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Abstract: This study develops a unified test procedure for nonparametric functions

in a reproducing kernel Hilbert space of high-dimensional or functional covariates.

The test procedure is simple, computationally efficient, and practical because we

do not need to distinguish high-dimensional or functional covariates. We derive the

asymptotic distributions of the proposed test statistic under the null and a series

of local alternative hypotheses. The asymptotic distributions depend on the de-

cay rate of the eigenvalues of the kernel function. This decay rate is determined

by the kernel function and the types of covariates. We also develop a novel ker-

nel selection procedure to maximize the power of the proposed test by maximizing

the signal-to-noise ratio. The proposed kernel selection procedure is shown to be

consistent in selecting the kernels that maximize the power function. Moreover, a

test with a regularized kernel is constructed to further improve the power. It is

shown that the proposed test nearly achieves the power of an oracle test if the reg-

ularization parameter is properly chosen. Extensive simulation studies evaluate the

finite-sample performance of the proposed method. Finally, we apply the proposed

method to a Yorkshire gilt data set to identify pathways that are associated with

the triiodothyronine level. The proposed methods are included in an R package

“KerUTest.”

Key words and phrases: Gene set analysis, kernel function, nonparametric regres-

sion, reproducing kernel Hilbert space.

1. Introduction

High-dimensional or functional data arise in a wide range of areas, including

biology, imaging, and climate. In genetic studies, millions of single nucleotide

polymorphisms (SNPs) can be measured simultaneously using high-throughput

technologies. The identification of genes that are associated with certain traits,

such as blood pressure and grain yield, is becoming increasingly important in

health and agriculture sciences. Although the traditional methods focus on a
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single gene-based analysis, this method has limitations (Manolio et al. (2009)).

Gene-set based analysis (e.g., Subramanian et al. (2005)) holds great promise,

because gene regulation is often complex and genes tend to work together in a

nonlinear way (Liu, Lin and Ghosh (2007); Li and Cui (2012)) to achieve certain

biological functions. To model the association between a certain trait Y and a

gene set X, we consider the following nonparametric regression:

Yi = µ+ h(Xi) + εi, i = 1, . . . , n, (1.1)

where X1, . . . ,Xn are independent and identically distributed (i.i.d.) p-dimensional

covariates generated from a probability measure on Rp, h(Xi) is an unknown non-

parametric function of Xi = (Xi1, . . . , Xip)
T , and εi are i.i.d. random errors with

mean zero and variance σ2. For the purpose of model identification, without loss

of generality, we assume E{h(Xi)} = 0.

In a gene-set analysis, the number of genes p in a gene-set can be in the order

of thousands, but the sample size n is limited and much smaller than p. If there

is no natural ordering among {Xij}pj=1, Xi is a p-dim vector and Xi may be con-

sidered to be high-dimensional data (e.g., Bai and Saranadasa (1996)). A “large

p, small n” setup can be used to study high-dimensional data when p is much

larger than n. If {Xij}pj=1 can be indexed by a certain variable (e.g., chromo-

some locations), then Xij may be considered as a realization of a functional curve

Xi(·) observed at tj , where t1 < t2 < · · · < tp. Then, Xi = {Xi(t1), . . . , Xi(tp)}T

is a collection of p repeated measurements of Xi(·), a smooth curve in some

underlying functional space (Ramsay and Silverman (2005)). When p is much

larger than n, Xi denotes dense functional data. An interesting procedure called

“stringing” was developed by Chen et al. (2011) to transform high-dimensional

data into functional data. However, in many real applications, considering X as

high-dimensional or functional data is often subjective. To avoid this subjective

choice, we use a general reproducing kernel Hilbert space (RKHS) for h(·), so

that our approach is applicable to both high-dimensional and functional data.

This study aims to test the existence of a nonlinear association between a

quantitative trait Y and a gene set X, which is equivalent to testing the following:

H0 : h(·) = 0 vs H1 : h(·) 6= 0. (1.2)

Hypothesis testing for a nonparametric function of an explanatory variable in a

finite-dimensional Euclidean space has been well studied in the literature. For

example, Chen, Härdle and Li (2003) and Gao and Gijbels (2008) considered

inference for nonparametric functions based on kernel smoothing estimators.
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Shang and Cheng (2013) developed a general inference for nonparametric func-

tions in a Sobolev space based on smoothing spline estimators. Fan, Zhang and

Zhang (2001) developed generalized likelihood ratio tests for various nonparamet-

ric models with parametric distribution errors, and established Wilks theorems

for a class of the generalized likelihood statistics using local polynomial estima-

tors. Recently, Yang, Shang and Cheng (2020) developed a non-asymptotic test

and Liu, Shang and Cheng (2018) developed a computationally efficient test for

nonparametric functions. Most existing methods require an estimation of non-

parametric functions, and suffer from the “curse of dimensionality” (Fan (2018)).

Hence, they cannot be easily generalized to functions with explanatory variables

in a high-dimensional space without a specific structure. In the high-dimensional

linear regression with h(X) = XTβ, testing h(·) = 0 is equivalent to testing

high-dimensional coefficients β = 0 (e.g., Zhong and Chen (2011), Lan, Wang

and Tsai (2014), Wang and Cui (2013)). However, these methods were designed

for a linear model and do not apply to a general nonparametric function. When

Xi is considered as functional data, extensive studies have been done for hy-

pothesis testing under various model settings, for example, under the functional

linear model (e.g., Kong, Staicu and Maity (2016); Su, Di and Hsu (2017)), under

generalized functional linear models (e.g., Shang and Cheng (2015); Li and Zhu

(2020)), and considering nonparametric functions of functional covariates (e.g.,

Delsol, Ferraty and Vieu (2011); Delsol (2013)). See Tekbudak et al. (2019) for

a recent review. Delsol, Ferraty and Vieu (2011) and Delsol (2013) constructed

Cramér–von Mises-type test statistics based on a local smoothing estimator of

the nonparametric function, and applied wild bootstrap procedures for practical

implementation, which are computationally intensive.

An RKHS-based method is a popular approach for modeling nonparametric

functions. Most existing methods study RKHS for nonparametric functions of

finite-dimensional covariates, where p is a fixed constant and does not grow with

the sample size (Wahba (1990), Liu, Lin and Ghosh (2007), and Liu, Ghosh

and Lin (2008)). The estimation of the RKHS-based nonparametric function of

functional data covariates (i.e., h(X) is a function of functionals) was developed

in Lian (2007) and Avery et al. (2014). However, there is no existing unified

inference method for h(·) of high-dimensional or functional covariates.

The goal of this study is to develop a unified method for testing a nonpara-

metric function in an RKHS of high-dimensional or functional covariates. The

proposed method does not directly estimate the nonparametric function h(·) of

the high-dimensional or functional covariates, and does not require a dimension-

reduction method. Our key idea is to transform the hypothesis in (1.2) into an
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equivalent hypothesis. A U-statistic-based test statistic is then developed to test

the equivalent hypothesis (see Section 2). The asymptotic distributions of the test

statistic are obtained under the null hypothesis and a series of local alternatives,

without a specific distribution assumption. The asymptotic distributions depend

on the decay rate of the eigenvalues of a given kernel function. However, the

decay rate is usually unknown, because it is determined both by the smoothness

of the reproducing kernel K and the distribution (hence, the types) of the covari-

ates X. As a result, the asymptotic distributions are not directly applicable. To

address this challenge, we develop a unified and practical approximation method

that does not require knowledge of the decay rate. Moreover, the proposed test

procedure is computationally efficient without bootstrap procedures.

An important finding in this study is that testing for the nonparametric

function h(·) of high-dimensional covariates is feasible, even if no specific structure

is imposed for h(·). The consistency of the test depends on the smoothness of

the functional space and the data type of the covariates. If the functional space

HK generated by the kernel is sufficiently smooth (e.g., Gaussian kernel) or

the covariates X are functional data, the proposed test is consistent without

restrictions on the relationship between the dimension of the covariate p and the

sample size n. If the functional space HK is not sufficiently smooth and the

covariate X is high-dimensional data, some restrictions on p and n are needed to

make the proposed test consistent.

In practice, the power of the proposed test depends on the choice of kernels.

As a result, kernel selection is an important issue in a kernel machine-based testing

procedure (Liu, Lin and Ghosh (2007)). However, few studies have examined

this area. We propose a new procedure for selecting kernels in the hypothesis

testing context. By obtaining an explicit power function of the proposed test, we

choose the kernel that maximizes the power function. Unlike the BIC proposed

in Liu, Lin and Ghosh (2007), our procedure is tailored to the hypothesis testing

problem, and is particularly designed to improve the power of the proposed test.

We show that the kernel selection procedure is consistent in the sense that it

selects the kernels that maximize the power with probability one. Moreover, we

can construct a regularized kernel to further improve the power of the test. A

novel method for choosing the regularization parameter is introduced. We show

that the proposed test with a regularized kernel achieves the power of an oracle

test if the regularization parameter is properly chosen.

The rest of the paper is organized as follows. In Section 2, we introduce the

RKHS, functional space for h(·), and equivalent hypothesis. Section 3 proposes

a new test statistic and establishes the main asymptotic distributions of the
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proposed test statistic under the null hypothesis and local alternatives. The

kernel selection and regularization are discussed in Section 4. The finite-sample

performance of the proposed test statistic is evaluated using extensive simulations

in Section 5. In Section 6, we apply the proposed method to a Yorkshire gilt

data set to identify gene sets associated with triiodothyronine levels. A brief

discussion is given in Section 7. Some theoretical results, all the technical details,

and additional simulation results are relegated to the Supplementary Material.

2. Functional Space and Equivalent Hypothesis

Consider functions h(·) that belong to a functional space HK generated by a

kernel Kn,θn(·, ·), where θn are tuning parameters that possibly depend on n. For

notational convenience, we suppress n in θn in the rest of this paper. The kernel

Kn,θ(x1, x2) : Rp ×Rp → R is any symmetric and positive semi-definite function

defined on Rp×Rp. Throughout the paper, we assume p = p(n) is a function of n.

A kernel Kn,θ(x1, x2) is said to be positive semi-definite if the associated kernel

matrix (Kn,θ(xi, xj))
M
i,j=1 is anM×M positive semi-definite matrix defined on any

M distinct points x1, . . . , xM ∈ Rp. We use Kn,θ and bold font K to denote the

kernel function and an n× n kernel matrix defined by K =
{
Kn,θ(Xi,Xj)

}n
i,j=1

,

respectively. Some commonly used kernel functions include the linear kernel

Kn,θ(z1, z2) = zT1 z2/θ and the Gaussian kernel Kn,θ(z1, z2) = exp(−‖z1−z2‖2/θ).
Additional examples of kernel functions can be found in Liu, Lin and Ghosh

(2007).

The functional space HK is determined by the kernel function Kn,θ. To

define the functional space HK , we define the following normalized kernel

Kn,θ(x1, x2) =
Kn,θ(x1, x2)√

E{K2
n,θ(X1,X2)}

,

where X1 and X2 are two independent copies of X with probability measure P .

It is then obvious that E{K2
n,θ(X1,X2)} = 1 and Kn,θ(x1, x2) is still positive semi-

definite and symmetric. The above normalization ensures E{K2
n,θ(X1,X2)} <∞,

so that the eigen-decomposition of Kn,θ can be properly defined according to

Lemma 1 in the Supplemental Material. The normalization is needed because

E{K2
n,θ(X1,X2)} could diverge in the high-dimensional case. For instance, if

Kn,θ(X1,X2) = XT
1 X2 and Var(X) = Σ, then E{K2

n,θ(X1,X2)} ≥ tr(Σ2), which

implies that E{K2
n,θ(X1,X2)} is at least of order p if all the eigenvalues of Σ are

bounded away from zero. Note that the normalization is mainly for theoretical

analyses. Our standardized test statistic is invariant to the kernel normalization.
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Thus, the normalization is not needed in practice for the proposed test.

By Corollary 1 in the Supplemental Material, we can write

Kn,θ(x1, x2) =

∞∑
m=1

λKθ,mψnθ,m(x1)ψnθ,m(x2),

where λKθ,1 ≥ λKθ,2 ≥ · · · are eigenvalues of Kn,θ, and {ψnθ,m(·)} form a complete

orthogonal normal system on L2(P ). This representation extends the eigen-

decomposition of a kernel (or covariance) function from a one-dimensional space

to a p-dimensional (or functional) space. Without causing confusion, we use

λnK,m and ψnm(·) to denote λnKθ,m and ψnθ,m(·), respectively. Then, the space

HK is defined as (Cucker and Smale (2002))

HK =

{
f(x) : f(x) =

∞∑
m=1

αmψnm(x) for αm satisfying

∞∑
m=1

α2
m

λnK,m
<∞

}
.

For example, if a centralized linear kernel Kn,θ(x1, x2) = (x1 − µX)T (x2 − µX)

with µX = E(X) is used, the space HK contains linear functions f(x) = βTx.

If X is a high-dimensional vector, model (1.1) reduces to a linear model. If

X is a functional data vector, model (1.1) becomes a functional linear model

h(x) =
∫
x(t)β(t)dt. If nonlinear kernels such as polynomial and Gaussian kernels

are given, the functional space HK includes very general nonlinear models.

To distinguish H1 from H0, we define a measure to quantify the distance

between h(·) and zero. Here, we define the norm ‖ · ‖K as a measure:

‖h‖2K =

∞∑
m=1

λnmα
2
m, (2.1)

where λnm =
√
E{K2

n,θ(X1,X2)}λnK,m, which may be considered as the eigen-

values of the kernel function Kn,θ(x, y). Obviously, the null hypothesis in (1.2)

is true if and only if ‖h‖2K = 0, and ‖h‖2K > 0 under the alternative hypothesis.

Therefore, the hypothesis considered in (1.2) is equivalent to

H0 : ‖h‖2K = 0 vs H1 : ‖h‖2K > 0. (2.2)

The connection between a nonparametric function and its eigen-decomposition

has been used for statistical inference in the literature. For example, Fan (1996)

developed Neyman’s adaptive tests based on the Fourier transform of a nonpara-

metric function.
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For model identification, in the rest of this paper, we consider a centralized

kernel Kn,θ that satisfies µK = E{Kn,θ(X1,X2)} = 0. Recall that h(·) needs to

satisfy E{h(Xi)} = 0 for the purpose of identification. Note that the central-

ized kernel is equipped with the zero-mean eigenfunctions {ψnm(·)}∞m=1. As a

result, the functions in the corresponding RKHS HK have zero means, because

E{h(Xi)} = E{
∑∞

m=1 αmψnm(Xi)} = 0. The centralized kernel Kn,θ can be con-

structed from any positive-definite kernel function K∗n,θ by setting Kn,θ(x1,x2) =

K∗n,θ(x1,x2)−K∗1,θ(x1)−K∗1,θ(x2) + µK∗ , where K∗1,θ(x1) = E{K∗n,θ(x1,X2)} is

the first-order projection of K∗n,θ. By Lemma 3 in the Supplementary Material,

Kn,θ is still semi-positive definite with only one zero eigenvalue λ∗nm = 0 cor-

responding to the eigenfunction ψ∗nm(x) = 1, if K∗θ is positive definite. Some

benefits of a centralized kernel are discussed in Lindsay et al. (2008). The prac-

tical construction of a centralized kernel is discussed in the next section.

3. Test Statistics and Asymptotic Distributions

By the orthonormal expansion of Kn,θ(x, y) in Section 2, we observe that

E{(Yi − µ)(Yj − µ)Kn,θ(Xi,Xj)} = ‖h‖2K , for any (i, j) pair such that i 6= j.

Motivated by this observation, we consider the following test statistic:

Tn =
1

n(n− 1)

∑
i 6=j

Kn,θ(Xi,Xj)(Yi − Ȳn)(Yj − Ȳn)

σ̂2
, (3.1)

where Ȳn = n−1
∑n

i=1 Yi is the sample mean and σ̂2 = (n−1)−1
∑n

i=1(Yi− Ȳn)2 is

the sample variance estimator of σ2 under the null hypothesis (1.2). We can then

check that E(Tn) = o(1) under the null hypothesis and E(Tn) = ‖h‖2K/σ2{1 +

o(1)} under the alternative. Therefore, the test statistic Tn is able to distinguish

the null and alternative hypotheses in (1.2).

Define K2n,θ(x, y) = E{Kn,θ(x,X)Kn,θ(X, y)}. Let λn1 ≥ λn2 ≥ λn3 ≥
· · · be eigenvalues of the kernel function Kn,θ, and define Vkn =

∑∞
m=1 λ

k
nm for

integers k = 1, 2, . . . The asymptotic framework considered here is p(n) → ∞
as n → ∞, where p(n) diverges as n diverges. However, we do not require an

explicit relationship between p(n) and n. To study the asymptotic distributions

of the proposed test statistic Tn, we need the following technical assumptions:

(C1) Assume τ8 < ∞, where τk = E(εk) is the kth moment of the random error

ε.

(C2) Assume supn V
−1−δ/2
2n E|Kn,θ(X1,X2)|2+δ < ∞, for some δ > 0, and∑∞

m=M λ2nK,m → 0 uniformly for all n > n0 as n0 and M →∞.
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(C3) Assume E{K4
2n,θ(X1,X2)} = o(V 4

2n) and E{K2
2n,θ(X1,X1)} = o(nV 2

2n).

The following theorem summarizes the asymptotic distribution of Tn under

H0, and the proof can be found in the Supplemental Material.

Theorem 1. Under the null hypothesis H0 in (1.2) and (C1): (i) Assume (C2)

holds. If λnK,m → λK,m as n → ∞, then nTn/
√
V2n

d→
∑∞

m=1 λK,m(χ2
m − 1),

where χ2
m are independent chi-squared distributions with one degree of freedom;

(ii) If condition (C3) holds, then σ−1Tn nTn
d→ N(0, 1), where σ2Tn = 2V2n.

Remark 1. Theorem 1 shows that the asymptotic distributions of Tn depend

on the decay rate of the eigenvalues λnK,m, which is determined by the kernel

function and the dimension and distribution of the random vector X. Consider

a linear kernel given by Kn,θ(x1, x2) = (x1−µX)T (x2−µX). The eigenvalues of

the linear kernel are given by the eigenvalues of Var(X) = Σ. Part (i) of Theorem

1 provides an asymptotic distribution of nTn when the eigenvalues decay fast and

nTn/
√
V2n has the same distribution as the finite sum

∑M
m=1 λK,m(χ2

m − 1), for

some M in (C2). If X = {Xi(t1), . . . , Xi(tp)}T is a functional data vector, the

assumptions in (C2) are typical in a functional PCA type-based analysis, where

the first few eigenvalues are dominant. The asymptotic distribution of Tn is a

weighted chi-squared distribution, not a chi-squared distribution, which differs

from the Wilks’ phenomena established for the nonparametric likelihood ratio

test statistics (e.g., Fan, Zhang and Zhang (2001)).

However, for high-dimensional data, the eigenvalues may not decay at a fast

enough rate. Under this scenario, the asymptotic distribution is an asymp-

totic normal, as established in part (ii) of Theorem 1. For the above linear

kernel, if we further assume that X1 and X2 are multivariate normal, then

E{K4
2n,θ(X1,X2)} = 3tr2(Σ4) + 6tr(Σ8) and E{K2

2n,θ(X1,X1)} = tr2(Σ2) +

2tr(Σ4). If tr(Σ4) = o{tr2(Σ2)} (Zhong and Chen (2011)), then condition (C3)

holds. The condition tr(Σ4) = o{tr2(Σ2)} is true for most scenarios when the

eigenvalues of Σ decay slowly.

Remark 2. Because the decay rate of the eigenvalues λnK,m is difficult to deter-

mine for a general kernel, and it relies on the distribution of X, the asymptotic

distributions are not directly applicable. On the one hand, part (i) of Theorem 1

shows that the limiting distribution of nTn/
√
V2n is

∑∞
m=1 λK,m(χ2

m−1). Because

λnm =
√
V2nλnK,m and λnK,m → λK,m, we may approximate the distribution of

nTn by Tn =
∑∞

m=1 λnm(χ2
m − 1). On the other hand, if condition (C3) holds,

then Lyapunov’s condition V4n/V
2
2n → 0 is satisfied so that the central limit the-

orem holds for the sum of the weighted centralized chi-squared distributions Tn;
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that is, σ−1Tn Tn
d→ N(0, 1). This means that the asymptotic normality in Theorem

1 may be considered as the limiting distribution of Tn. Thus, Tn is flexible enough

to approximate the asymptotic distributions in both scenarios in Theorem 1, and

Tn provides a unified inference approach for both high-dimensional and functional

data.

In practice, obtaining accurate estimators for all the eigenvalues λnm (m =

1, 2, . . .) simultaneously is difficult. Nevertheless, we apply a Satterthwaite ap-

proximation to the mixture of chi-squares
∑∞

m=1 λnmχ
2
m using a scaled chi-

squared distribution ânχ
2
ĝn

, where ĝn = V̂1n/ân, ân = σ̂2Tn/(2V̂1n), and V̂1n =

n−1tr(HK) is an unbiased estimator of V1n. Here, H = I− n−1J is a projection

matrix and J is an n × n matrix with all elements equal to one. Then, we ap-

proximate Tn by ânχ
2
ĝn
− V̂1n. The accuracy of the Satterthwaite approximation

is at the order of O{(V 2
3n/V

3
2n)1/2}. Taking the linear kernel as an example, if all

the eigenvalues of Σ are finite, then (V 2
3n/V

3
2n)1/2 is at the order of p−1/2.

A unified asymptotic α-level test rejects the null hypothesis if

nTn + V̂1n
ân

> χ2
ĝn,1−α, (3.2)

where χ2
g,1−α is the 1−α quantile of a chi-squared distribution with g degrees of

freedom.

Remark 3. If conditions (C3) holds, then an α-level test rejects the null if

σ̂−1Tn nTn > z1−α, (3.3)

where z1−α is the lower 1−α quantile of the standard normal distribution, σ̂2Tn =

2(n − 1)−2tr(HK0HK0) is a ratio-consistent estimator for σ2Tn (see Proposition

1 in Section 4.1), where A0 = (A0
ij) is a zero-diagonal matrix with A0

ij = Aij , for

i 6= j and A0
ii = 0.

To achieve better accuracy in the size approximation, we adjust the variance

estimator σ̂2Tn using the high-order moments of ε in (1.1). The adjusted variance

estimator σ̂2Tn,adj replaces the estimator σ̂2Tn in the simulation study in Section

5 and the real-data analysis in Section 6. Assume the density function of ε is

symmetric around zero. The adjusted variance estimator σ̂2Tn,adj is σ̂2Tn,adj =
{

(2−
12/(n− 1)+6∆̂/n)tr(HK0HK0)−(2/n+∆̂/n)tr2(HK0)+∆̂tr(A◦A)

}
/(n−1)2,

where ◦ denotes the Hadamard product, A = HK0H, and ∆̂ = n−1
∑n

i=1[(Yi −
Ȳn)/σ̂]4−3. The derivation of σ2Tn,adj is provided in the Supplementary Material.

Remark 4. If the centralized kernel Kn,θ is unknown and is constructed from
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a kernel function K∗n,θ, it may contain unknown quantities µK∗ and K∗1,θ(X1).

Thus, Tn is not directly applicable. In this case, we can replace Kn,θ(Xi,Xj)

with K̂n,θ(Xi,Xj), which is the (i, j) element of K = K∗θ − (n− 1)−1J(K∗θ)
0 −

(n− 1)−1(K∗θ)
0J+n−1(n− 1)−1J(K∗θ)

0J. Let T̂n be the test statistic with corre-

sponding kernel K̂n,θ. It can be shown that (nTn − nT̂n)/
√
V2n = op(1) (see the

proof of Remark 4 in the Supplemental Material). This implies that nT̂n/
√
V2n

has the same limiting distribution as nTn/
√
V2n.

The next theorem studies the asymptotic distribution of the test statistic Tn
under a sequence of local alternative hypotheses,

H1n : h(x) = dn(x), (3.4)

where dn(x) is any unknown function that possibly depends on n. For model

identification, assume E
{
dn(X)

}
= 0. As usual, we consider local alternatives

that are close to the null hypothesis because these are more challenging to detect

than fixed alternatives. More specifically, assume that dn(·) satisfies the following

condition:

(C4) The local alternatives dn(x) satisfy nδK = O(V
1/2
2n ) and n2E{d8n(X)} = o(1),

where δK = E {Kn,θ(X1,X2)dn(X1)dn(X2)}.

Theorem 2. Under the local alternatives H1n in (3.4) satisfying (C4): (i) As-

suming (C2) holds with δ = 2, we have V
−1/2
2n

{
nTn−σTnΨ(dn)

} d→
∑∞

m=1 λK,m(χ2
m

− 1), where Ψ(dn) = nδK/(σ
2σTn) is the signal-to-noise ratio (SNR); (ii) If (C3)

holds, then σ−1Tn nTn −Ψ(dn)
d→ N(0, 1).

The proof of Theorem 2 can be found in the Supplementary Material. Ap-

plying Theorem 2, the power of an α-level test for the rejection region in (3.3)

under the local alternatives (3.4) is Ω(dn) = 1 − Φ
{
z1−α − Ψ(dn)

}
, where Φ(·)

is the CDF for the standard normal distribution. Therefore, the power of the

proposed test is determined by the SNR Ψ(dn). If the α-level rejection region in

(3.2) is used, the power of the test is Ω(dn) = P
(
χ2
gn > χ2

gn,1−α − σTnΨ(dn)/an
)
,

where an = σ2Tn/(2V1n).

Let dn(x) = bn∆n(x) such that E
{
λ−1n1Kn,θ(X1,X2)∆n(X1)∆n(X2)

}
is a

constant. Then, the proposed test has non-trivial power if bn = V
1/4
2n /
√
nλn1. If

V2n is a constant, which implies that λn1 is a constant, then the proposed test is

able to detect alternatives of order 1/
√
n. However, in high-dimensional cases, if

V2n/λ
2
n1 →∞ at a certain rate, the proposed test can detect alternatives of order

V
1/4
2n /
√
nλn1, which is larger than 1/

√
n. This reveals an adverse effect of dimen-

sionality on the test. We observe that as long as V2n = o(n2λn1), the proposed
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test is consistent so that the power of the test converges to one. Depending on

the chosen kernel, this condition might or might not impose conditions on p(n)

and n, because V2n = E{K2
n,θ(X1,X2)} depends on p(n).

Assume that X is a p-dim random vector with mean E(X) = µX and covari-

ance Var(X) = Σ. Let η1 ≥ · · · ≥ ηp be the eigenvalues of Σ and rm = ηm/η1 be

the ratio of the eigenvalues. In the following, we discuss the implication of the

condition V2n = o(n2λn1) on the relationship between p and n for four commonly

used kernels: the linear, quadratic, polynomial, and Gaussian kernels.

Example 1 (Linear Kernel). If Kn,θ(X1,X2) = (X1 − µX)T (X2 − µX) is a

centralized linear kernel, then V2n = E{K2
n,θ(X1,X2)} = tr(Σ2). Assume that

rm � m−β/2. The proposed test is consistent if p = o{n2/(1−β)} for 0 ≤ β < 1.

If β = 1, the condition is p = o{exp (n2)}. If β > 1, then the proposed test is

consistent for any relationship between p and n.

Example 2 (Quadratic Kernel). Consider the quadratic kernel K∗n,θ(X1,X2) =

(XT
1 X2 + 1)2. Then, the corresponding centralized kernel is Kn,θ(X1,X2) =

2(X1 − µX)T (X2 − µX) + (XT
1 X2)

2 −XT
1 RX1 −XT

2 RX2 + tr(R2), where R =

Σ + µXµ
T
X . If X1 and X2 are multivariate normally distributed with µX = 0,

then V2n � tr2(Σ2). Therefore, the proposed method is consistent if tr2(Σ2) =

o(n2λn1). If rm � m−β/2, the proposed test is consistent if p = o{n1/(1−β)}, for

0 ≤ β < 1. If β = 1, the condition is p = o{exp (n)}. If β > 1, the proposed test

is consistent for any relationship between p and n.

Example 3 (Polynomial Kernel). Consider the polynomial kernelK∗n,θ(X1,X2)=

(XT
1 X2)

d with a finite d. Assume X1 and X2 are independent multivariate

normally distributed with mean µX and variance Σ. Let X1 = Σ1/2Z1 and

Σ = QΛQT be the eigen-decomposition of Σ, where Λ = diag(η1, . . . , ηp) is a

diagonal matrix and Q is the corresponding eigenvector matrix. We then write

(XT
1 X2)

d = (ZT1 ΛZ2)
d, where Z1 and Z2 are independent multivariate normally

distributed vectors with mean µ∗ = QTΣ−1/2µX and identity covariance. As a

result, we consider a polynomial kernel K∗n,θ(Z1,Z2) = (ZT1 ΛZ2)
d, where Z1 and

Z2 are independent multivariate distributed normal random vectors with mean

µ∗ and covariance Ip. In the Supplemental Material, we show that the centralized

kernel of K∗n,θ is

Kn,θ(Z1,Z2) =
∑

j1+j2+···+jp=d

d!

j1! · · · jp!

SJ∏
l=1

η
jkl
kl
{Zjkl1kl

− E(Z
jkl
1kl

)}{Zjkl2kl
− E(Z

jkl
2kl

)},

where j1, . . . , jp are non-negative integers and {k1, . . . , kSJ} is a subset of {1, . . . ,
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p}, for which jkl 6= 0 and l = 1, . . . , SJ and SJ is the number of nonzero integers

in the set J = {j1, . . . , jp}. Here, ηj is the jth largest eigenvalue of Λ and

Z1 = (Z11, . . . , Z1p)
T . In the Supplemental Material, we also show that V2n �

trd(Σ2). Therefore, the proposed method is consistent if trd(Σ2) = o(n2λn1). If

rm � m−β/2, the proposed test is consistent if p = o{n2/{d(1−β)}}, for 0 ≤ β < 1.

If β = 1, the condition is p = o{exp(n2/d)}. If β > 1, the proposed test is

consistent for any relationship between p and n.

Example 4 (Gaussian Kernel). Consider the Gaussian kernel K∗n,θ(X1,X2) =

exp{−(X1−X2)
T (X1−X2)/θ}, with X1 and X2 following a normal distribution.

The centralized kernel function Kn,θ(X1,X2) is Kn,θ(X1,X2) = exp{−(X1 −
X2)

T (X1−X2)/θ}−κ1
∑2

i=1 exp(−XT
i BXi)+κ2, where B = θ−1I−2θ−2(2θ−1I+

Σ−1)−1, κ1 = Πp
m=1(2θ

−1ηm + 1)−1/2, κ2 = Πp
m=1(4ηm/θ+ 1)−1/2, and {ηm}pm=1

are the eigenvalues of Σ. Moreover, V2n = Πp
m=1(8ηm/θ+1)−1/2−2Πp

m=1(2ηm/θ+

1)−1/2(6ηm/θ + 1)−1/2 + Πp
m=1(4ηm/θ + 1)−1. When all the eigenvalues of Σ are

bounded, we can see that V2n is a constant. Then, the condition V2n = o(n2λn1)

is satisfied if n2λn1 diverges. Under this condition, the proposed test is consistent

regardless of the relationship between p and n.

Remark 5. We observe some interesting phenomena from the above examples.

If the eigenvalues of the kernel function Kn,θ decay slowly, some restrictions on

the relationship between the data dimension and the sample size are needed. This

corresponds to the case in which data should be considered as high-dimensional

data. If the eigenvalues decay fast enough, we do not need any assumption on

the data dimension and sample size. This is the case for functional data or

kernel functions that generate sufficiently smooth functional spaces. For linear,

quadratic, and polynomial kernels, the eigenvalues of the covariance of X need

to decay fast enough so that we can treat X as functional data. However, if

the Gaussian kernel is used, the corresponding functional space is equipped with

smooth functional spaces, so that we do not need to worry about the data type

of X.

4. Kernel Selection and Regularization

To further improve the power of the proposed test, we consider the choice of

kernel function and the construction of a regularized kernel in this section.

4.1. Kernel selection

In Sections 2–3, we assume that the kernel K that generates the functional

space HK is known. However, the functional space HK is typically unknown.
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Therefore, an important question in practice is how to select kernels to improve

the power of the proposed test. The kernel selection problem has been studied

for Fisher discriminant analysis (Kim, Magnani and Boyd (2006)) and semi-

supervised learning (Dai, Yeung and Qian (2007)). However, no kernel selection

method is tailored to the hypothesis testing problem (Liu, Lin and Ghosh (2007)).

We propose selecting kernels by maximizing the SNR of the proposed test.

The motivation is to choose a kernel with a better SNR, so that the proposed

test is more powerful. Because the SNR ΨKθ(dn) = nδKθ/(σ
2σTn), it is equiva-

lent to maximizing σ−1Tn δKθ , because n and σ2 do not depend on the kernel Kθ.

Therefore, given a family of candidate kernels FK, the kernel Kθ may be selected

by maximizing the SNR, as follows:

K̂θ = argmax
Kθ∈FK

δ̂Kθ
σ̂Tn

. (4.1)

For a candidate kernel Kθ ∈ FK, the unknown parameters δKθ and σTn can be

substituted using estimators, δ̂Kθ = {n(n− 1)}−1
∑

i 6=j Kθ(Xi,Xj)(Yi− Ȳn)(Yj −
Ȳn) and σ̂2Tn defined in equation (3.3), respectively. These estimators are ratio

consistent, as shown in Proposition 1.

Define K̃θ = argmaxKθ∈FKδKθ/σTn as the kernel with the largest SNR in

the set FK. Let FK,1 be the set of kernels with SNRs at the same order as

the SNR of K̃θ, and FK,0 = FK/FK,1 be the set of kernels in FK, but not in

FK,1. Assume that all the kernels K ∈ FK,0 satisfy |σ−1
Tn,K̃θ

δK̃θ − σ−1Tn,KδK | �
σ−1
Tn,K̃θ

δK̃θ . Here, σ2Tn,K is the variance of Tn constructed using kernel K. This

means that the SNRs of the kernels in FK,0 and FK,1 have distinct orders.

Moreover, let Rmin = minK∈FK,0 |σ−1Tn,K̃θδK̃θ − σ
−1
Tn,K

δK |/σ−1Tn,KδK and Vmax,Kθ =

max
[
n−1V2n,Var

{
Kθ(X1,X2)h(X1)h(X2)},Var{Kθ(X1,X2)h(X1)}

]
. Define |FK|

as the cardinality of the set FK. Assume the following condition:

(C5) The kernel K̃θ satisfies Vmax,K̃θ = o(nδ2
K̃θ

) and |FK,0| = o
{

min(nδ2
K̃θ
/Vmax,K̃θ ,

Rmin)
}
.

The above condition (C5) is a mild condition on the SNR of the unknown func-

tion h(·) with respect to the kernel K̃θ. The signal is slightly stronger than those

required in the local alternative condition (C4) so that the kernel selection con-

sistency can be established. This is not surprising, because selection consistency

typically requires a stronger signal than detection. In the first part of (C5),

Vmax,K̃θ quantifies the variation of the estimator δ̂K̃θ whereas δ2
K̃θ

measures the

signal strength of the projection of the underlying function h(·) to the kernel

K̃θ, It requires that the signal strength is not too small when compared to the



932 HE ET AL.

variation of its estimator so that the projection δK̃θ can be estimated consistently.

Note that the proposed kernel selection method is not designed to choose

the underlying true kernel that generates the space HK . In the nonparametric

function estimation context, if the kernel K̂θ used for estimation is not the same

as the underlying true kernel K that generates the functional space HK , the

functional space of the estimated functions HK̂θ could be different from HK .

However, in the hypothesis testing framework, the goal is to distinguish whether

the true function h(X) is in H0 or in H1. If K̂θ 6= K, the possible impact is

that the decisions (reject H0 or fail to reject H0) based on the test statistics

constructed using K and K̂θ could be different. The following Proposition 1

proves the ratio consistency of the SNRs by proving the ratio consistency of δ̂Kθ
and σ̂2Tn . Moreover, we show that a kernel with the SNR at the same order as

that of K̃θ will be selected with probability one, and the proposed kernel selection

is consistent in the hypothesis testing context. The proof of Proposition 1 can be

found in the Supplemental Material.

Proposition 1. As n→∞, (i) σ̂2Tn/σ
2
Tn

p→ 1; (ii) if condition (C5) holds, then

δ̂K̃θ/δK̃θ
p→ 1 and K̂θ ∈ FK,1 with probability one; and (iii) assuming Var(Y ) <∞

and the kernel K that generates the RKHS HK also satisfies condition (C5), then

the proposed kernel selection is consistent in the sense that the decision rule (reject

or fail to reject H0) using Tn built on the selected kernel K̂θ is the same as that

based on the true kernel K.

4.2. Kernel regularization

In this section, we show that the power of the proposed test can be further

improved by using a regularized kernel. The power function is determined by the

SNR Ψ(dn), which can be written as Ψ(dn) = n
∑∞

m=1 λnmb
2
nm/(σ

2σTn), where

bnm = E{dn(X)ψnm(X)} is the projection of dn(X) onto the mth eigenfunction

ψnm(X) of Kn,θ. We observe that the numerator of Ψ(dn) (the signal part) is de-

termined by the magnitude of the eigenvalues λnm and the projections bnm. For

a given set of eigenfunctions {ψnm(x)}∞m=1 and a function dn(x), the projections

bnm are fixed. To increase the numerator of Ψ(dn), one could adjust the eigen-

values λnm associated with the projection bnm so that larger nonzero projections

receive higher weights than small projections do.

To adjust the eigenvalues of the kernel without changing the eigenfunctional

space, we introduce a regularized kernel in the following. For any centralized

kernel matrix K, define the regularized kernel matrix KR,γ as
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KR,γ = K−K(nγI + K)−1K. (4.2)

A similar version in a two-sample problem was discussed in Eric, Bach and

Harchaoui (2008). Let KR,γ be the kernel function corresponding to the kernel

matrix KR,γ . It can be proved (see Lemma 4 in the Supplementary Material) that

the eigenfunctions of the kernel function KR,γ are still {ψnm(X)}∞m=1, which are

the same as those of Kn,θ. However, the corresponding eigenvalues of KR,γ are

{γλnm/(λnm + γ)}∞m=1. According to the definition of the RKHS HK in Section

2, the space HK is mainly determined by the eigenfunctions and eigenvalues.

As a result, the function smoothness in the RKHS defined by the regularized

kernel could be different to that in the space defined by the unregularized kernel.

However, similarly to the kernel selection in the last subsection, note that the

regularization does not change the RKHS that generates the true function h(·).
It is mainly designed to improve the power of the proposed test.

We now show how a regularized kernel KR,γ can improve the power of the

proposed test. To see the point, we compare the SNRs Ψ(dn) and ΨR(dn, γ)

corresponding to the kernels Kn,θ and KR,γ , respectively. Let Cn = n/(
√

2σ2).

Then, we have

Ψ(dn) = Cn

∑∞
m=1 λnmb

2
nm√∑∞

m=1 λ
2
nm

and ΨR(dn, γ) = Cn

∑∞
m=1 λnmb

2
nm/(λnm + γ)√∑∞

m=1 λ
2
nm/(λnm + γ)2

. (4.3)

By comparing the above two expressions, we see that supγ ΨR(dn, γ) ≥ Ψ(dn).

Because

ΨR(dn, γ) = Cn

∑∞
m=1 λnmb

2
nm/(λnm/γ + 1)√∑∞

m=1 λ
2
nm/(λnm/γ + 1)2

→ Ψ(dn) as γ →∞,

the regularized kernel KR,γ is the same as the unregularized kernel Kn,θ if γ →∞.

Thus, the introduction of the regularization parameter γ allows us to strike a

balance between the numerator and the denominator so that ΨR(dn, γ) is larger

than Ψ(dn) for some γ.

To select the best regularization parameter γ, it is natural to consider max-

imizing the SNR ΨR(dn, γ). That is, γ̂ = argmaxγ∈SΨ̂R(dn, γ), where S =

{s1, . . . , sB} is a set of positive candidate regularization parameters ordered in

increasing order. Note that the denominator of ΨR(dn, γ) in (4.3) goes to infinity

and the numerator of the SNR in (4.3) increases as γ → 0. A reasonable esti-

mate for the numerator of (4.3) should be nondecreasing as γ → 0. However,

the numerator may not be well estimated if the sample size is small. We there-

fore propose a modification to the above approach. Let s∗l ∈ S be the smallest
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regularization parameter in S such that δ̂K,γ(dn), the numerator of ΨR(dn, γ),

achieves its maximum value in S. We then focus on the tuning parameters that

are larger than s∗l in the set of S. Given the samples, we can find the optimal

tuning parameter by maximizing the following criterion:

γ̂ = argmax
γ∈{s∗l ,...,sB}

Ψ̂R(dn, γ). (4.4)

For the stability selection consideration, we propose the following procedure

to select the tuning parameter γ:

1. Randomly divide the sample {Yi,Xi}ni=1 into L parts with equal sample

sizes.

2. We drop the lth (l = 1, 2, . . . , L) part of the sample, select the tuning

parameter γ̂l using the remaining L−1 parts of the sample based on criterion

(4.4).

3. Repeat step 2 for l = 1, . . . , L. The stabilized tuning parameter is defined

as γ̃ = median{γ̂1, . . . , γ̂L}.

The simulation studies in Section 5 demonstrate that the above tuning parameter

selection method works well in practice. For the regularization parameter γ,

we recommend choosing an interval that satisfies the conditions of Theorem 3

in the Supplementary Material, and then selecting a sequence of values that

are discrete uniformly distributed within an appropriate interval to perform the

stability selection procedure described above. Based on our experience in the

simulations, one could choose L between four to eight. Please refer to Section 5.2

for more details. For a given candidate set S = {s1, . . . , sB} for the regularization

parameter γ, define S∗ = {s∗l , . . . , sB} ⊂ S as the set of regularization parameters

used in (4.4). Let γ̃ = argmaxγ∈S∗ΨR(dn, γ) and |S∗| be the cardinality of the set

S∗. If the regularized kernels corresponding to γ̃ and |S∗| satisfy the conditions

in (C5), then the proposed kernel regularization method also has the consistency

established in Proposition 1.

The regularization is most effective in the “sparse” case, in which the nonzero

projections reside only in the first N coordinates corresponding to the N largest

eigenvalues. In Section S2 of the Supplementary Material, we show that the SNR

ΨR(dn, γ
∗) of the proposed test with a regularized kernel can attain the SNR of

an oracle test within a factor of a slowly varying function log(N).
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5. Simulation Study

The simulation studies were designed to evaluate the finite-sample perfor-

mance of the proposed test for high-dimensional and functional covariates, kernel

selection, and regularization methods. We simulated i.i.d. samples {Xi, Yi}ni=1

from the following model:

Yi = µ+ h(Xi) + εi, i = 1, . . . , n, (5.1)

where the random error εi was simulated from N(0, 1) or Laplace(0,
√

2/2). We

considered both high-dimensional and functional covariates X. To generate high-

dimensional X, we first generated a p-dimensional normally distributed random

vector Z with mean zero and covariance Σ = (0.6|i−j|)pi,j=1. Then, we obtained

the covariates X = (X1, . . . , Xp)
T by setting the jth component using Xj =

Fnj(Zj), for j = 1, . . . , p. Here, Fnj is the empirical cumulative distribution of

the jth component given by Fnj(z) = n−1
∑n

i=1 I(Zij ≤ z). To generate the func-

tional covariates X, we first generated a sequence of time points 0 < t1 < · · · <
tp < 1 uniformly from (0,1), and then generated Xj = X(tj) using the stochastic

process X(t) =
∑100

k=1(2ω2k−1)
1/2η2k−1 cos(2kπt) +

∑100
k=1(2ω2k)

1/2η2k sin(2kπt),

where ωk = 20(k + 1.5)−3 and ηks are i.i.d. N(0, 1). We considered two settings

for the relationship between n and p: (i) p < n and (ii) p >> n, with n = 40, 60,

and 100. Specifically, p = (3, 5, 10) in setting (i), and p = (1500, 3000, 4500)

in setting (ii). All the results for evaluating the empirical power are based on

1,000 simulation replicates and those for the empirical size are based on 5,000

simulation replicates. To save space, the simulation results for setting (i) and

the simulation studies for the Laplace errors are presented in Section S3 of the

Supplementary Material. In all of our simulation and empirical studies, we used

the scaled chi-squared approximation discussed in Remark 2 after Theorem 1.

In particular, when the data dimension is low, we found that the chi-squared

approximation was more accurate than the normal approximation.

We wish to test H0 : h(·) = 0. To assess the empirical size of the pro-

posed test, we chose h(x) = 0 under H0. To evaluate the empirical power, we

chose h(x) = hH(x) − E(hH) in setting (ii), where hH(x) = c1
∑100

k=1(−1)kxk +

c2
∑100

k=1{exp(−x2k/p)H2(xk/p)}+c3{x1x3+cos(x23)}, where Hk(·) is the kth-order

Hermite polynomial, and c1, c2, and c3 are constants specified below. In setting

(ii), we designed two scenarios with different values of c1, c2, and c3 for each set-

ting: S3 = {c1 = 0.1, c2 = 100, c3 = 0.1} and S4 = {c1 = 100u, c2 = 0.1u, c3 =

0.1u, u = 0.015}. In scenario S3, c2 are chosen to be much larger than c1 such

that the nonlinear parts dominate the functions. In S4, c1 are much larger than
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Table 1. Empirical size (in percentages) of the proposed test (Proposed) and the method
of Liu, Lin and Ghosh (2007) (LLD) for Gaussian errors with high-dimensional and
functional covariates using different kernels.

High-dimensional covariates Functional covariates

n = 40 n = 60 n = 100 n = 40 n = 60 n = 100

p method KE KL KG KE KL KG KE KL KG KE KL KG KE KL KG KE KL KG

1,500 Proposed 6.2 6.2 6.2 5.3 5.1 5.1 5.4 5.1 5.2 6.2 6.1 5.9 4.7 4.9 5.0 4.5 4.4 4.5

LLD 4.9 4.9 4.9 3.9 4.0 4.0 4.7 5.1 5.3 4.5 5.2 4.9 5.5 5.1 5.6 4.4 4.2 4.1

3,000 Proposed 6.4 6.3 6.3 5.2 5.1 5.2 5.9 5.6 5.3 5.6 5.0 5.2 5.5 5.2 5.5 5.1 5.1 5.0

LLD 4.1 4.0 4.0 5.0 4.5 4.6 5.9 5.6 5.6 4.2 4.1 4.2 5.5 5.1 5.5 4.7 4.9 4.8

4,500 Proposed 6.0 6.2 6.0 5.4 5.4 5.4 5.9 6.0 6.0 5.4 6.1 5.9 5.0 4.7 4.9 5.0 5.2 5.1

LLD 4.7 4.4 4.3 5.4 5.3 5.4 6.1 5.9 6.0 4.7 5.1 5.0 4.4 4.1 4.1 5.1 4.8 5.0

c2 so that the linear parts dominate.

Three types of commonly used kernels were compared in all the simulations:

the linear kernel KL(x,y) = xTy/θ, Gaussian kernel KG(x,y) = exp{−‖x −
y‖2/θ}, and the exponential kernel KE(x,y) = exp{−(‖x‖2 + 3‖x − y‖2 +

‖y‖2)/θ}. The tuning parameter θ was set to p to make the computation more

stable. This choice of θ is also closely related to the “median heuristic” used

in the machine learning literature (see Schölkopf, Smola and Bach (2002)). In

practice, one might also apply the proposed kernel selection method to select the

parameter θ0 > 0 in the tuning parameter θ with the form θ = pθ0. Further

discussion on the choice of θ can be found in Section S3.5 of the Supplementary

Material.

Table 1 summarizes the empirical sizes of the proposed test and the test

procedure (LLD) proposed by Liu, Lin and Ghosh (2007) for high-dimensional

and functional covariates. We see that both methods have similar empirical sizes

and can control the type-I errors reasonably well. Table 2 contains the empirical

power of the proposed test under setting (ii) with high-dimensional covariates.

Several observations are given below: 1) There is a clear difference in power

between the three types of kernels KE ,KG, and KL, especially when p and n

are relatively small. The power difference is particularly striking in Table S2

in the Supplementary Material. The power based on the exponential kernel is

higher than those using the other kernels. This is understandable, because the

nonlinear parts dominate the function hL(x) (see Section S3.1 in the Supplemen-

tary Material) and the exponential and Gaussian kernels contain richer nonlinear

eigenfunctions than that of the linear kernel, and can capture more information

nonlinear functions; 2) The power increases as the sample size increases in all the

cases; and 3) The proposed test is very robust to the change of error distributions.

Because the power patterns for the functional and high-dimensional covariates are
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Table 2. Empirical power (in percentages) of the proposed test (Proposed) and the
method of Liu, Lin and Ghosh (2007) (LLD) for Gaussian errors with dependent covari-
ates using different kernels under scenarios S3 and S4. The estimated theoretical power
is given in parentheses, and the percentage of a kernel being selected among the three
candidate kernels is displayed underneath.

S3 S4
n p method KE KL KG KE KL KG

40

1,500 Proposed 50.2(50.2) 47.2(47.9) 47.3(48.0) 57.7(55.5) 57.2(55.3) 57.3(55.4)

(83.9) (11.0) (5.1) (33.9) (33.0) (33.1)

LLD 43.6 42.7 42.8 50.7 51.5 51.7

3,000 Proposed 26.2(32.1) 25.7(31.7) 25.5(31.8) 39.0(41.5) 38.7(41.4) 39.1(41.5)

(52.1) (29.2) (18.7) (35.2) (36.9) (27.9)

LLD 20.8 21.1 21.1 32.8 34.8 34.8

4,500 Proposed 20.6(26.5) 20.6(26.4) 20.3(26.4) 29.4(35.4) 29.1(35.3) 29.5(35.3)

(39.2) (41.3) (19.5) (38.1) (39.7) (22.2)

LLD 16.1 15.4 15.5 25.4 26.0 26.0

60

1,500 Proposed 76.3(71.1) 74.1(68.6) 74.2(68.7) 84.4(78.5) 84.3(78.4) 84.2(78.4)

(91.8) (4.6) (3.6) (35.5) (34.8) (29.7)

LLD 73.4 71.9 71.8 83.0 83.9 83.7

3,000 Proposed 41.0(43.1) 40.0(42.5) 39.9(42.6) 62.1(59.8) 61.7(59.7) 62.1(59.7)

(60.0) (25.1) (14.9) (39.0) (32.5) (28.5)

LLD 36.3 36.7 36.6 59.2 59.2 59.2

4,500 Proposed 32.2(36.5) 31.8(36.2) 32.0(26.3) 51.3(50.6) 51.4(50.5) 50.9(50.6)

(46.5) (33.0) (20.5) (37.2) (36.7) (26.1)

LLD 29.9 29.2 29.4 48.2 48.1 47.9

100

1,500 Proposed 98.3(94.7) 97.7(93.3) 97.7(93.3) 99.8(98.2) 99.8(98.3) 99.8(98.3)

(98.2) (1.2) (0.6) (37.2) (34.9) (27.9)

LLD 98.3 97.6 97.6 99.7 99.7 99.7

3,000 Proposed 76.1(69.7) 75.0(68.9) 75.0(69.0) 94.7(88.8) 94.7(88.8) 94.7(88.8)

(70.3) (16.7) (13.0) (39.9) (31.1) (29.0)

LLD 74.2 74.3 74.5 93.9 94.3 94.3

4,500 Proposed 56.0(54.2) 55.7(53.9) 55.7(54.0) 85.4(77.9) 85.2(77.9) 85.2(77.9)

(52.2) (26.9) (20.9) (42.3) (30.7) (27.0)

LLD 53.6 53.5 53.6 83.0 83.4 83.4

very similar, we omit the power results for the functional covariates. Additional

simulation studies for p > n cases can be found in the Supplementary Material.

5.1. Kernel selection

We observed from Table 2 and Tables S2, S3, S5, S6, S7, and S9 in the

Supplementary Material that the empirical power of the test corresponding to

different kernels can be very different. This naturally motivated us to select a
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kernel to improve the performance of the test. We applied the kernel selection

method proposed in Section 4.1 to choose the optimal kernel among KE ,KG, and

KL for each simulation replicate.

We report the percentage of each kernel being selected in 1,000 simulation

replicates from among three candidate kernels KE ,KG, and KL. In almost all

cases in Table 2 and Tables S2, S3 S5, S6, S7, and S9 in the Supplementary

Material, the kernel selection method chooses the kernel with the highest power.

This shows that the proposed kernel selection method works very well in selecting

the optimal kernel. When the power of the different kernels was similar, the

percentages were evenly distributed among the three kernels. To further confirm

the validity of the proposed kernel selection method, for each simulation replicate,

we estimated the theoretical power of the test using (4.1) for each kernel KE ,KL,

and KG. In Table 2 and Tables S2, S3 S5, S6, S7, and S9 in the Supplementary

Material, we report the mean of the estimated power for the three kernels based

on 1,000 simulation replicates. We observe that the estimated theoretical power

is very close to the empirical power. In summary, the proposed kernel selection

method is reliable for practical use.

5.2. Regularization

To show the impact of the kernel regularization on the power improvement,

we generated data according to model (5.1), where the random error ε follows

a Laplace distribution, and the covariates Xi are i.i.d. random vectors with

independently Uniform (0,1) components. The function h(x) was chosen to be

zero under H0. Under the alternative, we chose h(x) = hH(x), with the constants

c1, c2, and c3 set according to scenario S3. In this simulation, the sample size

was n = 60 and the data dimension was p = 200. All the simulation results

reported in this part are based on 1,000 simulation replicates. To understand the

computational cost for the proposed tests with and without regularized kernels,

we also summarize the mean and standard deviation of the computation time in

Section S3.6 in the Supplementary Material.

For each kernel KE , KL, and KG, we constructed the regularized kernels

with the regularization parameter γ using (4.2). We selected a sequence of reg-

ularization parameters of different orders (γ = 10−a/n, a ∈ (−5, 2)) to check

their effects on the empirical power. For each regularization parameter value, we

constructed the corresponding regularized test statistic and applied the test to

data generated under H0 and H1. The simulation results for KL and KG are

summarized in Section S3.4 in the Supplementary Material.

Figure 1 shows the empirical power and size of the proposed test using the
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Figure 1. The empirical power (left panel) and size (right panel) for regularized kernels,
where the vertical purple lines in the left panel denote the first, second, and third quantiles
of the selected regularization parameters among 1,000 simulation replicates. For each
replicate, the regularization parameter was selected by the method introduced in Section
4.2.

regularized kernel KR,γ . The x-axis represents the − log10(γ), and the y-axis is

the empirical power or size. The power with large regularization parameters γ is

not displayed in the graph to enable a better view for small γ. When γ is large

− log10(γ) ∈ (−3.222, 1.778), not shown in Figure 1, the power of the test was the

same as that using non-regularized kernels (0.769 for KE), and then started to

grow slowly. For − log10 γ ∈ (1.778, 3.778), the power peak (0.810 for KE) of the

proposed test can be observed for all three kernels. It can be seen from Figure 1

that the empirical size of the regularized test is reasonably controlled.

To evaluate the method for selecting the regularization parameters proposed

in Section 4.2, we also mark the regularization parameter selection results in

Figure 1. The three vertical lines correspond to the first quantile (Q1), median,

and third quantile (Q3), respectively, of the stabilized γ̃ obtained from the 1,000

simulation replicates, where L = 5 was chosen in the stability selection. It can

be seen from Figure 1 that the vertical lines are all very close to where the

maximum power is achieved. This suggests that the proposed regularization

selection method can locate the optimal regularization parameter to maximize

the power of the proposed test.

6. An Empirical Study

We applied the proposed test to a Yorkshire gilt data set to find gene sets

that are associated with triiodothyronine (T3), which is an important thyroid

hormone affecting growth and metabolism in the body. A total of 24,123 gene

expressions were measured using liver tissues for 24 six-month-old Yorkshire gilts,
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whose T3 levels in blood were also recorded. All the genes in the Yorkshire gilt

data set were classified into 6,176 gene ontology (GO) terms (gene sets), where

each gene could be assigned to several GO terms according to its gene attributes

in one of three domains: cellular component, molecular function, and biological

process. More details about the data set can be found in Lkhagvadorj et al.

(2009).

Let Yi and X
(k)
i = (X

(k)
i1 ,X

(k)
i2 , . . . ,X

(k)
ipk

)T be the measure of the T3 level for

the ith gilt and the standardized gene expression vector of the kth GO term for the

ith gilt, respectively, where pk is the total number of genes in the kth GO term.

Among the 6,176 GO terms, 560 have pk larger than the sample size 24, with

first quantile 36.75, median 60, third quantile 125.25, and maximum 5,158. Our

proposed methods work for both pk > n and pk < n cases. Simulation studies for

pk > n cases are reported in Section 5 and Section S3 in the Supplementary Mate-

rial, and simulation studies for pk < n are included in Tables S1–S3 in Section S3

of the Supplemental Material. We considered the following nonparametric regres-

sion model Yi = µ(k) +h(k)(X
(k)
i )+ ε

(k)
i , for i = 1, . . . , 24 and k = 1, . . . , 6176. For

the kth GO term, we are interested in testing H0 : h(k)(·) = 0 vs. H1 : h(k)(·) 6= 0.

To apply our proposed kernel selection and regularization procedure, we

applied the multiple splitting procedure in Meinshausen, Meier and Bühlmann

(2009) to avoid double dipping. We randomly split the sample B = 50 times. For

each split, the first half of the sample was used to search for the best combination

of kernel function and regularization parameter γ using our proposed methods in

Section 4. The second half was used to perform the proposed hypothesis testing

based on the selected regularized kernel from the first half. Specifically, we con-

sidered four different centralized kernels: the exponential kernel KE , Gaussian

kernel KG, linear kernel KL, and polynomial kernel KP , where KE ,KG, and KL

are defined in Section 5, and KP (xi,xj) = (xTi xj/θ)
2 and θ was set as the dimen-

sion of X for each kernel. The regularization parameter γ was set as 10a, where

a ∈ {−3.00,−2.95, . . . , 4.95, 5}. For each GO term, we obtained B p-values from

B subsamples. These B p-values were then aggregated into one p-value using the

empirical quantile function of p-values (see Meinshausen, Meier and Bühlmann

(2009)). For comparisons, we also applied LLD (Liu, Lin and Ghosh (2007)) with

the same centralized kernels. After controlling the false discovery rate at level

0.01 (Storey and Tibshirani (2003)), the proposed method declared 58 statisti-

cally significant GO terms, while the LLD test only identified 13 significant GO

terms using the centralized Gaussian kernel. However, the LLD method with the

exponential, linear, and polynomial kernels did not find any significant GO terms.

This indicates the advantages of the proposed approach. The two methods share



UNIFIED TESTS FOR NONPARAMETRIC FUNCTIONS IN RKHS 941

five of the significant GO terms discovered.

7. Discussion

We have modeled the joint effect of high-dimensional or functional covariates

in a set using a nonparametric function in an RKHS. We have addressed a funda-

mental question about testing nonparametric functions of high-dimensional data,

without assuming any model structures. We proposed a nonparametric test for

assessing the significance of a nonparametric function. In contrast to previous in-

vestigations, our method can be applied to both high-dimensional and functional

data. We derived the asymptotic distributions of the test statistic under the null

hypothesis and a sequence of local alternative hypotheses, and found the explicit

effects of kernel functions and types of covariates on the asymptotic distributions.

Based on the obtained explicit power function, we proposed a kernel selec-

tion method designed to improve the power of the proposed test. Moreover, we

introduced a test with the regularized kernel that can further improve the power

and enhance the dimensionality the test can handle. It was shown that the regu-

larized kernel plays a similar role to that of a re-weighting method that adds large

weights to nonzero projections of the nonparametric function to the orthogonal

bases of the RKHS. With a properly chosen regularization parameter, we demon-

strated that the proposed test can achieve almost the same power as the oracle

test. A practical method for selecting regularization parameters was also intro-

duced. Our method was motivated and further demonstrated by a genomic study.

However, it can be broadly applied to other areas in which high-dimensional or

functional data are routinely generated.

Supplementary Material

Technical proofs, more details about the regularized kernel and its oracle

property, and some additional simulation results are included in the Supple-

mentary Material. An associated R package “KerUTest” is available on https:

//github.com/hetao12/KerUTest.
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