that the prior (2.8) is correctly specified but that
72 is unknown, an empirical Bayes approximation of (2.10) can be obtained by
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substituting a data based estimate of (1 — B) = 72/(1 + 72). We consider the
class of empirical Bayes estimates of the form

(1~ B) = wpa(|X]) = [1 = b/(d + | X ]*)], (2.10)
where d > b > 0. Such estimates may be based on the marginal distribution
of X, X ~ N,(0,(1+ 7%)I). Note that as opposed to the truncated estimates
of 1 — B typically used in Stein estimators, the estimate (2.10) is continuously
decreasing as |X| — 0 where it is bounded by (d — b)/d > 0. Substitution of
up,a(|X|) into P x[0 € Cp(X)] yields the confidence function Y,..(X) in (1.7).

2.3. Equating P4(¢ € C,(X)) and Eyv, ,(X) and the choice of b

In this section, we show that for an appropriate choice of b, (depending only
on a), Py(§ € Co(X)) and Eg,,(X) will agree for large |6]. This not only
supports the form of v, , as a promising confidence report for C,, but provides
guidance as to which b will provide the best confidence report. We should point
out that the goal of equating Py(6 € C,(X)) and Egv, ,(X) is not at odds with
the goal of estimating I{# € C,(z)]. Indeed, because of the close connection
between R; and Rp in (2.4), agreement of Py(§ € Co(X)) and Egy, ,(X) is a
consequence of a good confidence estimator. We also note that the choice of b in
(2.14) below is further supported by risk considerations based on Theorem 3.1
below.

The behavior of Py(6 € Co(X)) for large |6| was discovered by Hwang and
Casella (1984) who, adapting arguments of Berger (1980), showed

Po(6 € Co(X)) =1 - a+(a/p)(2(p — 2) — a)cfp(c*)I6]7 + O(16]7%), (2.11)

where f, is the Xf, density. Below, we obtain an analogous form for the behavior of
Y,.4(X) for large |6]. In order to describe these and another asymptotic results, we
use the following modified notation for the order of approximation. Let h, (b, 6)
and hy(b, §) be two real valued functions of b and . We write

hi(b,0) = oy(ho(b,8)) iff for some B > 0,
lim sup hi(b,0)/h2(b,0) =0, (2.12a)
]

|6l—00 pe[0,B
and
h1(b,0) = Oy(ho(b,8)) iff for some B > 0,
lim sup]hl(b, 8)/h2(b, ) is finite. (2.12b)

|8]—o0 pefo,B
Note that o0, and O, strengthen the usual o and O orders of approximation to be
uniform in b over a neighborhood of zero. The following shows that Eyv, ,(X)
may be uniformly approximated in this sense.
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Theorem 2.1. For c? > p— 2,

Eg7,.(X) = 1= a+bcf,(c*)0]7% + Oy (b]6] 7). (2.13)

Proof. Let gyu(|IX[?) = 7,.(X) = (1 - a) = P < 2 < /uya(|X])]. The
result now follows from the fact that Eggyq(|X|?) = bc®f,(c?)|0]72 + Oy (b|6]74)
which is stated and proved as (A.5a) of Lemma A.3 in the appendix.

Comparison of (2.11) and (2.13) shows that for large |6], 7, ,(X) with

b= (a/p)(2(p - 2) - a), (2.14)

equates Py(6 € C,(X)) and Eyv, ,(X) (up to second order). In particular, it
shows that for the choice a = p — 2 recommended by Hwang and Casella, one
should choose b= (p — 2)*/p~p— 2.

2.4. The choice of d

For choosing d, we recommend that <, , should never be larger than the
maximum of Py(6 € C,(X)). Otherwise such a report would always overestimate
coverage with X near 0, and could result in negatively biased relevant betting
procedures (see Casella (1987, 1988)). This maximum coverage probability, which
we denote 7y___, occurs when 8 = 0, and is given by

Yooy = m?ng(G € Co(X)) = Py(0 € Co(X))
= P,(0 < |X|? < (® + 2a + ¢(c? + 4a)'/?) /2), (2.15)
where the last equality in (2.15) is stated and proved as Lemma A.7 in the

appendix. It then follows from (1.7) and (2.15) that in order to insure =, ,(0) <
Py (0 € C,), we should choose

I>d. = 2a + c(c? + 4a)*/? +
=TT 2a 4 ¢(c? + 4a)t/2 -2

(2.16)

The choice d = d,;, worked well in the simulations presented in Section 3.3.

3. Evaluation of v, ,

3.1. Risk domination

In this section, we focus on the evaluation of v, ,(X) as a confidence report
for C,(X) in terms of the risk R; in (2.2). Similar results will be seen to follow
immediately for Rp of (2.3). Note that although expressions (2.11) and (2.12)
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show that for b = (a/p)(2(p — 2) — a), Ps(8 € C,(X)) and E¢v, ,(X) will agree
for large |0], this does not guarantee that v, ,(X) will have good risk properties
with respect to R; (or Rp).

Before stating our main risk evaluation results, we point out that we are
only interested in risk assessment for values of a where C, dominates Cj; in terms
of coverage probability. Hwang and Casella (1984) show analytically that the
coverage dominance of the recentered region C,(X) over Co(X) occurs whenever
0 < a < min{a;,a,} where a, and a, are the unique solutions respectively of

2 4 gq)1/2]P 72
{C—"— (C + a/) } e—c\/E/Z — 1 (3.1&)

2va

and

1 p=1

(¢ +40)'/ ¢ [c+ (¢ + 4a>”2J SV (3.1b)
2va va

We should add, however, that numerical calculations of Hwang and Casella

strongly suggest that domination holds for values of a larger than p — 2, but

not as large as 2(p — 2), (the bound for point estimation). They recommend the

choice a = p — 2, mainly due to the optimality of the point estimator for this

choice.

Because we are most interested in the comparison of the report Y,.« With the
conservative report 1 — o, we will express our main results in terms of the risk
reduction function,

Hy(a,b,d) = R;(6,(Ca(X),1 = @) = Ry (8, (Ca(X),7,.(X))).  (3.2)
The following result reveals the risk reduction behavior of 7, , for large |9].
Theorem 3.1. Letting f, be the x2 density,
Hy(a,b,d) = [(a/p)(2(p — 2) — a) — b/2] 26 F2(A)|61™* + Ou(Bl6)~%).  (3.3)

Proof. To show (3.3), rewrite (3.2) as
Hs(a,b,d) = 2B,[110 € Ca(X)] = (1 - @)gs.a(IX[*) — Eogi s(1XI?).  (3.4)
The result (3.3) now follows directly by combining (3.4) with
Eogya(|X|?) = b2 £7(c)16]7* + Ou(b]6]7°),
which is stated and proved as (A.5b) of Lemma A.3 in the appendix, and

Eo[I[0 € Co(X)] = (1 = a)]gu,a(| X ]?)
= [(a/p)(2(p = 2) — a)c® £,(c®)|6]72] bc® £,(c*)|6]7% + Oy (b]6]~°),
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which is stated and proved as Lemma A.4 in the appendix.

Theorem 3.1 shows that for || large, the choice b = (a/p)(2(p — 2) — a) in
(2.14), which equates (2.11) and (2.13) up to second order terms, also provides
the maximum risk reduction over 1 — a in terms of R;. It also follows from
(3.3) that uniform risk domination of ~, ,(X) over 1 — o with respect to R; is
impossible when b > 2(a/p)(2(p — 2) — a), as Hy will then be negative for large
6.

Of course, it is of more interest to know if Hy is strictly positive for all 6,
for in that case v, , will uniformly dominate 1 — o as a confidence report for C,.
The following results show that for any C,(X) known to dominate C; in coverage
probability, there exist choices of b and d such that v, ,(X) will dominate 1 — «
in terms of R;.

Theorem 3.2. Forp > 5,0 < a < a* = min{p — 4,a,,a;} and d large enough,
there exists b* > 0 such that for 0 < b < b*,

R0, (Ca(X),7,.(X))) < Ri(6,(Ca(X),1 ~ @)) for all 6. (3.5)

Proof. Begin by fixing o’ € (0,a*]. We will show that for d large enough, there
exists b* such that for 0 < b < b*, Hg(a',b,d) > 0 for all 4. First, a consequence
of Theorem 3.1 is that for 0 < b’ < 2a'(2(p — 2) — a')/p,

i i —1g) ' 0. .6
|91|1—r.noobel(r(l),fb']b |0|*Hy(a',b,d) > (3.6)

It then follows that for each d, there exists My > 0 (which does not depend on
b) such that
Hg(a',b,d) > 0 for all b € (0,b') and |6] > M,. (3.7)

Next, Lemma A.5 shows that for d large enough (8/8b)Hg(a’,0,d) > 0 for all
6. Furthermore, (8/0b)Hg(a’,b,d) is a continuous function of b and 6, and so is
uniformly continuous on the closed set {(b,6) : 0 < b < b and |6] < My}. Thus,
there exists 0 < b* < b’ such that

(8/8b)Hg(a',b,d) > 0 over {(b,0) : 0 < b < b* and |0] < M,}. (3.8)
But since Hy(a’,0,d) = 0 for all 6, (3.8) implies
Hg(a',b,d) > 0 for all b € (0,b%] and |6] < M,. (3.9)

The desired result now follows from (3.7) and (3.9) since b* < b’ by construction.

We should point out that Theorem 3.2 is an existence proof since explicit
bounds for b* are not obtained. This limitation was also a characteristic of
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the risk dominance result of v,, in Lu and Berger (1989). Unfortunately, the
constructive result remains elusive. Our next result, which is stated and proved
as Lemma A.8 in the appendix, shows that for all b > 0, v, ,(X) dominates 1 —
at 6§ =0.

Theorem 3.3. Forp > 5, 0 < a < ¢* = min{p — 4,a1,a3}, d > b > 0 and
d Z dmin;

R1(0,(Ca(X),7,.(X))) < R1(8,(Ca(X),1 = c)) for 6 =0.

As mentioned before, results established for the risk function R; in (2.2) can
be extended in a straightforward manner to Rp in (2.3), which is not surprising
considering the relationship (2.4). The following results for Rp, which are stated
without proof, are analogous to those for R; in Theorems 3.1, 3.2 and 3.3, and
can be proved similarly.

Theorem 3.4.

(i) Rp(6,(Ca(X),1~ O‘)) - RP(07 <Ca(X)’ 'Yb,d(X»)
= [(a/p)(2(p — 2) — a) — b/2]2bc* 7 (c?)[6]~* + O, (b]6] %),

where f, is the x2 density.

(ii) For p > 5,0 < a < a* = min{p — 4,a,, a2} and d large enough, there exists
b* > 0 such that for b € (0,b*],

Rp(ea <Ca(X),7b,d(X)>) < RP(H, <Ca(X)v 1- a)) fO’l" all 6.
(iii) For p > 5,0 < a < a* = min{p — 4,a;,a2} and d > b > 0,

Rp(0,(Ca(X),7,.(X))) < Rp(6,(Ca(X),1 - a)) for 6 = 0.

3.2. Frequentist validity

In this section, we show that for certain choices of a,b,d that v, , has the
conservative property of frequentist validity for C, in (1.8). The fact that v, ,(X)
is also frequency valid is an interesting added attraction, since the empirical
Bayes motivation of the confidence estimator does not take this property into
account. Having a confidence estimator that has expectation uniformly smaller
than the coverage probability is a conservative tactic, and is a reasonable practical
inference property. Unfortunately, it does not lead to optimal behavior against a
loss function in unconstrained problems, and is thus not a property of admissible
rules. It may also lead to non-coherent procedures since, if the true probability
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is always underestimated, then relevant sets will exist, and conditional inferences
will be conservative.

Theorem 3.5. For 0 < a < a* = min{p — 4,a,,a}, there exists b* > 0 such
that for all b € (0,b*] and d >,

Egv, .(X) < Py(6 € Co(X)) for all 6.

Proof. We begin as in the proof of Theorem 2.1 in Lu and Berger (1989). It
follows from (1.5) and (2.11), that for a € (0,a*] and b < p, there exists € > 0
such that

inf{(|6]* +p+d - b)[Ps(6 € Ca(X)) — (1 — )]} 2 &
Thus,
Py(0 € Co(X))>1—a+e€/(|0°+p+d—1b) for all 6.

Since 7, ,(X) = 1 — o+ gp.a(| X |?), it suffices to show that b* can chosen so that
for all b € (0, b7},

Eogra(|X|?) < €/(J0)* +p+d—1b) for all 6.

This is stated and proved as Lemma A.6 in the appendix.

3.3. Numerical results

To further investigate the performance of v, ,, simulations were carried out.
Based on the considerations described in Section 2.3 we investigated the case
a=p—-2,b=(p—2)%/p, d = dmin (from (2.16)). Although the calculations were
performed for many values of 1 — o and p, we report here only on the choices
1—a = .90 and p = 5,8,15. For these choices, the actual coverage probability
of C,_, was estimated for a large number of || values.

In Table 1 and Figure 1 these coverage probabilities are compared with
Eq(7,.(X)) and Eg(7v,,(X)). (We use the choice of constants for v, , recom-
mended by Lu and Berger (1989), but make one further modification which im-
proves the performance of v,,. We truncate v, at 7,,, of (2.15).) These show
that v, , and v, , are close to Py(f € Cp_2(X)), with v, , being closer for larger
p. Table 1 also show that the particular choices of v, , and v, , are frequency
valid for p = 5, 8 and 15. Table 2 and Figure 2 provide a risk comparison of v, ,,
v, and 1 — a based on R;. We see that both v, , and v,, provide substantial
risk improvement over 1 — a, with =, , better for larger p. These also show that
the substantial risk improvement is concentrated where C,_, achieves its greatest
improvement in coverage probability, with everything collapsing together as 16|
becomes large.
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Table 2. For 1 — a = .9, risk of the confidence estimators 1 — ¢, Yy,4(X) and 7, 5 (X) using

squared error loss. The constants used are a =p— 2, b= (p — 2)?/p, and d = dmn from (2.16).

The constants for v, ; (X)) are those recommended by Lu and Berger. Both Yo.a(X) and v, 5 (X)

were truncated at v, of (2.15).

p=>5 p=38 p=15

19| l-a Yb.d Tie l-—«a Yo.a Yis 1-a Yo.d Tie

0.0 .0196 .0123 .0122 .0122 .0030 .0035 .0100 .0001 .0004

1.0 .0210 .0141 .0140 .0123 .0033 .0038 .0100 .0001 .0005

2.0 .0252 .0194 .0193 .0137 .0052 .0058 .0101 .0003 .0007

3.0 .0350 .0310 .0310 .0171 .0096 .0102 .0103 .0006 .0012

4.0 .0633 .0630 .0631 .0336 .0294 .0298 .0109 .0016 .0022

5.0 .0733 .0735 .0735 .0483 .0463 .0465 .0152 .0070 .0076

6.0 .0782 .0783 .0783 .0594 .0585 .0585 .0216 .0149 .0154

7.0 .0813 .0815 .0815 .0660 .0656 .0655 .0300 .0249 .0253

8.0 .0829 .0830 .0830 .0714 .0712 0712 .0396 .0361 .0362

9.0 .0842 .0842 .0842 .0754 .0753 .0752 .0470 .0444 .0445
10.0 .0854 .0854 .0854 .0785 .0785 .0784 .0542 .0525 .0525
15.0 .0884 .0884 .0884 .0855 .0855 .0855 .0760 .0757 .0757
20.0 .0888 .0888 .0888 .0880 .0880 .0880 .0839 .0838 .0838
25.0 .0895 .0895 .0895 .0890 .0890 .0890 .0874 .0873 .0873
30.0 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900 .0900

Risk Functions
0.10 I
Risk 0.05

0.00 |

Euclidean norm of ©

Figure 2. For 1 — a = .9, risk of the confidence estimators 1 — a (dotted lines), v, ,(X) (solid
lines) and v, 5 (X) (dashed lines) using squared error loss. The constants used are a = p — 2,
b= (p-2)?/p, and d = dmn from (2.16). The constants for vy, (X) are those recommended by

Lu and Berger. Both v, ,(X) and 7,5 (X) were truncated at ~,,,, of (2.15).
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Table 3. For 1—a = .9, proportional decrease in risk (3.10) of the confidence estimators v, , (X)
and 7 p(X) over 1 — &, The constants used are a = p—2, b= (p—2)*/p, and d = dmn from

(2.16). The constants for v, , (X) are those recommended by Lu and Berger. Both 4, ,(X) and
v, 5(X) were truncated at v,,,, of (2.15).

p=>5 p=2_8 p=15
16| Vo4 Tis Yo,d Y | Yva  Vim
0.0 374 2380 753 .715 | 989 .956
1.0 .330 334 732 .690 | .987 .952
2.0 231 232 623 578 | 972 .929
3.0 114 115 440 401 | .937 .884
4.0 .004 .003 124 112 | .858  .797
5.0 | —-.002 -.002 .042 .039 | .541 .498
6.0 | —.002 -.002 015 .015 | .311 .286
7.0 | —.002 -.002 .007 .007 | .169 .158
8.0 | —.001 -.001 .003 .004 | .08 .085
9.0 | —.000 .000 .002 .002 | .054 .053
10.0 { —-.000 -.000 .001 .001 | .032 .032
15.0 | —.000 -.000 | —.000 .000 | .004 .004
20.0 | —.000 -.000 .000 .000 | .001 .001
25.0 | —.000 —.000 .000 .000 | .000 .000
30.0 .000 .000 .000 .000 | .000 .000

Relative Risk Functions

T ' 1 !

Relative Risk

1

8 10 12 14 16

Euclidean norm of ©

Figure 3. For 1 — a = .9, proportional decrease in risk (3.10) of the confidence estimators
Yy.4(X) (solid lines) and v, 5 (X) (dashed lines) over 1 ~ a. The constants used are a = p — 2,
b= (p—2)?/p, and d = dmx from (2.16). The constants for ~, ; (X) are those recommended by
Lu and Berger. Both v, ,(X) and v, 5 (X) were truncated at 7, of (2.15).
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Lastly, Table 3 and Figure 3 show the proportional decrease in communica-
tion risk R; of v(X) over 1 — ¢, namely

R;1(6,{Cp-2(X),1 —a)) = Rs(8, (Cp—2(X), 7(X)))
Rf(ea <Cp—2(X)7 1- O{>)

for y(X) =7, ,(X) and v(X) = 7,5 (X). The figure shows clearly the improve-
ment of , , over both ,, and 1 — « for larger p and smaller |6].

(3.10)

4. Conclusions

Treating the confidence estimation problem in a decision theory framework
has enabled us to do away with the conventional infimum report 1 —a = infy Py(6
€ C(X)), and consider more relevant and useful confidence reports. Furthermore,
rather than simply estimate coverage probabilities, we have identified the problem
of confidence estimation with that of estimating the indicator function I[f €
C(z)], (z is a realization of X). It has been argued that this point of view leads
to the appropriate criteria for evaluating a post-data confidence report.

The confidence report v, , in (1.7) has been introduced as a promising new
solution to the confidence estimation problem. The form of v, , is motivated by
an empirical Bayes argument similar to that which motivates the Stein estima-
tor. It is shown that ~, , can be chosen so that Py(6 € C(X)) and Ey~, ,(X) will
essentially agree. This is not at odds with estimation of I[§ € C(z)], but rather
in agreement. The pre-data quantity Eyv, ,(X) estimates the pre-data quan-
tity Ps(0 € C(X)), while the post-data quantity =, ,(z) estimates the post-data
quantity I[6 € C(z)].

In terms of the proposed risk criteria, v, , fares extremely well. It is seen
that v, , can uniformly dominate 1 — a as a confidence report for C,. Numerical
evaluation shows that meaningful improvements can be obtained in practice. The
fact that ~, ,(X) is also frequency valid is an interesting added attraction, since
the empirical Bayes motivation of the confidence estimator does not take this
property into account. However, as mentioned before, we question the value of
this conservative criterion.

In conclusion, this paper has established the merits of using the improved
confidence procedure (C,(X),~, ,(X)) over (Co(X),1— ) and certainly (Co(X),
1 — a). This procedure not only offers better coverage properties than Co(X),
it also provides a meaningful report of the improvement. Furthermore, just as
(Co(X),1 — a) provides an associated frequentist precision measure for §,(X) =
X, the procedure (C,(X),,.(X)) provides an associated frequentist precision
measure for the Stein estimator é,(X ). We should mention that it may be pos-
sible to improve further on 7, , as a confidence estimator for C,; however, the
empirical Bayes form of v, , suggests that we may have a first approximation to
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an admissible rule. By mimicking a posterior probability, v, ,(X) is a post data
confidence estimator that performs quite reasonably against frequentist criteria
and, hopefully, is close to admissible.

Appendix: The Lemmas

These technical lemmas form the basis of the results of this paper, and have
been placed in this appendix to improve the readability of the main text. Note
that many of these results make use of the uniform approximation orders o, and
O, defined by (2.12).

Lemma A.1. For X, 6 € RP such that t6 + (1 —t)X # 0 for any t € [0,1],

X[~ = 6] — 2n(X — 6)'6]6]7*" Y — n(X - 6)'(X — 6)|67| "V
+2n(n+ 1)(X — 6)6°0* (X — 6)|¢7| 7"+,

where 6* = t0 + (1 — t)X for some t € [0,1].
Proof. Straightforward application of Taylor’s Theorem.
Lemma A.2. Forp>5andd>b> 0,

Eo(| X +d—b)71 = 16172+ 0u(16] %), (A.1a)
Eo(|X|?+d—0b)"2=8]"* + 0u(6]°). (A.1b)
Proof. First note that for n = 1,2 and 6 > 0,
Eo(|X[2 +d— b) "I X[ < 8] < (d—b)"P|X]* < 6],

which has an exponential tail and hence can be ignored. Thus it suffices to show
that forn =1,2 and 6 > 0,

Eo(|X|? + d — b) "I[|X[? > 8] = [6]7>" + Oy (16]7>™*Y).
Since
(X2 +d—b)7" = |X|72 = (d = b)/(XP(X|*+d = b)) = |X]|7* + O(X]7),
it follows that
(X +d—b)" = |X|7*" + O(IX|72"*D). (A.2)
Thus, it suffices to show that for n > 1

EolX|7I[|X|? > §] = 16]7*" + O(|6]7>"*). (A.3)
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From Lemma A.1, we have
Eo| X" T|X [ > 6] = Eg[16]™" + hy(X,0) + ho(X, )X > 6], (A.d)

h(X,0) = —2n(X — 6)'9|9|2(n+1),
ha(X,0) = —n(X - 6) (X - 6)|0*|~2+D
+2n(n + 1)(X — 6)'6%6" (X — 9)|9*|~2(»+2)

where §* =1+ (1—t)X for some ¢t € [0, 1]. (Note that the exceptional set where
Lemma A.1 does not hold has measure zero and so may be ignored in obtain-
ing (A.4)). Clearly Ep|0|72"I[|X|* > 6] = |0]72"(1 — Py[|X|2 < &]) = |6]~2" +
O(|6|~?me~19""/2). Using Cauchy-Schwarz and the fact that E¢h:(X,0) = 0 and
E| X — 6| is bounded, it follows that Egh, (X, 0)I[|X|* > 6] = —Egh, (X, 0)I[|X|?
< 6] = O(|g|~¥n+1/2e=161°/2)  Finally, using Cauchy-Schwarz, the fact that
Eg|X — 0]” is bounded and Eo|6*|* = O(|6]"), it follows that Eyhy (X, 6)I[|X|? >
6] = O(|6]7**+1)). Coupled with (A.4), this shows (A.3).

Lemma A.3. Let g,q4(|X|*) = P[c® < x2 < /upa(|X|)], and let f, be the X2
density. For c? >p—2,

E4gy,a(|X1%) = bc® £,(c*)16]72 + Oy (b]6] ), (A.5a)
Eogy a(1X1%) = b2c* £2(c*)|6]7* + O, (b]6]7°). (A.5b)

Proof. Since f,(y) is decreasing for y > p — 2, we may expand g 4 for such X
as

) ¢ /up,a(IX])
ealIX) = [, fo(w)dy
= fp(*) [*/una(IX]) = ] + R = b £,(c*)(|X|* + d — b)™* + R, (A.6a)
where for some fixed K (which does not depend on b),

IR < [fp(c?) = fp(®/upa(1X]))] [ /up,a(|X]) — 2] ,
< Kb (|X|*+d-b)2 - (A.6b)

(A.5a) then follows from applying (A.1) to (A.6). (A.5b) is obtained similarly
by using the square of (A.6a).
Lemma A.4. Let g 4(|X|*) = P[c? < x2 < ®/upa(|X])], and let f, be the X2
density. For c® > p — 2,
EolI[0 € Co(X)] = (1 — &)]gs,a(|X*)
= [(a/p)(2(p = 2) — a)c* f,(c*)16]7%] bc™ £, (c*)16] 7% + 04 (b]6]°). (A7)
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Proof. Note that when I[§ € C,(X)] = 1, |X — 6| is bounded by a constant in
which case (| X|?+d—b)"" = |6]72" + O0,(|6]|~2"*?), which follows from (A.2) and
Lemma A.1. Using (A.6), we have, for X satisfying I[6 € C,(X)] =1,

9o,a(IX[?) = b f(c?)[6]7% + Oy (b]6] 7). (A.8)
Thus,
EoI[0 € Ca(X)]gb,a(IX|*) = (EoI[8 € Ca(X)])(be’ fp(c?)16]72+05(b]6]7%)) (A.9)
which, combined with (A.5a), yields

EolI16 € Ca(X)] ~ (1~ @)lgna(1X )
= [Eo116 € Ca(X)] — (1 - a))(b£,(¢)I6] 2 + Ob(b16] ). (A.10)

The result (A.7) is now obtained by combining (A.10) with the fact that
[EoI[6 € Co(X)]— (1= a)] = (a/p)(2(p - 2) — a)c? f(c*)|0]* + O8] °), (A.11)

(which does not depend on b), a reexpression of (2.11), obtained by Hwang and
Casella (1984).

Lemma A.5. For Ho(a,b,d) in (3.2), there ezists d* such that (8/0b)Hy(a,0,d)
>0 fora € [0,a*],d > d* and all 6.

Proof. Differentiating (3.4) and making use of v, ,(X) =1 — a and (8/9b)go 4
(1X1%) o (d+ | X[*)77, yields

(8/8b)Ho(a,0,d) o« EolI[6 € Co(X)] = (1 — a)]/(d + |X]?). (A.12)

Comparing this expression with (31) of Lu and Berger (1989), the desired result
follows directly from their Lemmas 3.1 and 3.2.

Lemma A.6. For any € > 0, there exists b* > 0 such that for b € (0,b*] and
d > b,
Eogsa(|X*) < €/(|0/°+p+d—10b) forallb. (A.13)

Proof. Based on (A.6), we have, for fixed K;, K, > 0,

Eogy a(IX1?) < K1 [1/upa(IX]) — 1] + Kz [1/w a(|X]) — 1]
= By DK, (I X?+d - b))+ BPE(|X)>+d—b)7?]. (A.14)

It follows from (26) of Lu and Berger (1989), that

Eo(|X?+d-b) < (1+€)/(I0]°+p+d—1b), (A.15)



636 EDWARD I. GEORGE AND GEORGE CASELLA

where €* = (3 + /2p)/(d — b). A similar argument yields
Eo(|X]2+d—b)"2<2(1+€)/(|0]* +p+d—b). (A.16)
Combined with (A.14), these yield
Eogoa(JX|?) < [bK,(1 + €*) + 22K, (1+ €)]/(10P +p+d —b).  (A.17)

The desired result now follows with b* = min{1,€/[K;(1 + €*) + 2K5(1 + e}
Lemma A.7. Py(0 € Co(X)) = Po(0 < | X[ < (2 + 2a + ¢(¢® + 4a)V/?)/2).
Proof.

Po(0 € Co(X)) = PoJ6a(X)|* < %)
= Po((1 — a/| XX < & X > a) + Ro(IX[|* < a).

The desired result now follows by noting that
{z:(1—-a/z?)%2® < ?}
= {z:(c® + 2a — c(c* + 4a)/?) /2 < 2 < (® + 2a + c(c* + 4a)'/?)/2}

and
(A +2a — c(® + 4a)/?)/2 < a < (¢® + 2a + c(c® + 4a)'/?) /2.

Lemma A.8. Forp > 5,0 < a < a* = min{p — 4,a1,a2}, d > b > 0 and
d Z dmin:

R1(8,(Ca(X),7,.4(X))) < R1(8,(Ca(X),1 = a)) for § = 0.

Proof. For simplicity of notation, let I;(X) = I[6 € C,(X)] and v(X) = v, ,(X).
Then

Eo[Io(X) — v(X))? = Eg[[Iso(X) — Eolo(X)] + [EgIo(X) — v(X)])?
= Ey[Io(X) — EoIs(X))* + Eg[Eels(X) — v(X)]?
+ 2Eg[Ig(X) — EgIe(X)][Eglo(X) — v(X)).

For the cross-product term above, note that both I4(X) and v(X) are decreasing
in |X|. Thus, at § =0,

EO[IO(X) - EOIO(X)][EOIO(X) - V(X)]
< Eo[Io(X) — Eolo( X)) Eo[Eolo(X) — v(X)] = 0.
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So, at 8 = 0,
EolIo(X) = v(X)]? = EolIo(X) — EoIo(X)) + Eo[EoLo(X) — v(X)]”.
Similarly (but more easily),
EolIo(X) — (1 — a)]? = Eo[Io(X) = EoIo(X)]? + Eo[Eolo(X) — (1 - )],

since the cross-product term is 0 here. Thus a sufficient condition for v(X) to
dominate (1 — o) at 6 =0 is

This is satisfied by construction since for v = v, , above

1—a<v(X)<max Py € Co(X)) = Eolo(X).
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