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Abstract: In this paper, we investigate and give a closed-form expression of the

degrees of freedom (dof) of penalized ℓ1 minimization (also known as the Lasso) for

linear regression models. Namely, we show that for any given Lasso regularization

parameter λ and any observed data y belonging to a set of full (Lebesgue) measure,

the cardinality of the support of a particular solution of the Lasso problem is an

unbiased estimator of the degrees of freedom. This is achieved without the need of

uniqueness of the Lasso solution. Thus, our result holds true for both the under-

determined and the overdetermined case; the latter was originally studied in Zou,

Hastie, and Tibshirani (2007). We also show, by providing a simple counterexam-

ple, that although the dof theorem of Zou, Hastie, and Tibshirani (2007) is correct,

their proof contains a flaw since their divergence formula holds on a different set of

a full measure than the one that they claim. An effective estimator of the number

of degrees of freedom may have several applications including an objectively guided

choice of the regularization parameter in the Lasso through the SURE framework.

Our theoretical findings are illustrated through several numerical simulations.
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1. Introduction

1.1. Problem statement

We consider the linear regression model

y = Ax0 + ε, µ = Ax0, (1.1)

where y ∈ Rn is the observed data, A = (a1, · · · , ap) is an n × p design matrix,

x0 =
(
x01, · · · , x0p

)T
is the vector of unknown regression coefficients, and ε is a

vector of i.i.d. centered Gaussian random variables with variance σ2 > 0. In

this paper, the number of observations n can be greater than p, the dimension of

the regression vector to be estimated. When n < p, (1.1) is an underdetermined

linear regression model, and when n ≥ p and all the columns of A are linearly

independent, it is overdetermined.
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Let x̂(y) be an estimator of x0, and µ̂(y) = Ax̂(y) be the associated response

or predictor. The concept of degrees of freedom plays a pivotal role in quantifying

the complexity of a statistical modeling procedure. More precisely, since y ∼
N (µ = Ax0, σ2Idn×n) (Idn×n is the identity on Rn), according to Efron (1986),

the degrees of freedom (dof) of the response µ̂(y) is defined by

df =

n∑
i=1

Cov (µ̂i(y), yi)

σ2
. (1.2)

Many model selection criteria involve df , e.g. Cp (Mallows Mallows (1973)), AIC

(Akaike Information Criterion, Akaike (1973)), BIC (Bayesian Information Cite-

rion, Schwarz (1978)), GCV (Generalized Cross Validation, Craven and Wahba

(1979)), and SURE (Stein’s unbiased risk estimation Stein (1981), see Sect. 2.2).

Thus, the dof is a quantity of interest in model validation and selection, and

it can be used to get the optimal hyperparameters of the estimator. Note that

the optimality here is intended in the sense of the prediction µ̂(y) and not the

coefficients x̂(y).

The well-known Stein’s lemma Stein (1981) states that if y 7→ µ̂(y) is weakly

differentiable then its divergence is an unbiased estimator of its degrees of free-

dom,

d̂f(y) = div(µ̂(y)) =
n∑

i=1

∂µ̂i(y)

∂yi
, and E(d̂f(y)) = df . (1.3)

Here, in order to estimate x0, we consider solutions to the Lasso problem,

originally proposed in Tibshirani (1994). The Lasso amounts to solving the

following convex optimization problem

min
x∈Rp

1

2
∥y −Ax∥22 + λ∥x∥1, (P1(y, λ))

where λ > 0 is called the Lasso regularization parameter and ∥ · ∥2 (resp. ∥ · ∥1)
denotes the ℓ2 (resp. ℓ1) norm. An important feature of the Lasso is that it

promotes sparse solutions. In the last years, there has been a huge amount of

work in which efforts have focused on investigating the theoretical guarantees of

the Lasso as a sparse recovery procedure from noisy measurements. See, e.g., Fan

and Li (2001); Peng and Fan (2004); Zhao and Yu (2006); Zou (2006); Ravikumar

et al. (2008); Nardi and Rinaldo (2008); Osborne, Presnell, and Turlach (2000a);

Efron et al. (2004); Fuchs (2004); Tropp (2006), to name just a few.

1.2. Contributions and related work

Let µ̂λ(y) = Ax̂λ(y) be the Lasso response vector, where x̂λ(y) is a solution

of the Lasso problem (P1(y, λ)). Note that all minimizers of the Lasso share the
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same image under A, i.e. µ̂λ(y) is uniquely defined; see Lemma 2 in Section 5

for details. Our main contribution is to provide an unbiased estimator of the

degrees of freedom of the Lasso response for any design matrix. The estimator

is valid everywhere except on a set of (Lebesgue) measure zero. We reach our

goal without additional assumptions to ensure uniqueness of the Lasso solution.

Thus, our result covers the challenging underdetermined case where the Lasso

problem does not necessarily have a unique solution. It obviously holds when

the Lasso problem (P1(y, λ)) has a unique solution and, in particular, in the

overdetermined case originally studied in Zou, Hastie, and Tibshirani (2007).

Using the estimator at hand, we also establish the reliability of the SURE as an

unbiased estimator of the Lasso prediction risk.

While this paper was submitted, we became aware of the independent work

of Tibshirani and Taylor Tibshirani and Taylor (2012), who studied the dof for

general A both for the Lasso and the general (analysis) Lasso.

Section 3 is dedicated to a thorough comparison and discussion of connections

and differences between our results and the one in Zou, Hastie, and Tibshirani

(2007, Thm. 1) for the overdetermined case, and that of Kato (2009); Tibshirani

and Taylor (2012); Vaiter et al. (2011) for the general case.

1.3. Overview of the paper

This paper is organized as follows. In Section 2, we state our main result.

We provide an unbiased estimator of the dof of the Lasso, and we investigate the

reliability of the SURE estimate of the Lasso prediction risk. Then, we discuss our

work in relation to the literature in Section 3. Numerical illustrations are given

in Section 4. The proofs of our results are postponed to Section 5. Conclusions

are drawn and some perspectives of this work are provided in Section 6.

2. Main Results

2.1. An unbiased estimator of the dof

Some notations and definitions are necessary. For any vector x, xi denotes its

ith component. The support (or the active set) of x is I = supp(x) = {i : xi ̸= 0} .
and we denote its cardinality as |supp(x)| = |I|. We denote by xI ∈ R|I| the

vector built by restricting x to the entries indexed by I. The active matrix

AI = (ai)i∈I associated to a vector x is obtained by selecting the columns of A

indexed by the support I of x. Let ·T denote the transpose. If AI is full column

rank, then we denote its Moore-Penrose pseudo-inverse by A+
I = (AT

I AI)
−1AT

I .

The sign function has sign(a) = 1 if a > 0; sign(0) = 0; sign(a) = −1 if a < 0.

For any I ⊆ {1, 2, · · · , p}, let VI = span(AI), PVI
the orthogonal projector onto

VI , and PV ⊥
I

that onto the orthogonal complement V ⊥
I .
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Let S ∈ {−1, 1}|I| be a sign vector, and j ∈ {1, 2, · · · , p}. Fix λ > 0. We

define the collection of hyperplanes

HI,j,S = {u ∈ Rn : ⟨PV ⊥
I
(aj), u⟩ = ±λ(1− ⟨aj , (A+

I )
TS⟩)}. (2.1)

Note that, if aj does not belong to VI , then HI,j,S becomes a finite union of two

hyperplanes. Now, take the finite set of indices

Ω = {(I, j, S) : aj ̸∈ VI} , (2.2)

and let Gλ be the subset of Rn that excludes the finite union of hyperplanes

associated to Ω,

Gλ = Rn \
∪

(I,j,S)∈Ω

HI,j,S . (2.3)

Therefore, as
∪

(I,j,S)∈ΩHI,j,S is a set of (Lebesgue) measure zero (Hausdorff di-

mension n− 1), Gλ is a set of full measure.

We are now ready to state our main theorem.

Theorem 1. Fix λ > 0. For any y ∈ Gλ, let My,λ be the set of solutions of

(P1(y, λ)), and et x∗λ(y) ∈ My,λ with support I∗ such that AI∗ is full rank. Then

|I∗| = min
x̂λ(y)∈My,λ

|supp(x̂λ(y))|. (2.4)

Furthermore, there exists ε > 0 such that for all z ∈ Ball(y, ε), the n-dimensional

ball with center y and radius ε, the Lasso response mapping z 7→ µ̂λ(z) satisfies

µ̂λ(z) = µ̂λ(y) + PVI∗ (z − y). (2.5)

This theorem assumes the existence of a solution whose active matrix AI∗ is

full rank. This can be shown to be true; see e.g. Dossal (2007, Proof of Theorem

1) or Rosset, Zhu, and Hastie (2004, Thm. 3, Sec. B.1) It is worth noting that

this proof is constructive, in that it yields a solution x∗λ(y) of (P1(y, λ)) such

that AI∗ is full column rank from any solution x̂λ(y) whose active matrix has a

nontrivial kernel. This will be exploited in Section 4 to derive an algorithm to

get x∗λ(y), and hence I∗.

A direct consequence of Theorem 1 is that outside Gλ, the mapping µ̂λ(y) is

C∞ and the sign and support are locally constant. Applying Stein’s lemma one

has that the number of nonzero coefficients of x∗λ(y) is an unbiased estimator of

the dof of the Lasso.
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Corollary 1. Under the assumptions and with the same notations as in Theo-

rem 1, we have the divergence formula

d̂fλ(y) := div(µ̂λ(y)) = |I∗|. (2.6)

Therefore,

df = E(d̂fλ(y)) = E (|I∗|). (2.7)

Obviously, in the particular case where the Lasso problem has a unique

solution, our result holds true.

2.2. Reliability of the SUREestimate of the Lasso prediction risk

In this work, we focus on the SURE as a model selection criterion. For the

Lasso,

SURE(µ̂λ(y)) = −nσ2 + ∥µ̂λ(y)− y∥22 + 2σ2d̂fλ(y), (2.8)

where d̂f(y) is an unbiased estimator of the dof as given in Corollary 1. It follows

that SURE(µ̂λ(y)) is an unbiased estimate of the prediction risk,

MSE (µ) = E
(
∥µ̂λ(y)− µ∥22

)
= E (SURE(µ̂λ(y))) .

We now evaluate its reliability by computing the expected squared-error between

SURE(µ̂λ(y)) and SE(µ̂λ(y)), the true squared-error, that is

SE(µ̂λ(y)) = ∥µ̂λ(y)− µ∥22. (2.9)

Theorem 2. Under the assumptions of Theorem 1, we have

E
(
(SURE(µ̂λ(y))−SE(µ̂λ(y)))

2
)
=−2σ4n+4σ2E

(
∥µ̂λ(y)− y∥22

)
+4σ4E (|I∗|) .

(2.10)

Moreover,

E

((
SURE(µ̂λ(y))− SE(µ̂λ(y))

nσ2

)2
)

= O

(
1

n

)
. (2.11)

3. Relation to Prior Work

3.1. Overdetermined case

Zou, Hastie, and Tibshirani (2007) studied the dof of the Lasso in the overde-

termined case. Precisely, when n ≥ p and all the columns of the design matrix

A are linearly independent, rank(A) = p. In fact, in this case the Lasso problem

has a unique minimizer x̂λ(y) = x∗λ(y) (see Theorem 1).

Before discussing the result of Zou, Hastie, and Tibshirani (2007), we point

out a popular feature of x̂λ(y) as λ varies in ]0,+∞[. For λ ≥ ∥ATy∥∞, the
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optimum is attained at x̂λ(y) = 0. The interval
]
0, ∥ATy∥∞

[
is divided into

a finite number of subintervals characterized by the fact that within each such

subinterval, the support and the sign vector of x̂λ(y) are constant. Explicitly, let

(λm)0≤m≤K be the finite sequence of λ’s values corresponding to a variation of

the support and the sign of x̂λ(y), defined by

∥ATy∥∞ = λ0 > λ1 > λ2 > · · · > λK = 0.

Thus, in ]λm+1, λm[, the support and the sign of x̂λ(y) are constant, see Efron

et al. (2004); Osborne, Presnell, and Turlach (2000a,b). Hence, we call (λm)0≤m≤K

the transition points.

Now, let λ ∈]λm+1, λm[. From Lemma 1 (see Section 5), we have the following

implicit form of x̂λ(y),

(x̂λ(y))Im = A+
Im

y − λ(AT
ImAIm)

−1Sm, (3.1)

where Im and Sm are, respectively, the (constant) support and sign vector of

x̂λ(y) for λ ∈]λm+1, λm[. Hence, based on (3.1), Zou, Hastie, and Tibshirani

(2007) showed that for all λ > 0, there exists a set of measure zero Nλ, a finite

collection of hyperplanes in Rn with

Kλ = Rn \ Nλ . (3.2)

λ is not any of the transition points ∀ y ∈ Kλ.

Then, for the overdetermined case, Zou, Hastie, and Tibshirani (2007) stated

that the number of nonzero coefficients of the unique solution of (P1(y, λ)) is an

unbiased estimator of the dof. The dof estimator formula is valid for all y ∈ Kλ.

In fact, their main argument is that, by eliminating the vectors associated to

the transition points, the support and the sign of the Lasso solution are locally

constant with respect to y, see Zou, Hastie, and Tibshirani (2007, Lemma 5).

We recall that the overdetermined case, considered in Zou, Hastie, and Tib-

shirani (2007), is a particular case of our result since the minimizer is unique.

Thus, according to the Corollary 1, we find the same result as Zou, Hastie, and

Tibshirani (2007) but valid on a different set y ∈ Gλ = Rn \
∪

(I,j,S)∈ΩHI,j,S . A

natural question arises: can we compare our assumption to that of Zou, Hastie,

and Tibshirani (2007) ? In other words, is there a link between Kλ and Gλ ?

The answer is that, depending on the matrix A, these two sets may be

different. More importantly, it turns out that although the dof formula of Zou,

Hastie, and Tibshirani (2007, Thm. 1) is correct, their proof contains a flaw since

their divergence formula is not true on the set Kλ. We prove this by providing a

simple counterexample.
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Example of vectors in Gλ but not in Kλ

Let {e1, e2} be an orthonormal basis of R2 and a1 = e1 and a2 = e1 + e2,

with A the matrix whose columns are a1 and a2.

Take I = {1}, j = 2, and S = 1. It turns out that A+
I = a1 and

⟨(A+
I )

TS, aj⟩ = 1, which implies that for all λ > 0,

HI,j,S = {u ∈ Rn : ⟨PV ⊥
I
(aj), u⟩ = 0} = span(a1) .

Let y = αa1 with α > 0, for any λ > 0, y ∈ HI,j,S (or, equivalently here, y /∈ Gλ).

Using Lemma 1 (see Section 5), one gets that for any λ ∈]0, α[, the solution of

(P1(y, λ)) is x̂λ(y) = (α − λ, 0) and that for any λ ≥ α, x̂λ(y) = (0, 0). Hence

the only transition point is λ0 = α. It follows that for λ < α, y belongs to Kλ,

but y /∈ Gλ, see Figure 1.

We prove then that in any ball centered at y, there exists a vector z1 such

that the support of the solution of (P1(z1, λ)) is different from the support of

(P1(y, λ)). Choose λ < α and ε ∈]0, α − λ[ and take z1 = y + εe2. From

Lemma 1 (see Section 5), one deduces that the solution of (P1(z1, λ)) is x̂λ(z1) =

(α− λ− ε, ε) whose support is different from that of x̂λ(y) = (α− λ, 0).

More generally, when there are sets {I, j, S} such that ⟨(A+
I )

TS, aj⟩ = 1, a

difference between the two sets Gλ and Kλ may arise. Clearly, Gλ is not only

the set of transition points associated to λ.

Thus, in this specific situation, for any λ > 0 there may exist some vectors y

that are not transition points, associated to λ, where the support of the solution

of (P1(y, λ)) is not stable to infinitesimal perturbations of y. This situation may

occur in under or overdetermined problems. In summary, even in the overdeter-

mined case, excluding the set of transition points is not sufficient to guarantee

stability of the support and sign of the Lasso solution.

Note that recently, in the overdetermined, the author in Zhang (2010) also

proved that the cardinality of the support is an unbiased estimator of the dof of

the Lasso (as a corollary of a more general result for sparsity penalties including

some concave ones). However, there is not an explicit characterization of the set

outside which the dof estimate formula is valid, nor reference to Zou, Hastie, and

Tibshirani (2007).

3.2. General case

Kato (2009) studied the degrees of freedom of a generalization of the Lasso

where the regression coefficients are constrained to a closed convex set. When

the latter is a ℓ1 ball and p > n, he proposes the cardinality of the support as an

estimate of df , but under a restrictive assumption on A under which the Lasso

problem has a unique solution.
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Figure 1. A counterexample for n = p = 2 of vectors in Gλ but not in Kλ.
See text for a detailed discussion.

Tibshirani and Taylor (2012, Thm. 2) proved that

df = E(rank(AI))

where I = I(y) is the active set of any solution x̂λ(y) to (P1(y, λ)). This coincides

with Corollary 1 when AI is full rank with rank(AI) = rank(AI∗). Note that

in general, there exist vectors y ∈ Rn where the smallest cardinality among

all supports of Lasso solutions is different from the rank of the active matrix

associated to the largest support. But these vectors are precisely those excluded

in Gλ. In the case of the generalized Lasso (also known as analysis sparsity

prior in the signal processing community), Vaiter et al. (2011, Corollary 1) and

Tibshirani and Taylor (2012, Thm. 3) provide a formula of an unbiased estimator

of df . This formula reduces to that of Corollary 1 when the analysis operator is

the identity.

4. Numerical Experiments

4.1. Experiment description

In this section, we support the validity of our main theoretical findings with

some numerical simulations, by checking the unbiasedness and the reliability of

the SURE for the Lasso.

For our first study, we considered two kinds of design matrices A, a random

Gaussian matrix with n = 256 and p = 1, 024 whose entries are ∼iid N (0, 1/n),

and a deterministic convolution design matrixA with n = p = 256 and a Gaussian

blurring function. The original sparse vector x0 was drawn randomly according

to a mixed Gaussian-Bernoulli distribution, such that |supp(x0) = 15|. For each
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Figure 2. The SURE and its reliability as a function of λ for two types of
design matrices: (a) Gaussian; (b) Convolution. For each design matrix, we
associate three plots.

design matrix A and vector x0, we generated K = 100 independent replications

yk ∈ Rn of the observation vector according to the linear regression model (1.1).

Then, for each yk and a given λ, we computed the Lasso response µ̂λ(y
k) using the

iterative soft-thresholding algorithm Daubechies, Defrise, and Mol (2004)1 , and

we computed SURE(µ̂λ(y
k)) and SE(µ̂λ(y

k)). We then computed the empirical

mean and the standard deviation of
(
SURE(µ̂λ(y

k))
)
1≤k≤K

, the empirical mean

of
(
SE(µ̂λ(y

k))
)
1≤k≤K

, which corresponds to the computed prediction risk, and

we computed RT , the empirical normalized reliability on the left-hand side of

(2.10),

RT =
1

K

K∑
k=1

(
SURE(µ̂λ(y

k))− SE(µ̂λ(y
k))

nσ2

)2

. (4.1)

Moreover, based on the right-hand side of (2.10), we compute R̂T as

R̂T = − 2

n
+

4

n2σ2

(
1

K

K∑
k=1

(
∥µ̂λ(y

k)− yk∥22
))

+
4

n2

(
1

K

K∑
k=1

(|I∗|k)

)
(4.2)

where, at the kth replication, |I∗|k is the cardinality of the support of a Lasso

solution whose active matrix is full column rank as stated in Theorem 1. Finally,

1Iterative soft-thresholding through block-coordinate relaxation was proposed in Sardy, Bruce, and
Tseng (2000) for matrices A structured as the union of a finite number of orthonormal matrices.
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we repeated all these computations for various values of λ, for the two kinds of

design matrices considered above.

4.2. Construction of full rank active matrix

As stated in the discussion just after Theorem 1, in situations where the

Lasso problem has non-unique solutions and the minimization algorithm returns

a solution whose active matrix is rank deficient, one can construct an alterna-

tive optimal solution whose active matrix is full column rank, and then get the

estimator of the degrees of freedom.

More precisely, let x̂λ(y) be a solution of the Lasso problem with support I

such that its active matrix AI has a non-trivial kernel. The construction is as

follows:

1. Take h ∈ kerAI such that supph ⊂ I.

2. For t ∈ R, Ax̂λ(y) = A (x̂λ(y) + th) and the mapping t 7→ ∥x̂λ(y) + th∥1 is lo-

cally affine in a neighborhood of 0, i.e. for |t| < minj∈I |(x̂λ(y))j |/∥h∥∞. x̂λ(y)

being a minimizer of (P1(y, λ)), this mapping is constant in a neighborhood

of 0. We have then constructed a whole collection of solutions to (P1(y, λ))

having the same image and the same ℓ1 norm, which lives on a segment.

3. Move along h with the largest step t0 > 0 until an entry of x̂1λ(y) = x̂λ(y)+t0h

vanishes yielding supp(x̂1λ(y) + t0h) ( I.

4. Repeat this process to get a vector x∗λ(y) with a full column rank active matrix

AI∗ .

Note that this construction bears similarities with the one in Rosset, Zhu, and

Hastie (2004).

4.3. Results discussion

Figure 2 depicts the obtained results. For each design matrix, we associate a

panel containing three plots. From left to right, the first plot gives the SURE for

one realization of the noise as a function of λ. In the second graph, as a function

of the regularization parameter λ, the dashed curve is the calculated prediction

risk, the solid curve is the empirical mean of the SURE, and the shaded area is the

empirical mean of the SURE ± the empirical standard deviation of the SURE.

The latter confirms that the SURE is an unbiased estimator of the prediction

risk with a controlled variance. This suggests that the SURE is consistent, and

then so is our estimator of the degrees of freedom. In the third graph, the

solid and dashed blue curves are respectively RT and R̂T as a function of the

regularization parameter λ. This confirms numerically that both sides RT and

R̂T indeed coincide as predicted by (2.10).
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As discussed above, one of the motivations of having an unbiased estimator
of the degrees of freedom of the Lasso is to provide a data-driven objective way
for selecting the optimal Lasso regularization parameter λ. For this, one can
compute the optimal λ by minimizing the SURE

λoptimal = argmin
λ>0

SURE(µ̂λ(y)). (4.3)

In practice, this optimal value can be found either by a exhaustive search over
a fine grid or, alternatively, by any dicothomic search algorithm (e.g. golden
section) if λ 7→ SURE(µ̂λ(y)) is unimodal.

For our second simulation study, we considered a partial Fourier design ma-
trix with n < p and a constant underdeterminacy factor p/n = 4. x0 was again
simulated according to a mixed Gaussian-Bernoulli distribution with ⌈0.1p⌉ non-
zero entries. For each of three values of λ/σ ∈ {0.1, 1, 10} (small, medium and
large), we computed the prediction risk curve, the empirical mean of the SURE,
as well as the values of the normalized reliabilities RT and R̂T , as a function
of n ∈ {8, . . . , 1, 024}. The results are shown in Figure 3. For each value of λ,
the first plot (top panel) displays the normalized empirical mean of the SURE
(solid line) and its 5% quantiles (dotted) as well as the computed normalized
prediction risk (dashed). Unbiasedness is again clear whatever the value of λ.
The trend on the prediction risk (and average SURE) is in agreement with rates
known for the Lasso, see e.g., Bickel et al. (2009). The second plot confirms that
the SURE is an asymptotically reliable estimate of the prediction risk with the
rate established in Theorem 2. Moreover, as expected, the actual reliability gets
closer to the upper-bound (5.29) as the number of samples n increases.

5. Proofs

First of all, we recall some classical properties of any solution of the Lasso
(see, e.g., Osborne, Presnell, and Turlach (2000a); Efron et al. (2004); Fuchs
(2004); Tropp (2006)). To lighten the notation, we drop the dependency of the
minimizers of (P1(y, λ)) on either λ or y.

Lemma 1. x̂ is a (global) minimizer of the Lasso problem (P1(y, λ)) if, and only
if

1. AT
I (y −Ax̂) = λsign(x̂I), where I = {i : x̂i ̸= 0}, and

2. |⟨aj , y −Ax̂⟩| ≤ λ, ∀ j ∈ Ic,

where Ic = {1, . . . , p} \ I. Moreover, if AI is full column rank, then x̂ satisfies
the implicit relationship

x̂I = A+
I y − λ(AT

I AI)
−1sign(x̂I) . (5.1)
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Note that if the inequality in condition 2 above is strict, then x̂ is the unique

minimizer of the Lasso problem (P1(y, λ)) Fuchs (2004).

Lemma 2 shows the Lasso response µ̂λ(y) is well-defined as a single-valued

mapping of y, see Dossal (2007).

Lemma 2. If x̂1 and x̂2 are two solutions of (P1(y, λ)), then Ax̂1 = Ax̂2 =

µ̂λ(y).

Before delving into the technical details, we recall a trace formula for the

divergence. Let Jµ̂(y) be the Jacobian matrix of a mapping y 7→ µ̂(y)

(
Jµ̂(y)

)
i,j

:=
∂µ̂(y)i
∂yj

, i, j = 1, · · · , n. (5.2)

Then we can write

div (µ̂(y)) = tr
(
Jµ̂(y)

)
. (5.3)

Proof of Theorem 1. Let x∗λ(y) be a solution of the Lasso problem (P1(y, λ)),

and I∗ its support such that AI∗ is full column rank. Let (x∗λ(y))I∗ be the

restriction of x∗λ(y) to its support and S∗ = sign ((x∗λ(y))I∗). From Lemma 2 we

have

µ̂λ(y) = Ax∗λ(y) = AI∗(x
∗
λ(y))I∗ .

According to Lemma 1, we know that

AT
I∗(y − µ̂λ(y)) = λS∗;

|⟨ak, y − µ̂λ(y)⟩| ≤ λ,∀ k ∈ (I∗)c.

Furthermore, from (5.1), we get the implicit form of x∗λ(y)

(x∗λ(y))I∗ = A+
I∗y − λ(AT

I∗AI∗)
−1S∗. (5.4)

It follows that

µ̂λ(y) = PVI∗ (y)− λdI∗,S∗ , (5.5)

r̂λ(y) = y − µ̂λ(y) = PV ⊥
I∗
(y) + λdI∗,S∗ , (5.6)

where dI∗,S∗ = (A+
I∗)

TS∗. Let

J = {j : |⟨aj , r̂λ(y)⟩| = λ}. (5.7)

From Lemma 1 we deduce that I∗ ⊂ J. Since the orthogonal projection is a

self-adjoint operator and from (5.6), for all j ∈ J , we have

|⟨PV ⊥
I∗
(aj), y⟩+ λ⟨aj , dI∗,S∗⟩| = λ. (5.8)
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As y ∈ Gλ, we deduce that if j ∈ J ∩ (I∗)c then we necessarily have

aj ∈ VI∗ , and therefore |⟨aj , dI∗,S∗⟩| = 1. (5.9)

In fact, if aj ̸∈ VI∗ then (I∗, j, S∗) ∈ Ω and, from (5.8), we have that y ∈ HI∗,j,S∗ ,

which is a contradiction with y ∈ Gλ.

The collection of vectors (ai)i∈I∗ forms a basis of VJ = span(aj)j∈J . Now, suppose

that x̂λ(y) is another solution of (P1(y, λ)) such that its support I is different

from I∗. If AI is full column rank, then by using the same arguments as above

we can deduce that (ai)i∈I also forms a basis of VJ . Thus

|I| = |I∗| = dim(VJ).

On the other hand, if AI is not full rank, then there exists a subset I0 ( I such

that AI0 is full rank (see the discussion following Theorem 1) and (ai)i∈I0 also

forms a basis of VJ , which implies that

|I| > |I0| = dim(VJ) = |I∗|.

We conclude that for any solution x̂λ(y) of (P1(y, λ)), we have

|supp(x̂λ(y))| ≥ |I∗|,

and then |I∗| is the minimum of the cardinalities of the supports of solutions of

(P1(y, λ)). This proves the first part of the theorem.

For the second statement, note that Gλ is an open set and all components of

(x∗λ(y))I∗ are nonzero, so we can choose a small enough ε such that Ball(y, ε) (
Gλ. Now, let x1λ(z) be the vector supported in I∗

(x1λ(z))I∗ = A+
I∗z − λ(AT

I∗AI∗)
−1S∗ = (x∗λ(y))I∗ +A+

I∗(z − y). (5.10)

If ε is small enough, then for all z ∈ Ball(y, ε) we have

sign(x1λ(z))I∗ = sign(x∗λ(y))I∗ = S∗. (5.11)

For the rest, we invoke Lemma 1 to show that, for ε small enough, x1λ(z) is

actually a solution of (P1(z, λ)). First we notice that z − Ax1λ(z) = PV ⊥
I
(z) +

λdI∗,S∗ . It follows that

AT
I∗(z −Ax1λ(z)) = λAT

I∗dI∗,S∗ = λS∗ = λsign(x1λ(z))I∗ . (5.12)

Moreover for all j ∈ J ∩ I∗, from (5.9), we have that

|⟨aj , z −Ax1λ(z)⟩| = |⟨aj , PV ⊥
I∗
(z) + λdI∗,S∗⟩|

= |⟨PV ⊥
I∗
(aj), z⟩+ λ⟨aj , dI∗,S∗⟩|

= λ|⟨aj , dI∗,S∗⟩| = λ.
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and for all j /∈ J

|⟨aj , z −Ax1λ(z)⟩| ≤ |⟨aj , y −Ax∗λ(y)⟩|+ |⟨PV ⊥
I∗
(aj), z − y⟩|.

Since for all j /∈ J , |⟨aj , y−Ax∗λ⟩| < λ, there exists ε such that for all z ∈ Ball(y, ε)

and ∀ j /∈ J , we have

|⟨aj , z −Ax1λ(z)⟩| < λ.

Therefore, we obtain

|⟨aj , z −Ax1λ(z)⟩| ≤ λ,∀ j ∈ (I∗)c.

By Lemma 1, x1λ(z) is a solution of (P1(z, λ)) and the unique Lasso response

associated to (P1(z, λ)), denoted by µ̂λ(z), is

µ̂λ(z) = PVI∗ (z)− λdI∗,S∗ . (5.13)

Therefore, from (5.5) and (5.13), we can deduce that for all z ∈ Ball(y, ε) we

have

µ̂λ(z) = µ̂λ(y) + PVI∗ (z − y).

Proof of Corollary 1. We showed that there exists ε sufficiently small such

that

∥z − y∥2 ≤ ε ⇒ µ̂λ(z) = µ̂λ(y) + PVI∗ (z − y). (5.14)

Let h ∈ VI∗ such that ∥h∥2 ≤ ε and z = y + h. Thus we have that ∥z − y∥2 ≤ ε,

and then

∥µ̂λ(z)− µ̂λ(y)∥2 = ∥PVI∗ (h)∥2 = ∥h∥2 ≤ ε. (5.15)

Therefore, the Lasso response µ̂λ(y) is uniformly Lipschitz on Gλ. Moreover,

µ̂λ(y) is a continuous function of y, and thus µ̂λ(y) is uniformly Lipschitz on Rn.

Hence, µ̂λ(y) is almost differentiable; see Meyer and Woodroofe (2000) and Efron

et al. (2004).

On the other hand, we proved that there exists a neighborhood of y such

that for all z in this neighborhood, there exists a solution of the Lasso problem

(P1(z, λ)), that has the same support and the same sign as x∗λ(y), and thus µ̂λ(z)

belongs to the vector space VI∗ whose dimension is |I∗|, see (5.5) and (5.13).

Therefore, µ̂λ(y) is a locally affine function of y and

Jµ̂λ(y) = PVI∗ . (5.16)

Then the trace formula (5.3) implies that

div (µ̂λ(y)) = tr
(
PVI∗

)
= |I∗|. (5.17)
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This holds almost everywhere since Gλ is of full measure, and (2.7) is obtained

by invoking Stein’s Lemma.

Proof of Theorem 2. First, consider the random variable

Q1(µ̂λ(y)) = ∥µ̂λ(y)∥22 + ∥µ∥22 − 2⟨y, µ̂λ(y)⟩+ 2σ2div(µ̂λ(y)).

From Stein’s Lemma, we have

E ⟨ε, µ̂λ(y)⟩ = σ2E (div(µ̂λ(y))) .

Thus, we can deduce that Q1(µ̂λ(y)) and SURE(µ̂λ(y)) are unbiased estimator

of the prediction risk, i.e.

E (SURE(µ̂λ(y))) = E (Q1(µ̂λ(y))) = E (SE(µ̂λ(y))) = MSE (µ).

Moreover, note that SURE(µ̂λ(y))−Q1(µ̂λ(y)) = ∥y∥22 − E
(
∥y∥22

)
, where

E
(
∥y∥22

)
= nσ2 + ∥µ∥22, and V

(
∥y∥22

)
= 2σ4

(
n+ 2

∥µ∥22
σ2

)
. (5.18)

Now, we remark also that

Q1(µ̂λ(y))− SE(µ̂λ(y)) = 2
(
σ2div(µ̂λ(y))− ⟨ε, µ̂λ(y)⟩

)
. (5.19)

After an elementary calculation, we obtain

E (SURE(µ̂λ(y))− SE(µ̂λ(y)))
2 = E(Q1(µ̂λ(y))− SE(µ̂λ(y)))

2 + V
(
∥y∥22

)
+ 4T,

(5.20)

where

T = σ2E
(
div(µ̂λ(y))∥y∥22

)
− E

(
⟨ε, µ̂λ(y)⟩∥y∥22

)
= T1 + T2, (5.21)

with

T1 = 2
(
σ2E (div(µ̂λ(y))⟨ε, µ⟩)− E (⟨ε, µ̂λ(y)⟩⟨ε, µ⟩)

)
(5.22)

T2 = σ2E
(
div(µ̂λ(y))∥ε∥22

)
− E

(
⟨ε, µ̂λ(y)⟩∥ε∥22

)
. (5.23)

Hence, by using the fact that a Gaussian probability density φ(εi) satisfies

εiφ(εi) = −σ2φ′(εi) and integration by parts, we find that

T1 = −2σ2E (⟨µ̂λ, µ⟩)
and

T2 = −2σ4E (div(µ̂λ(y))) .
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It follows that

T = −2σ2
(
E (⟨µ̂λ, µ⟩) + σ2E (div(µ̂λ(y)))

)
. (5.24)

Moreover, from Luisier (2009, Property 1), we know that

E (Q1(µ̂λ(y))− SE(µ̂λ(y)))
2 = 4σ2

(
E
(
∥µ̂λ(y)∥22

)
+ σ2E

(
tr
((

Jµ̂λ(y)

)2)))
.

(5.25)

Since Jµ̂λ(y) = PVI∗ which is an orthogonal projector (hence self-adjoint and

idempotent), we have tr
((

Jµ̂λ(y)

)2)
= div(µ̂λ(y)) = |I∗|. Therefore, we get

E (Q1(µ̂λ(y))− SE(µ̂λ(y)))
2 = 4σ2

(
E
(
∥µ̂λ(y)∥22

)
+ σ2E (|I∗|)

)
. (5.26)

Furthermore, observe that

E (SURE(µ̂λ(y))) = −nσ2 + E
(
∥µ̂λ(y)− y∥22

)
+ 2σ2E (|I∗|) . (5.27)

By combining (5.18), (5.20), (5.24), and (5.26), we obtain

E (SURE(µ̂λ(y))− SE(µ̂λ(y)))
2 = 2nσ4 + 4σ2E (SE(µ̂λ(y)))− 4σ4E (|I∗|)
= 2nσ4 + 4σ2E (SURE(µ̂λ(y)))− 4σ4E (|I∗|)

(by using (5.27)) = −2nσ4 + 4σ2E
(
∥µ̂λ(y)− y∥22

)
+ 4σ4E (|I∗|) .

On the other hand, since x∗λ(y) is a minimizer of the Lasso problem (P1(y, λ)),

we observe that

1

2
∥µ̂λ(y)− y∥22 ≤

1

2
∥µ̂λ(y)− y∥22 + λ∥x∗λ(y)∥1 ≤

1

2
∥A.0− y∥22 + λ∥0∥1 =

1

2
∥y∥22.

Therefore,

E
(
∥µ̂λ(y)− y∥22

)
≤ E

(
∥y∥22

)
= nσ2 + ∥µ∥22. (5.28)

Then, since |I∗| = O(n) and from (5.28), we have

E

((
SURE(µ̂λ(y))− SE(µ̂λ(y))

nσ2

)2
)

≤ 6

n
+

4∥µ∥22
n2σ2

. (5.29)

Finally, since ∥µ∥2 < +∞, we can deduce that

E

((
SURE(µ̂λ(y))− SE(µ̂λ(y))

nσ2

)2
)

= O

(
1

n

)
.



826 C. DOSSAL, M. KACHOUR, M. J. FADILI, G. PEYRÉ AND C. CHESNEAU

6. Discussion

In this paper we proved that the number of nonzero coefficients of a particular

solution of the Lasso problem is an unbiased estimate of the degrees of freedom of

the Lasso response for linear regression models. This result covers both the over

and underdetermined cases. This was achieved through a divergence formula,

valid almost everywhere except on a set of measure zero. We gave a precise

characterization of this set, and it turns out to be larger than the set of all

the vectors associated to the transition points considered in Zou, Hastie, and

Tibshirani (2007) in the overdetermined case. We also highlight the fact that,

even in the overdetermined case, the set of transition points is not sufficient for

the divergence formula to hold.

We think that some techniques developed in this article can be applied to

derive the degrees of freedom of other nonlinear estimating procedures. Typically,

a natural extension of this work is to consider other penalties such as those

promoting structured sparsity, e.g. the group Lasso.
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