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Abstract: Since the time of Fisher and Yates, intense combinatorial study of bal-

anced incomplete block designs has led to a great many designs with the same

numbers of treatments, blocks, and block size. While the basic analysis does not

differentiate among different BIBDs with the same parameters, they do differ in

their capacity to withstand loss of experimental material. Competing BIBDs are

compared here for their robustness in terms of average loss and worst loss. A table

of most robust BIBDs is compiled. Two useful criteria are minimum intersection

aberration and minimum efficiency aberration.
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1. Introduction

Balanced incomplete block designs, or BIBDs, are popular as experimental

designs for several reasons. Like the randomized complete block designs, they

are variance balanced, that is, every normalized contrast is estimated with the

same variance. Amongst the binary block designs with block size k less than

number of treatments v, they are the only designs which are variance balanced

(Rao (1958)). BIBDs are universally optimal in the sense of Kiefer (1975), and

M-optimal in the sense of Bagchi and Bagchi (2001), and so, for instance, mini-

mize the average variance of elementary treatment contrasts over all competitors

with the same v, k, and number of blocks b. Because there is only one within-

blocks efficiency factor, recovery of interblock information is straightforward (e.g.,

Houtman and Speed (1983)). BIBDs are optimal designs under the mixed effects

model (Mukhopadhyay (1981)).

Recently there has been interest in investigating the robustness properties

of BIBDs. Should experimental difficulties arise causing loss of plots or entire

blocks, does the resulting residual design still behave well in a statistical sense?

Ghosh (1982) established that a BIBD remains connected after removal of any

r − 1 observations, or of any r − 1 blocks, where r = bk/v is the replication

number for the original BIBD. The paper by Lal, Gupta and Bhar (2001) gives a

comprehensive study on the A-efficiency of residual designs from several classes
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of block designs. Tables 1 and 3 in that paper summarize results for resid-

ual efficiencies when two plots (respectively, two blocks) are lost from any of

the designs in three published tables of BIBDs; relatively few cases show resid-

ual efficiency less than 80% of the original BIBD. Other robustness results can

be found in Baksalary and Tabis (1987), Das and Kageyama (1992) and Dey

(1993), including for designs other than BIBDs. A fundamental result due to

Bhaumik and Whittinghill (1991) will be explored later in this paper. The col-

lective conclusion of these papers is yes, BIBDs as a whole are fairly characterized

as robust. The case for BIBDs presented in the first paragraph is correspondingly

strengthened.

Nonetheless, the robustness work to now fails to address a very pragmatic

issue. Loss of experimental material in designed experiments is rarely expected;

rather, it is a somewhat low probability event that will not be the primary driver

of design selection. Given low probability for loss of units, the first objective is

to determine an optimal design for the selected b and k, irrespective of potential

losses. If there are then several designs meeting the optimality criteria, robustness

becomes the second objective: amongst the optimal designs, select the member

that is maximally robust.

Thus, having decided for many reasons to employ a BIBD with given v, b,

and k, which of the potentially large number of nonisomorphic competitors is

best? Neither theoretical results for BIBDs as a class, nor calculated results for

the individual BIBDs listed in particular tables, both available in the papers cited

above, tell an experimenter which BIBD for her parameter set is most robust.

This paper investigates that question from several angles, both theoretical and

computational, under loss of entire blocks. In accordance with the idea that

fewer losses have higher likelihood, and since all BIBDs for fixed (v, b, k) are

statistically equivalent for loss of one block, focus is first on loss of two blocks.

Symmetric (v = b) BIBDs for fixed (v, b, k) are statistically equivalent for loss of

two blocks, so in this case the primary study is for loss of three blocks. The most

robust BIBDs are tabled for up to 15 treatments and 15 replicates. The entirety

of this investigation is for the standard additive, homoscedastic model.

2. Information Matrices and other Preliminaries

Efficiency comparisons of block designs are made in terms of the treatments

information matrix in the within-blocks analysis (e.g., Shah and Sinha (1989,

Chap. 1)). For an arbitrary block design d this is

Cd = Diag(rd1, rd2, . . . , rdv) − NdDiag(k1, k2, . . . , kb)
−1N ′

d,

where rdi is the replication number for treatment i, kj the number of experimental

units in block j, and Nd = (ndij) is the treatment×block incidence matrix with
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entries the number of units in block j receiving treatment i. For a BIBD, Cd =

rI − [(r − λ)I + λJ ]/k where λ is the number of blocks common to every pair of

treatments. Of concern here is the information matrix for a residual design of a

BIBD d under loss of t blocks:

Cd(t) = Cd − Cd:t, (1)

where Cd:t is the v × v information matrix for the t lost blocks when viewed as a

design for v treatments. While Cd(t) certainly depends on the particular t blocks

lost, its trace does not.

Let Φ : Cd → ℜ be a measure of design quality, for which smaller is better.

Many such measures are based on the v − 1 positive eigenvalues zd1 ≤ zd2 ≤
· · · ≤ zd,v−1 of Cd. For instance, the average variance over the pairwise treat-

ment contrasts is proportional to ΦA(Cd) =
∑v−1

i=1 zdi
−1, called the A-value of

the design. The worst variance over all normalized contrasts is proportional to

ΦE(Cd) = zd1
−1, called the E-value. A general class of eigenvalue-based criteria

is Φf (Cd) =
∑v−1

i=1 f(zdi) where f is convex. An important criterion not a func-

tion of the eigenvalues is the worst (scaled) variance over the pairwise treatment

contrasts, ΦMV (Cd) = maxi6=i′ var(τ̂i − τi′)/σ
2, called the MV-value. All of these

criteria are scale free, that is, do not depend on the underlying error variance σ2.

Definition 1. The Φ(t)-efficiency of a residual of a BIBD is

Φ(t)-eff =
Φ(Cd)

Φ(Cd(t))
.

Any sensible criterion Φ will obey Φ(C1) ≤ Φ(C2) for C1 − C2 non-negative

definite so that Φ(t)-eff is bounded above by 1. It is sometimes convenient to

think in terms of the risk associated with a loss of t blocks. Risk is defined by

1 − Φ(t)-eff. Φ(t)-efficiency depends on which t blocks are lost.

A portion of the results in later sections will focus on the criteria A, E, and

MV. Evaluation of Φ(t)-eff thus requires the values of these criteria for BIBDs.

For a BIBD d, the zdi are identically equal to vλ/k so that ΦA(Cd) = k(v−1)/vλ

and ΦE(Cd) = k/vλ. The MV-value is ΦMV (Cd) = 2k/vλ. Obtaining criterion

values for Cd(t) requires a bit more work. A useful technical result is given

here, with computation of residual information matrices and associated values

following in Section 3.

Definition 2. A symmetric matrix X is generalized block-diagonal if it can be
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partitioned as












An1×n1
c12Jn1×n2

· · · c1pJn1×np

c21Jn2×n1
An2×n2

· · · c2pJn2×n2

...
...

. . .
...

cp1Jnp×n1
cp2Jnp×n2

· · · Anp×np













, (2)

where the matrices Ani×ni
= xiI + yiJ are completely symmetric.

Residual information matrices Cd(t) for BIBDs are generalized block-diagonal.

Efficiency calculations require the eigenvalues of these matrices, and for the MV-

criterion, a generalized inverse. It is evident that
∑p

i=1(ni − 1) eigenvalues of (2)

are ni−1 copies of xi for i = 1, . . . , p. Removing these eigenvalues and correspond-

ing (contrast) eigenvectors has the effect of replacing Ani×ni
by (ai/ni)Jni×ni

for

ai = (xi+niyi). From there the remaining eigenvalues can be extracted by noting
that the remaining eigenvectors must be of the form (w11

′
n1

, w21
′
n2

, . . . , wp1
′
np

)

for some w1, w2, . . . , wp.

Lemma 1. Let X be a generalized block-diagonal matrix as given in (2). The

eigenvalues of X are xi with multiplicity ni − 1 for i = 1, . . . , p, as well as the

eigenvalues of the (not necessarily symmetric) matrix:

X0 =













a1 c12 · n2 · · · c1p · np

c21 · n1 a2 · · · c2p · np

...
...

. . .
...

cp1 · n1 cp2 · n2 · · · ap













.

3. Residual Information Matrices

Residual information matrices for BIBDs, and associated values, will be in-

vestigated here for the cases of primary interest. The eigenvalues of a residual

design formed by removing two blocks from a BIBD as determined by Bhaumik

and Whittinghill (1991, Lemma 6) are listed in Table 1. Here, q denotes the
number of treatments common to the two blocks.

Study of criteria based on pairwise variances, including ΦMV , requires a

generalized inverse of Cd(2). When 0 < q < k, Cd(2) has form

Cd(2) =













A1
1
k
Jq×(k−q)

1
k
Jq×(k−q) 0q×(v−2k+q)

1
k
J(k−q)×q A2 0(k−q)×k−q 0(k−q)×(v−2k+q)

1
k
J(k−q)×q 0(k−q)×(k−q) A3 0(k−q)×(v−2k+q)

0(v−2k+q)×q 0(v−2k+q)×(k−q) 0(v−2k+q)×(k−q) A4













−λ

k
Jv×v,

(3)
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Table 1. Eigenvalues for residuals of BIBDs under loss of two blocks.

Case 1: q = 0
Eigenvalue Multiplicity
vλ
k

v − 2k + 1
vλ
k

− 1 2(k − 1)

Case 2: 0 < q < k
Eigenvalue Multiplicity
vλ
k

v − 2k + q
vλ
k

− q

k
1

vλ
k

− 1 2(k − q − 1)
vλ
k

− 2 + q

k
1

vλ
k

− 2 q − 1

Case 3: q=k
Eigenvalue Multiplicity
vλ
k

v − k
vλ
k

− 2 k − 1

where

A1 =
(vλ

k
−2

)

Iq+
2

k
Jq, A2 = A3 =

(vλ

k
−1

)

I(k−q)+
1

k
J(k−q), A4 =

vλ

k
I(v−2k+q).

One generalized inverse of (3) is Gd(2) = [Cd(2) + (λ/k)J ]−1. This matrix (see

Parvu (2004)) is













k
vλ−2k

Iq− 2k(vλ−k)
vλ(vλ−2k)(vλ−2k+q)Jq

−k
vλ(vλ−2k+q)Jq×(k−q)

−k
vλ(vλ−2k+q)Jq×(k−q) 0q×(v−2k+q)

−k
vλ(vλ−2k+q)J(k−q)×q M(k−q)×(k−q)

kq

vλ(vλ−q)(vλ−2k+q)J(k−q) 0(k−q)×(v−2k+q)

−k
vλ(vλ−2k+q)J(k−q)×q

kq

vλ(vλ−q)(vλ−2k+q)J(k−q) M(k−q)×(k−q) 0(k−q)×(v−2k+q)

0(v−2k+q)×q 0(v−2k+q)×(k−q) 0(v−2k+q)×(k−q)
k
λv

Iv−2k+q













,

where M(k−q)×(k−q) = (k/(vλ−k))I(k−q)− (k[v2λ2−k(2vλ− q)]/vλ(vλ−k)(vλ−
q)(vλ − 2k + q))J(k−q). The variance of a pairwise treatment comparison is

Var [τ̂i − τi′ ]/σ
2 = Gd(2)ii + Gd(2)i′i′ − 2Gd(2)ii′ as displayed for the seven possible

cases in Table 2. For some q not all cases can occur (some counts are zero).
For a symmetric BIBD (or SBIBD), every two blocks intersect in λ treat-

ments. It follows that for fixed (v, b, k), every SBIBD d has the same residual
information matrix Cd(2) regardless of the pair of blocks lost, and thus the same
Φ(2)-eff values for any Φ. So for SBIBDs, primary interest is in loss of three
blocks. Let na be the number of treatments occurring in a of three lost blocks
for a = 0, 1, 2, 3. Take treatments 1, . . . , n3 to be those occurring three times,
treatments n3 + 1, . . . , n3 + n2 to be those occurring twice, and so on. Then
na ≥ 0, n3 + n2 + n1 + n0 = v, 3n3 + 2n2 + n1 = 3k, and 3n3 + n2 = 3λ. Now
setting n3 = q, the na’s, in terms of q and the design parameters, are

n3 = q, n2 = 3λ − 3q, n1 = 3k − 6λ + 3q, n0 = v − 3k + 3λ − q. (4)

Because na ≥ 0, a necessary condition for q is max(0, 2λ−k) ≤ q ≤ min(λ, v−
3k + 3λ). The form of Cd:3 depends on which na’s are strictly positive, and (4)

implies that of the 16 possibilities for choosing na = 0 or na > 0, only eight can
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Table 2. Variances of pairwise treatment contrasts when two blocks are
removed from a BIBD.

Case Var [τ̂i−τ
i′

]
σ2 Count

i and i′ occur in both blocks V1q = 2k
vλ−2k

(

q

2

)

i occurs in both blocks, i′ occurs in one block V2q 2q(k − q)

i and i′ both occur once, in the same block V3q = 2k
vλ−k

2
(

k−q

2

)

i occurs in both blocks, i′ does not occur in either block V4q q(v − 2k + q)

i and i′ both occur once, in different blocks V5q = 2k(vλ−q−1)
(vλ−k)(vλ−q) (k − q)2

i occurs in one block, i′ does not occur in either block V6q 2(k−q)(v−2k+q)

i and i′ do not occur in the removed blocks V7q = 2k
vλ

(

v−2k+q

2

)

V2q = k(q−1)
q(vλ−2k) + k(k−q−1)

(k−q)(vλ−k) + k
2(k−q)(vλ−q) + k(2k−q)

2q(k−q)(vλ−2k+q)

V4q = k(2k−q+1)
vλ(2k−q) + k(q−1)

q(vλ−2k) + 2k(k−q)
q(2k−q)(vλ−2k+q)

V6q = k(2k−q+1)
vλ(2k−q) + k(k−q−1)

(k−q)(vλ−k) + k
2(k−q)(vλ−q) + kq

2(k−q)(2k−q)(vλ−2k+q)

actually occur (for instance n3 = n2 = 0 would imply q = λ = 0). These cases

are:

Case 1 2 3 4 5 6 7 8

n3 + 0 0 + + + + +
n2 + + + 0 0 + + +
n1 + + 0 + + 0 0 +
n0 + + + + 0 + 0 0

Not all eight cases can occur with any SBIBD. Case 3 can occur in SBIBDs

with k = 2λ, Case 5 when v = 3k − 2λ, and Case 7 when v = 2k − λ.

Let rd:3 be the vector rd:3 = (31′n3
, 21′n2

, 1′n1, 0
′
no

)′. The information matrix

for the three deleted blocks is Cd:3 = Diag(rd:3) − ((Nd:3Nd:3)/k). If all na > 0

(case 1) then Nd:3N
′
d:3 is































3 · Jn3×n3
2 · Jn3×

n2

3

2 · Jn3×
n2

3

2 · Jn3×
n2

3

Jn3×
n1

3

Jn3×
n1

3

Jn3×
n1

3

0n3×n0

2 · Jn2

3
×n3

2 · Jn2

3
×

n2

3

Jn2

3
×

n2

3

Jn2

3
×

n2

3

Jn2

3
×

n1

3

Jn2

3
×

n1

3

0n2

3
×

n1

3

0n2

3
×n0

2 · Jn2

3
×n3

Jn2

3
×

n2

3

2 · Jn2

3
×

n2

3

Jn2

3
×

n2

3

Jn2

3
×

n1

3

0n2

3
×

n1

3

Jn2

3
×

n1

3

0n2

3
×n0

2 · Jn2

3
×n3

Jn2

3
×

n2

3

Jn2

3
×

n2

3

2 · Jn2

3
×

n2

3

0n2

3
×

n1

3

Jn2

3
×

n1

3

Jn2

3
×

n1

3

0n2

3
×n0

Jn1

3
×n3

Jn1

3
×

n2

3

Jn1

3
×

n2

3

0n1

3
×

n2

3

Jn1

3
×

n1

3

0n1

3
×

n1

3

0n1

3
×

n1

3

0n1

3
×n0

Jn1

3
×n3

Jn1

3
×

n2

3

0n1

3
×

n2

3

Jn1

3
×

n2

3

0n1

3
×

n1

3

Jn1

3
×

n1

3

0n1

3
×

n1

3

0n1

3
×n0

Jn1

3
×n3

0n1

3
×

n2

3

Jn1

3
×

n2

3

Jn1

3
×

n2

3

0n1

3
×

n1

3

0n1

3
×

n1

3

Jn1

3
×

n1

3

0n1

3
×n0

0n0×n3
0n0×

n2

3

0n0×
n2

3

0n0×
n2

3

0n0×
n1

3

0n0×
n1

3

0n0×
n1

3

0n0×n0































.

(5)
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For the other seven cases, delete rows and columns of the partitioned matrix

(5). For instance, if n2 = 0, the second, third, and fourth row and column

partitions are deleted.

From (1), the information matrix of the residual design of a SBIBD d when

three blocks are removed is Cd(3) = (k − 1 + λ/k)Iv − Diag(rd:3) − (λ/k)Jv +

(1/k)Nd:3N
′
d:3. It is apparent that Cd:3 is generalized block-diagonal with number

of partitions p ≤ 8, and hence so too is Cd(3). Thus Lemma 1 can be used to

find its eigenvalues. With the notation of Definition 2, Cd(3) has the following

sub-matrices on the diagonal when na > 0 for all a:

A1 =(k−4+ λ
k
)In3

+ 3−λ
k

Jn3
, a1 =k−4+3n3

k
−(n3−1)λ

k

A2 =A3 =A4 =(k−3+ λ
k
)In2

3

+ 2−λ
k

Jn2

3

, a2 =a3 =a4 =k−3+2n2

3k
−(n2

3 −1)λ
k

A5 =A6 =A7 =(k−2+ λ
k
)In1

3

+ 1−λ
k

Jn1

3

, a5 =a6 =a7 =k−2+ n1

3k
−(n1

3 −1)λ
k

A8 =(k−1+ λ
k
)In0

+−λ
k

Jn0
, a8 =k−1−(n0−1)λ

k
.

(6)

The eigenvalues of Cd(3) arising from the individual matrices in (6) are vλ/k−
3, vλ/k − 2, vλ/k − 1, and vλ/k, with multiplicities n3 − 1, n2 − 3, n1 − 3, and

n0 − 1, respectively; not all appear in Cases 2-8. The other eigenvalues of Cd(3)

are computed from the reduced matrix displayed in Lemma 1:

1

k

































k · a1 (2−λ)n2

3 (2−λ)n2

3 (2−λ)n2

3 (1−λ)n1

3 (1−λ)n1

3 (1−λ)n1

3 −λn0

(2−λ)n3 k · a2 (1−λ)n2

3 (1−λ)n2

3 (1−λ)n1

3 (1−λ)n1

3 −λn1

3 −λn0

(2−λ)n3 (1−λ)n2

3 k · a3 (1−λ)n2

3 (1−λ)n1

3 −λn1

3 (1−λ)n1

3 −λn0

(2−λ)n3 (1−λ)n2

3 (1−λ)n2

3 k · a4 −λn1

3 (1−λ)n1

3 (1−λ)n1

3 −λn0

(1−λ)n3 (1−λ)n2

3 (1−λ)n2

3 −λn2

3 k · a5 −λn1

3 −λn1

3 −λn0

(1−λ)n3 (1−λ)n2

3 −λn2

3 (1−λ)n2

3 −λn1

3 k · a6 −λn1

3 −λn0

(1−λ)n3 −λn2

3 (1−λ)n2

3 (1−λ)n2

3 −λn1

3 −λn1

3 k · a7 −λn0

−λn3 −λn2

3 −λn2

3 −λn2

3 −λn1

3 −λn1

3 −λn1

3 k · a8

































.

Again, some rows/columns of this matrix are removed depending on the

case. What remains is purely computational, so the eigenvalues for Cd(3) are

stated (Table 3) without further comment.

4. Comparison of Nonisomorphic Designs

With the basic tools for computing efficiencies in place, paradigms for de-

sign comparison will now be developed. Using the GAP Design package (Soicher

(2003)) one can, within bounds, obtain the collection D(v, b, k) of all nonisomor-

phic BIBDs for given (v, b, k). The bounds here are in time and computational

effort: the isomorphism problem is notoriously hard, even computationally, and
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Table 3. Eigenvalues for residuals of SBIBDs under loss of three blocks

Case 1: q /∈ {0, λ, 2λ− k, v − 3k + 3λ}
Eigenvalue Multiplicity
vλ
k

− 3 q − 1
vλ
k

− 2 3λ − 3q − 3
vλ
k

− 1 3k−6λ + 3q−3
vλ
k

v − 3k + 3λ − q

vλ
k

− 2 − k−2λ+
√

(k+2λ)2−8kq

2k
1

vλ
k

− 2 − k−2λ−
√

(k+2λ)2−8kq

2k
1

vλ
k

− 1 − λ+
√

(2k−λ)2−4k(λ−q)

2k
2

vλ
k

− 1 − λ−
√

(2k−λ)2−4k(λ−q)

2k
2

Case 2: q = 0, k 6= 2λ

Eigenvalue Multiplicity
vλ
k

− 2 3λ − 3
vλ
k

− 1 3k − 6λ − 3
vλ
k

v − 3k + 3λ
vλ
k

− 2 + 2λ
k

1

vλ
k

− 1 − λ+
√

(2k−λ)2−4kλ

2k
2

vλ
k

− 1 − λ−
√

(2k−λ)2−4kλ

2k
2

Case 3: q = 0, k = 2λ

Eigenvalue Multiplicity
v−4
2 3λ − 3

v−3
2 2

v
2 v − 3λ

Case 4: q = λ, v 6= 3k − 2λ

Eigenvalue Multiplicity
vλ
k

− 3 λ − 1
vλ
k

− 3 + 2λ
k

1
vλ
k

− 1 3k − 3λ − 3
vλ
k

− λ
k

2
vλ
k

v − 3k + 2λ

Case 5: q = λ, v = 3k − 2λ

Eigenvalue Multiplicity
vλ
k

− 3 λ − 1
vλ
k

− 3 + 2λ
k

1
vλ
k

− 1 v − λ − 3
vλ
k

− λ
k

2

Case 6: q = 2λ − k > 0, v 6= 2k − λ

Eigenvalue Multiplicity
vλ
k

− 3 2λ − k − 1
vλ
k

− 4 + 2λ
k

1
vλ
k

− 2 3k − 3λ − 3
vλ
k

− 1 − λ
k

2
vλ
k

v − 2k + λ

Case 7: q = 2λ − k > 0, v = 2k − λ

Eigenvalue Multiplicity
vλ
k

− 3 2λ − k − 1
vλ
k

− 4 + 2λ
k

1
vλ
k

− 2 3k − 3λ − 3
vλ
k

− 1 − λ
k

2

Case 8: 0 < q = v − 3k + 3λ < λ, v 6= 2k − λ

Eigenvalue Multiplicity
vλ
k

− 3 v − 3k + 3λ − 1
vλ
k

− 2 9k − 3v − 6λ − 3
vλ
k

− 1 3v − 6k + 3λ − 3

vλ
k

− 2 − k−2λ+
√

(5k−2λ)2−8kv

2k
1

vλ
k

− 2 − k−2λ−
√

(5k−2λ)2−8kv

2k
1

vλ
k

− 1 − λ+
√
−8k2+4kv+4kλ+λ2

2k
2

vλ
k

− 1 − λ−
√
−8k2+4kv+4kλ+λ2

2k
2
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for some parameter sets the number of nonisomorphic designs is extremely large.

For instance, it is known that there are more than 1.25×108 designs in D(9, 36, 4).

The theory of this section provides a route to avoiding full enumeration and, in

doing so, makes feasible an attack on the robustness problem for a much greater

parameter range than would otherwise be possible. A table of BIBD parameters,

including number of isomorphism classes where known, is in Mathon and Rosa

(2006).

4.1. Robustness of non-symmetric BIBDs to loss of two blocks

As discussed in Section 3, the information matrix Cd(2) of a residual design

depends only on q, the intersection number of the two lost blocks. There are
(

b
2

)

pairs of blocks that could be lost, and k+1 possible values for their intersections.

Definition 3. The Φ(t) distribution of BIBD d is the collection of distinct Φ(t)-eff

values over all
(

b
t

)

possible losses of t blocks, and their corresponding frequencies.

The problem is to compare the Φ(2) distributions of nonisomorphic designs

with the same (v, b, k). How one chooses to do this not only determines which

BIBD is most robust, but defines how the robustness concept is implemented.

One choice, corresponding to one extreme in what one expects for how the blocks

may be lost, is to compare distributions through their maximum value. This is

appropriate if one can say which two blocks are most likely to be lost. Though not

formulated in the same way, this idea was discussed by Bhaumik and Whittinghill

(1991, p.406).

More common are experiments in which one wishes to guard against possible

losses with no prior information as to which blocks might be lost. In broad terms

there are two further choices. The opposite extreme from that just discussed is

to compare Φ(2) distributions through their minimum value. This approach casts

robustness in terms of protecting against a worst case loss for the experiment at

hand. Between the two extremes, comparison could be made through the mean

values of the distributions, formulating robustness via long-run average loss over

many experiments. Both the minimum and the mean are pursued here. The

ideas are first illustrated with an example.

Example 1. There are four nonisomorphic BIBDs with parameters (v, b, k) =

(7, 14, 3) and thus (r, λ) = (6, 2), distinguished in Table 4 by the distribution of

intersection numbers for the
(14

2

)

= 91 pairs of blocks in each design. Average

and minimum Φ(2)-efficiencies over the 91 possible pairs of lost blocks are also

displayed in Table 4. When averaging Φ(2) values, the robustness ordering for

these designs is d1 > d2 > d3 > d4. Design d4 is best for minimum A-efficiency;

the other two “worst case” calculations do not distinguish among the competitors.
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Table 4. Comparison of (7, 14, 3) designs for robustness to loss of 2 blocks.

Design Int. numbers A-efficiency E-efficiency MV-efficiency

no. 0 1 2 3 average min average min average min

1 0 84 0 7 0.833134 0.8 0.637363 0.571429 0.69172 0.571429

2 4 72 12 3 0.833073 0.8 0.637363 0.571429 0.683955 0.571429

3 6 66 18 1 0.833042 0.8 0.637363 0.571429 0.680072 0.571429

4 7 63 21 0 0.833027 0.820046 0.637363 0.571429 0.678131 0.571429

One feature of Example 1 is the small range of the various efficiencies. This

is a masking of relevant behavior due to repeated, structurally fixed values, an

issue addressed following Example 2 below.

Another prominent feature of Example 1, the essentially reversed design

ordering produced by the average and the minimum efficiencies, will be seen

again. Theorem 1 gives some clarification of this phenomenon. Let C
(q)
d(2) de-

note the information matrix of a design obtained by removing two blocks with

intersection number q from a BIBD. Also, let µ{C(q)
d(2)} denote the ordered vector

of positive eigenvalues of the matrix C
(q)
d(2). For vectors x and y, the notation

“x ≺ y” means “y majorizes x” (also read “x is majorized by y”). Refer to

Bhaumik and Whittinghill (1991), or more generally Bhatia (1997), for defini-

tions and details related to majorization.

Theorem 1. (Bhaumik and Whittinghill (1991)) The vectors of eigenvalues of

residual designs obtained by removing two blocks from a BIBD satisfy

µ{C(0)
d(2)} ≺ µ{C(1)

d(2)} ≺ · · · ≺ µ{C(k)
d(2)}, (7)

and thus

Φ(C
(0)
d(2)) ≤ Φ(C

(1)
d(2)) ≤ · · · ≤ Φ(C

(k)
d(2)), (8)

for any criterion Φ preserving the majorization partial order on vectors.

Theorem 1 orders the residual designs of a BIBD in terms of the intersec-

tion numbers of the removed blocks. Since ΦA and ΦE both preserve the ma-

jorization ordering, ΦA(C
(0)
d(2)) ≤ ΦA(C

(1)
d(2)) ≤ · · · ≤ ΦA(C

(k)
d(2)) and ΦE(C

(0)
d(2)) ≤

ΦE(C
(1)
d(2)) ≤ · · · ≤ ΦE(C

(k)
d(2)). This explains why Design 4 in Example 1 max-

imizes the minimum ΦA-eff and ΦE-eff. Since it contains no pair of identical

blocks, its minimum A-efficiency is ΦA(Cd)/ΦA(C
(2)
d(2)), while for the other de-

signs the minimum A-efficiency is ΦA(Cd)/ΦA(C
(3)
d(2)). In this example, the strict

inequality does not hold with respect to minimum E-efficiency (more on this

later).

Theorem 1 suggests a method for differentiating among designs on majoriza-

tion criteria without computing efficiencies. Let η(d) = (η0(d), η1(d), . . . , ηk(d))
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be the vector of block intersection counts for the BIBD d, that is, ηs(d) is the

number of pairs of blocks that intersect in s treatments. For instance, in d1 of Ex-

ample 1, 84 of the 91 pairs of blocks intersect in one treatment (see Table 4), while

the other seven pairs each intersect in three treatments, so η(d1) = (0, 84, 0, 7).

Definition 4. Let d1 and d2 be two balanced incomplete block designs, and s

be the largest integer such that ηs(d1) 6= ηs(d2). Then design d1 is said to have

less intersection aberration than d2 if ηs(d1) < ηs(d2). A design d ∈ D(v, b, k)

has minimum intersection aberration (MIA) if no other design in D(v, b, k) has

less intersection aberration than d.

Theorem 2. Let d ∈ D(v, b, k) have minimum intersection aberration. Then d

maximizes the minimum Φ(2)-eff over D for every majorization criteria Φ.

In short, MIA designs offer the best protection against the worst-case loss

of two blocks for all reasonable criteria that can be expressed in terms of eigen-

values. Theorem 2 is immediate from Theorem 1 and Definition 4. Though the

concepts here are quite different, the “aberration” terminology parallels usage in

the fractional factorial literature (e.g., Wu and Hamada (2000, Sec. 4.2)), with

MIA sequentially minimizing ηs beginning with the largest s.

For an experimenter focused on pairwise comparisons τi − τi′ , eigenvalue-

based criteria are not necessarily the proper basis for evaluation of competing

designs. Theorem 2 does guarantee that worst-case loss in terms of average pair-

wise variance is minimized, due to equivalence with ΦA. It does not, however, ad-

dress ΦMV . Theorem 3 does this and much more. Write vii′ for var(τ̂i − τi′)/σ
2.

Theorem 3. Let d ∈ D(v, b, k) have minimum intersection aberration. For any

increasing, convex g consider the criterion Φ(Cd) =
∑

i

∑

i′>i g(vii′). Then d

maximizes the minimum Φ(2)-eff over D for every such g.

Proof. For any BIBD d, let ν{C(q)
d(2)} with coordinates νjq denote the vector

of pairwise variances vii′ in nonincreasing order. It is sufficient to show, akin

to Theorem 1, that ν{C(q)
d(2)} ≺w ν{C(q+1)

d(2) } (Bhatia (1997, p.40); this is weak

submajorization, as
∑ ∑

vii′ depends on the blocks lost), that is,

h
∑

j=1

νj,q+1 −
h

∑

j=1

νjq ≥ 0 (9)

for each h = 1, . . . ,
(

v
2

)

, and any 0 ≤ q ≤ k − 1. Since all designs have the same

Φ(2)-distribution if λ = 1 or b = v, only the asymmetric case with λ ≥ 2 needs to

be considered. It can then be checked that the seven variances displayed in Table

2 satisfy V1q ≥ V2q ≥ · · · ≥ V7q. Denote the corresponding counts by c1q, . . . , c7q
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and write sjq =
∑j

i=1 ciq. Then it is sufficient to establish (9) for h at each sjq

and each sj,q+1, of which only a few need actually be computed.
First, s1q < s1,q+1, V1q = V1,q+1 and V2,q+1 ≥ V2q ⇒ (9) holds for h ≤ s2,q+1.

Depending on k and q, s2q could be larger than sj,q+1 for j = 2, 3 or 4, in
which case it is possible that (9) fails at h = s2q. If so, then it also fails at

h = s3,q+1 < s3q. Moreover, V4,q+1 < V3,q+1 = V3q, so the difference in (9) is
decreasing for h ∈ (s3,q+1, s3,q). Thus the first h for which (9) need be checked is

s3q. Removing the positive denominator terms δ = vλ(vλ− 2k + q)(vλ− q)(vλ−
2k + q + 1)(vλ − q − 1)(vλ − k)(vλ − 2k), the relevant difference is

W1(v, k, λ, q) = δ

[ 3
∑

i=1

ci,q+1Vi,q+1 + (s3q − s3,q+1)V4,q+1 −
3

∑

i=1

siqciq

]

,

a lengthy expression best left to an algebraic manipulator such as Maple. The
task is to show that W1(v, k, λ, q) ≥ 0 for v ≥ k + 1, k ≥ q + 1, and λ ≥ 2; or,

equivalently, that W1(v + (k + q + 1) + 1, k + q + 1, λ + 2, q) ≥ 0 for v, k, λ, q ≥ 0.
It is trivial (with software such as Maple) to see that all coefficients for the latter

polynomial in v, k, λ and q are positive.
Next s4,q+1 > s4q ≥ s3q and V4,q+1 > V4q > V5q imply that the difference in

(9) is nondecreasing for h ∈ (s3q, s4,q+1]. But V5,q+1 < V5q, so it is possible that
(9) fails at h = s5q if s4,q+1 < s5q, that is, if (v − 2k + q) ≤ (k − q)2 − 2.

Moreover, s6,q+1 ≤ s6q, V7,q+1 = V7q < V6q, and (9) holds at h = s7q = s7,q+1

by Theorem 1 and equivalence with ΦA, so (9) must hold at h = s6,q+1. For h ∈
(s5q, s6,q+1], the difference in (9) is not monotonic only if s5,q < s5,q+1 < s6,q+1

but, since V6,q+1 < V5q, it is in this case increasing for h up to s5,q+1 and then

monotonic at least until h = s6,q+1. Thus if (9) holds at h = s5q, it holds for all
h.

It remains to check (9) at h = s5q. There are two cases. If 2(k − q − 1) ≤
v − 2k + q ≤ (k − q)2 − 2, then s4,q+1 < s5,q ≤ s5,q+1 and the relevant difference

is

W2(v, k, λ, q) = δ

[ 4
∑

i=1

ci,q+1Vi,q+1 + (s5q − s4,q+1)V5,q+1 −
5

∑

i=1

siqciq

]

.

If v−2k− q < 2(k− q−1), then s4,q+1 ≤ s5,q+1 < s5q and the relevant difference
is

W3(v, k, λ, q) = δ

[ 5
∑

i=1

ci,q+1Vi,q+1 + (s5q − s5,q+1)V6,q+1 −
5

∑

i=1

siqciq

]

.

Establishing that W2 and W3 are each positive can be done similarly as described
for W1 above: shift function arguments in accordance with lower bound restric-

tions so that each may be taken as nonnegative, and observe that the resulting
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“shifted” functions are polynomials all of whose coefficients are positive. This

is again a task for an algebraic manipulator program, which is also the simplest

way to check statements above regarding orderings of the cjq, sjq, and Vjq.

While not explicitly addressed in the statement of Theorem 3, the proof by

majorization implies that MIA designs minimize maximum MV-risk. Theorem 3

essentially says that MIA produces the same properties for estimating pairwise

comparisons as it does for estimating all contrasts.

Example 2. Robustness against the loss of two blocks for the four nonisomor-

phic BIBDs in D(8, 14, 4) is summarized in Table 6. Design 4 has no blocks

intersecting in more than two treatments, while Designs 1, 2, and 3 contain

blocks intersecting in three treatments. Design 4 has MIA, and thus maximizes

the minimum efficiency of its residuals with respect to all criteria covered by

Theorems 2 and 3.

Loss of two blocks disturbs relatively few of the eigenvalues and, of those

that do change, some values must be the same for all BIBDs and all losses.

Consequently, as already seen in Tables 4 and 6, shared multiplicities tend to

swamp efficiency calculations, in effect diluting assessment of changes for the

treatments affected. For instance, since the smallest nonzero eigenvalue of a

residual design is (vλ/k) − 2 unless q ≤ 1, the minimum E-efficiency is common

to all designs in each example. For the purpose of assessing the relative effect of

losses in one design versus another, sharper focus is gained by comparing their

lists of eigenvalues only where different.

Definition 5. For designs d1 and d2 whose information matrices have lists

of positive eigenvalues µ(d1) and µ(d2) sharing c common values, let µ−(d1)

and µ−(d2) denote the corresponding reduced lists of v − 1 − c non-common

eigenvalues. The Φ-impact of d2 relative to d1 is the ratio of Φ-value of design

d1 to that of design d2, where Φ is any eigenvalue-based criterion (as discussed

in Section 2) for the (v − 1 − c)-dimensional vectors µ−(d1) and µ−(d2).

The MV-impact is similarly computed as the ratio of the two maximum and

non-equal variances of pairwise treatment contrasts. Whether for eigenvalues

or pairwise variances, eliminating common values is statistically equivalent to

comparing only variances of contrasts which are indeed different.

Returning to Example 1, an analysis of worst case losses for (7, 14, 3) BIBDs

is presented in Table 5. The worst case residuals for Designs 1, 2 and 3 have

q = 3, while the worst case residual for Design 4, the MIA design, has q = 2.

Thus, the table presents a comparison of the non-common eigenvalues and non-

common pairwise variances arising from C
(2)
d(2) and C

(3)
d(2) for (7, 14, 3) designs. The

advantage enjoyed by Design 4 is now obvious. For instance, even though the
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Table 5. Worst case comparisons of (7, 14, 3) designs for loss of 2 blocks.

Maximum Impact relative to MIA design

q Designs A-impact E-impact MV-impact

2 4 (MIA) 1.0 1.0 1.0

3 1-3 0.933333 0.8 0.816667

Table 6. Comparison of (8, 14, 4) designs for robustness to loss of 2 blocks.

Design Int. numbers A-efficiency E-efficiency MV-efficiency

no. 0 1 2 3 4 average min average min average min

1 3 12 72 4 0 0.841905 0.832737 0.677656 0.666667 0.684874 0.666667

2 1 18 66 6 0 0.841908 0.832737 0.67674 0.666667 0.687568 0.666667

3 0 21 63 7 0 0.8419 0.832737 0.676282 0.666667 0.688915 0.666667

4 7 0 84 0 0 0.841897 0.840917 0.679487 0.666667 0.679487 0.666667

largest variance of pairwise treatment comparisons (0.571429) is common to all

four designs, the ratio of the largest non-equal variances is 0.816667, a loss of

roughly 20% relative to the MIA design. Impact relative to the MIA design in

D(8, 14, 4) is shown in Table 7.

If one adopts worst case protection as the formulation of robustness, then

the worst case judgement can also be posed in terms of aberration of efficiencies.

Let φ(t)(d) = (φ(t)1(d), φ(t)2(d), . . . , φ
(t)(b

t)
(d)) be the vector of Φ(t)-eff values for

d arranged in nondecreasing order.

Definition 6. Let d1 and d2 be two BIBDs in D(v, b, k), and s be the small-

est integer such that φ(t)s(d1) 6= φ(t)s(d2). Then design d1 is said to have less

efficiency aberration than d2 if φ(t)s(d1) > φ(t)s(d2). A design d ∈ D(v, b, k) has

minimum efficiency aberration (MEA) if no other design in D(v, b, k) has less

efficiency aberration than d.

Efficiency aberration better distinguishes exposure to worst case risk than

does intersection aberration, in the sense of being valid for evaluating loss with

respect to any fixed number t of blocks. The advantage of intersection aberration

is computational efficiency for the important t = 2 case, as one works solely

with the distribution of block intersection counts rather than functions of the

corresponding lists of eigenvalues or pairwise variances. For t = 2, MEA and MIA

Table 7. Worst case comparisons of (8, 14, 4) designs for loss of 2 blocks.

Maximum Impact relative to MIA design

q Designs A-impact E-impact MV-impact

2 4 (MIA) 1.0 1.0 1.0

3 1-3 0.983332 0.888889 0.874242
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are equivalent for all Theorem 2 and 3 criteria satisfying Φ(C
(q)
d(2)) < Φ(C

(q+1)
d(2) )

for each q. When there is more than one MIA design for t = 2, they can be

distinguished based on MEA for t = 3 (or higher).

Both aberration criteria address worst case risk, and generally do not mini-

mize average risk. A “perfectly robust” BIBD, say d∗, with respect to a criterion

Φ, would satisfy φ(t)(d
∗) ≺w φ(t)(d) for all d (this is weak supermajorization; see

Bhatia (1997, p.30)), and thus would minimize average risk, maximum risk, and

indeed would minimize
∑

s f(φ(t)s(d)) for any decreasing, convex f . Examples 1

and 2 above make clear that perfectly robust BIBDs do not generally exist. Other

similarly detailed examples in Parvu (2004) show likewise. One more example,

this one producing two MIA designs, is given here.

Example 3. There are 21 nonisomorphic BIBDs in D(10, 18, 5). Of these, 17

have maximum pairwise block intersection q = 4, while two have identical η-

vectors (0, 9, 81, 63, 0, 0) and thus are MIA designs. The A-, E-, and MV-impacts

for the 17 non-MIA designs are 0.991, 0.909, and 0.914, respectively.

4.2. A catalog of MIA balanced incomplete block designs

The MIA criterion differentiates between designs so to guarantee minimax

risk, with clear computational advantage over efficiency aberration. The GAP

Design program allows enumeration of BIBDs with specified block intersection

counts η, so that determination of all designs can often be avoided. Table 8 is

a catalog of MIA BIBDs mostly compiled in this way. Initial blocks for cyclic

constructions are listed, including fixed blocks where necessary. In a few cases,

MIA designs have been found by trial and error.

Where there is more than one MIA design for given (v, b, k), the MEA design

for loss of three blocks has been reported. In a few such cases, there is more than

one MEA-best design, in which case ties have been broken by inspecting MEA for

t = 4 and, in one case, t = 5. MEA is calculated with respect to the A-criterion.

Thus among designs minimizing maximum risk with respect to all criteria in

Theorems 2 and 3 for loss of two blocks, the tabled design minimizes maximum

A-risk for loss of three blocks. If D(v, b, k) has λ = 1, all BIBDs have the same

distribution of block intersection counts, and so all are MIA designs.

Only parameter sets with more than one nonisomorphic design are included

in Table 8, which covers v ≤ 15 and r ≤ 15. For d in any D(v, b, k), if d is

MIA, then the complement of d is MIA in D(v, b, v − k); consequently k > v/2

is excluded from the table, with one exception. There is no guarantee that the

MEA-best of MIA competitors remains so under complementation. For v ≤ 15,

r ≤ 15 this occurs only for D(10, 15, 6), and so this parameter set is included in

Table 8.
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Table 8. MIA-BIBDs with v ≤ 15, r ≤ 15.

v b k r λ #noniso #MIA design

6 20 3 10 4 4 1 (∞, 0, 1), (∞, 0, 2), (0, 1, 2), (0, 1, 3) (mod 5)

6 30 3 15 6 6 1 (∞, 0, 1), (∞, 0, 1), (∞, 0, 2), (0, 1, 2), (0, 1, 3), (0, 1, 3) (mod 5)

7 14 3 6 2 4 1 (0, 1, 3), (0, 2, 3) (mod 7)

7 21 3 9 3 10 1 (0, 1, 2), (0, 2, 4), (0, 3, 4) (mod 7)

7 28 3 12 4 35 1 (0, 1, 2), (0, 1, 3), (0, 2, 4), (0, 3, 4) (mod 7)

7 35 3 15 5 109 1 (0, 1, 2), (0, 1, 3), (0, 2, 3), (0, 2, 4), (0, 3, 4) (mod 7)

8 14 4 7 3 4 1 (∞, 0, 1, 3), (0, 2, 3, 4) (mod 7)

8 28 4 14 6 2310 1 (∞, 0, 1, 3), (∞, 0, 2, 3), (0, 2, 3, 4), (0, 2, 5, 6) (mod 7)

9 24 3 8 2 36 13 (∞, 0, 4), (0, 1, 3), (0, 2, 3) (mod 8)

9 36 3 12 3 22521 332 (0, 1, 2), (0, 2, 4), (0, 3, 6), (0, 4, 8) (mod 9)

9 18 4 8 3 11 1 (0, 1, 4, 6), (0, 1, 2, 4) (mod 9)

10 30 3 9 2 960 394 (1, 5,∞), (1, 2, 3), (1, 3, 6) (mod 9), (1, 4, 7) (partial cycle)

10 15 4 6 2 3 3 (11, 21, 41, 22), (11, 21, 12, 32), (11, 32, 42, 52) (mod 5)

10 30 4 12 4 > 1.7 × 106 1 (1, 2, 3, 7), (1, 2, 4, 5), (1, 3, 5, 8) (mod 10)

10 18 5 9 4 21 2 (1, 2, 5, 7,∞), (0, 1, 2, 4, 8) (mod 9)

10 15 6 9 5 3 3 (11, 21, 22, 32, 23, 33), (11, 12, 32, 13, 33,∞), (11, 21, 22, 13, 33,∞)

(11, 21, 12, 32, 23,∞) (mod 3),

(11, 21, 31, 12, 22, 32), (11, 21, 31, 13, 23, 33), (12, 22, 32, 13, 23, 33) (fixed)

11 55 3 15 3 ≥ 436800 ≥ 6 (1, 2, 4), (1, 2, 5), (1, 2, 8), (1, 3, 6), (1, 3, 8) (mod 11)

11 33 5 15 6 ≥ 127 ? (1, 2, 3, 5, 6), (1, 2, 3, 7, 9), (1, 2, 4, 6, 9) (mod 11)

12 44 3 11 2 ≥ 106 ≥ 1 (0, 1,∞), (0, 1, 4), (0, 2, 5), (0, 2, 6) (mod 11)

12 33 4 11 3 ≥ 17172470 ≥ 2 (1, 3, 7,∞), (1, 2, 3, 6), (1, 2, 4, 9) (mod 11)

12 22 6 11 5 11603 1 (1, 2, 3, 5, 8,∞), (1, 2, 3, 7, 9, 10) (mod 11)

13 26 3 6 1 2 2 (11, 21, 12), (11, 22, 13), (11, 23, 24), (11, 33, 14), (11, 34,∞), (12, 13, 34)

(12, 23,∞), (12, 14, 24) (mod 3), (12, 22, 32), (13, 23, 33) (fixed)

13 52 3 12 2 ≥ 92714 ≥ 7 (1, 2, 5), (1, 2, 11), (1, 3, 8), (1, 3, 9) (mod 13)

13 39 4 12 3 ≥ 3702 ≥ 5 (1, 2, 4, 10), (1, 2, 5, 7), (1, 3, 4, 8) (mod 13)

13 39 5 15 5 ≥ 30 ? (1, 2, 3, 7, 10), (1, 2, 4, 6, 7), (1, 2, 4, 8, 12) (mod 13)

13 26 6 12 5 ≥ 2572156 ≥ 1 (1, 2, 3, 4, 7, 11), (1, 2, 4, 6, 8, 9) (mod 13)

14 26 7 13 6 ≥ 17896 ? (1, 2, 3, 4, 6, 0,∞), (1, 2, 3, 5, 8, 10, 11) (mod 13)

15 70 3 14 2 ≥ 685521 ≥ 1 (1, 4,∞), (1, 2, 3), (1, 3, 9), (1, 5, 8), (1, 5, 10) (mod 14)

15 35 3 7 1 80 80 (11, 21, 12), (12, 22, 13), (11, 23, 24), (11, 33, 25), (11, 14, 35), (11, 34, 15),

(12, 13, 24), (12, 23, 14), (12, 34, 35), (12, 15, 25), (13, 23, 25) (mod 3),

(12, 22, 32), (14, 24, 34) (fixed)

15 42 5 14 4 ≥ 207 ≥ 1 (11, 21, 41, 12,∞), (11, 32, 42, 62,∞), (11, 21, 31, 32, 52),

(11, 21, 51, 62, 72), (11, 12, 22, 52, 72), (11, 31, 51, 12, 42) (mod 7)

15 35 6 14 5 ≥ 117 ? (11, 21, 31, 51, 42,∞), (11, 12, 42, 52, 62,∞), (11, 21, 41, 12, 22, 62)

(11, 21, 61, 22, 42, 52), (11, 21, 61, 12, 32, 72) (mod 7)

15 15 7 7 3 5 2 (11, 21, 41, 12, 22, 62,∞), (11, 21, 31, 61, 22, 42, 52) (mod 7),

(12, 22, 32, 42, 52, 62, 72) (fixed)

15 30 7 14 6 ≥ 34 ? (1, 2, 3, 4, 6, 11, 12), (1, 2, 4, 5, 8, 12, 14) (mod 15)

In a few cases all MIA designs are not yet known; here the best in terms

of MEA of those we do know is listed. In a few other cases, due to the current

impossibility of determining even all designs with fixed block intersection counts,

we have been unable to establish the MIA η. In these cases the best design

currently known to us in terms of intersection aberration is listed, and the number

of MIA designs is reported as a question mark. A lower bound for the largest

pairwise block intersection number, achieved by all of the “?” designs, is ⌊(k(r −
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1))/(b − 1)⌋.

4.3. Robustness of SBIBDs to the removal of three blocks

For given (v, b = v, k), any two blocks in a SBIBD intersect in λ = k(k −
1)/(v − 1) treatments, so that all nonisomorphic competitors are equally robust

against the loss of two blocks. For SBIBDs, the study of robustness begins with

t = 3. As in Section 2, let q denote the number of treatments common to the three

blocks removed. As shown there, eigenvalues of the residual information matrix

C
(q)
d(3) depend only on q and the setting parameters. Intuitively, it would seem

that the majorization order in (7) and (8) would hold here as well: µ{C(q)
d(3)} ≺

µ{C(q+1)
d(3) } and so Φ{C(q)

d(3)} ≤ Φ{C(q+1)
d(3) } for each q. Unfortunately this is not the

case, as can be seen by working with the eigenvalues in Table 3. With no 3-block

residual inferior to another with respect to all majorization criteria, there is no

undisputed worst-case loss. Maximal E-risk, however, can be minimized.

The minimum eigenvalue of a residual when removing three blocks with

intersection q > 1 from a SBIBD is vλ/k − 3 with multiplicity q − 1. Thus

C
(q+1)
d(3) has a count one larger for the minimum eigenvalue it shares with C

(q)
d(3).

In statistical terms, a residual obtained by removing three blocks intersecting in

q + 1 treatments, relative to a residual with intersection q, has one additional

dimension for contrasts of maximal variance. This justifies the MIA criterion for

differentiating among SBIBDS under loss of three blocks.

Example 4. There are five nonisomorphic SBIBDs in D(15, 7, 7). For each

design there are
(

15
3

)

= 455 possible residuals. The η-vectors for counts of

sizes q ∈ {0, 1, 2, 3} of 3-block intersections are (0, 420, 0, 35), (16, 372, 48, 19),

(24, 348, 72, 11), and (for two of the designs, which are both therefore MIA)

(28, 336, 84, 7). The E-impact for the three non-MIA designs is 3.4286/3.8179 =

0.5333/0.5939 = 0.898. Notably, none of the four distinct eigenvalue lists ma-

jorizes any of the others.

The designs of Example 4 are the only SBIBDs falling within the range

of Table 8 for which there is more than one nonisomorphic alternative. Other

detailed examples for SBIBDs can be found in Parvu (2004). E-impacts are easily

calculated for all BIBDs using the values in Tables 1 or 3.

5. Robustness of Designs to Loss of Data

MIA and MEA are not the only feasible routes for evaluating robustness.

The underlying problem is that of comparing distributions of Φ(t)-eff values for

competing designs and, as with any collection of distributions, there are a variety

of ways in which they could be compared and ordered. It has been shown that
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MIA and MEA designs, while minimizing maximum risk, do not generally min-

imize average risk. In proposing MIA/MEA we have taken the view we believe
to be most widely applicable to general statistical practice: that experimenter

goals are focused squarely on the experiment at hand, so that choice of design
mitigating effects of loss for this experiment is the most relevant implementation

of robustness. Should other implementations be preferred, the concepts of this

paper still provide a framework for design choice. Average efficiency is certainly
a reasonable alternative should risk over many experiments be the focus.

Importantly, the MEA approach is restricted neither to BIBDs nor to loss
of blocks. It is suitable for robustness evaluation of any collection of competing

block designs D having common v, b, and k. Should (unlike for BIBDs) val-

ues Φ(Cd) not be constant for d ∈ D, simply modify Definition 1 to Φ(t)-eff =
(maxd∈D Φ(Cd))/(Φ(Cd(t))) and proceed as in Definition 6. If concern is with po-

tential loss of t units rather than t blocks, then redefining Cd(t) of (1) accordingly,

the vector φ(t)(d) will contain
(

bk
t

)

values, and MEA again offers a rational basis
for choice of robust design. Capacity to withstand loss of experimental material is

a pragmatic standard for selecting among competing, optimal or highly efficient
designs, for which the ideas introduced in this paper offer a rigorous schema.
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