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Abstract: The technical proofs of lemmas and main results are included in Section S1. The details of the

regularized kernel and its oracle property are included in Section S2. Some additional simulation results are

included in Section S3.

S1 Lemmas and the proof of main results

Lemma 1. Assume that K is a positive semi-definite and symmetric kernel defined on

X ×X . Let µ be a finite measure on X . If

∫
X ×X

K2(x, y)dµ(x)dµ(y) <∞, (S1.1)

then K(x, y) =
∑∞

j=1 λjψj(x)ψj(y), {ψj(·)} ⊂ L2(µ) form a complete orthogonal normal

system i.e., E{ψj(X)ψk(X)} = δjk where δjk = 1 if j = k; δjk = 0 if j 6= k.

Proof: Given a positive definite kernel K(x, y), we can construct a reproducing kernel
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Hilbert space (RKHS) HK , and the reproducing property implies that

K(x, y) =< K(x, ·), K(y, ·) >HK
:=< Kx, Ky >HK

.

Since for any Kx ∈HK , ‖Kx‖ =
√
< Kx, Kx >HK

=
√
K(x, x), we have

|K(x, y)| =< Kx, Ky >HK
≤ ‖Kx‖‖Ky‖ =

√
K(x, x)K(y, y),

and ∫
X ×X

K2(x, y)dµ(x)dµ(y) <∞. (S1.2)

Therefore, K(x, y) generates a compact operator on L2(µ) through the integral operation

(Kf)(x) =
∫

X
K(x, y)f(y)dµ(y). Let {λj}∞j=1 and {ψj(·)}∞j=1 be the eigenvalues and

corresponding complete orthogonal normal system of kernel K under measure µ, i.e.,

∫
K(x, y)ψi(y)dµ(y) = λiψi(x), i = 1, 2, · · · ,∞. (S1.3)

Since K(x, y) ∈ L2(µ
⊗

µ), Kx(·) = K(x, ·) ∈ L2(µ), i.e., there exist {cm(x)}∞m=1 such

that K(x, y) = Kx(y) =
∑

m cm(x)ψm(y), then we have Ky(·) =
∑

m=1 cm(·)ψm(y).

Because Ky(·) ∈ L2(µ) and {ψm(y)}∞m=1 can be considered as constants once y is given,

then cm(·) ∈ L2(µ) and can be expanded using bases {ψm(·)}∞m=1. Therefore, we have

K(x, y) =
∑∞

i,j=1 aijψi(x)ψj(y), where
∑

i,j a
2
ij <∞ is due to (S1.2).

It will be shown in the following that aij = λiδij, which impliesK(x, y) =
∑∞

j=1 λjψj(x)ψj(y).
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Actually,

∫ ∫
K(x, y)ψi(x)ψj(y)dµ(x)dµ(y) =

∫ ∫ ∑
k,l

aklψk(x)ψl(y)ψi(x)ψj(y)dµ(x)dµ(y)

where the left hand side is
∫
λiψi(y)ψj(y)dµ(y) = λiδij by using the eigen-decomposition

property (S1.3), and the right hand side is
∑

k,l aklδkiδlj = aij. This finishes the proof of

Lemma 1. �

Corollary 1. Let Z1, · · · ,Zn be q-dim IID random vectors where q = q(n) is a function

of n, and q(n) → ∞ as n → ∞. Let Hn(x, y) be a symmetric kernel function of x, y ∈

Rq, which may depend on n. The kernel function satisfies E{H2
n(Z1,Z2)} = σ2

nH and

E{Hn(Z1,Z2)|Z2} = 0 almost surely. Then, there exists eigenvalues λnk and a complete

orthonormal functions (ψnk)k=0,1,2,··· such that σ−1
nHHn(x, y) =

∑∞
k=1 λnkψnk(x)ψnk(y).

Proof: Because the eigenvalue decomposition in Lemma 1 is applicable to a semi-definite

and symmetric kernel defined in any space X , we can apply it to the kernel function

σ−1
H Hn(x, y) defined in Rq for any q. By definition σ−2

H E{H2
n(Z1,Z2)} = 1 < ∞ and

Lemma 1, there exist eigenvalues and a complete orthonormal functions (ψnk)k=0,1,2,···

such that ψn0 = 1 and λnkψnk(x) =
∫
σ−1
nHHn(x, y)ψnk(y)dµn(y). �

Lemma 2. Let Z1, · · · ,Zn be q-dim IID random vectors where q = q(n) is a function

of n, and q(n) → ∞ as n → ∞. Let Hn(x, y) be a symmetric kernel function of

x, y ∈ Rq, which may depend on n. The kernel function satisfies E{H2
n(Z1,Z2)} = σ2

nH

and E{Hn(Z1,Z2)|Z2} = 0 almost surely. Define Un = {n(n − 1)}−1
∑n

i 6=j Hn(Zi,Zj),
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as a degenerate U-statistic. Let λnk and ψnk(x) be eigenvalues and the corresponding

eigenfunctions defined in Corollary 1. Under conditions

(A1):
∑∞

k=N λ
2
nk → 0 uniformly for all n > n0 as n0, N →∞, and λnk → λk 6= 0;

(A2): supn σ
−(2+δ)
nH E|Hn(Z1,Z2)|2+δ <∞ for some δ > 0.

Then, as n → ∞, we have nσ−1
nHUn

d→
∑∞

k=1 λk(χ
2
k − 1), where χ2

k are IID chi-square

distributed random variables.

Proof: Let an = {
√

2n(n− 1)}−1. To prove nσ−1
H Un

d→
∑∞

k=1 λk(χ
2
k − 1) is equivalent

to prove

σ−1
nH

n∑
i 6=j

anHn(Zi,Zj)
d→
∞∑
k=1

λk(χ
2
k − 1)/

√
2. (S1.4)

Using the eigenvalue decomposition in Corollary 1, it follows that

n∑
i 6=j

anσ
−1
nHHn(Zi,Zj)

d
=
∞∑
k=1

λk

n∑
i 6=j

anψnk(Zi)ψnk(Zj) ≡ un,

where d
= means equality in distribution. Let Yj for j = 1, · · · , n be IID standard normal

random variables. Then, to prove (S1.18) is equivalent to prove

ρ(un, vn)→ 0, (S1.5)

where vn =
∑∞

k=1 λk(
∑

j 6=l anYjYl) and ρ(A,B) is the Levy-Prokhorov distance between

the probability laws of A and B (Billingsley (2013)). By carefully checking the proof of

Mikosch (1993), Theorem 2.1 in Mikosch (1993) can be applied to prove (S1.5). Thus, we
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only need to check conditions (A1)-(A3) in Theorem 2.1 of Mikosch (1993). Condition

(A1) in Mikosch (1993) can be slightly relaxed to (A1) given in this Lemma 2. For the

condition (A2) in Mikosch (1993), we can see that d−2(n) = 1/{2(n− 1)} → 0, therefore

condition (A2) in Mikosch (1993) holds. Condition (A3) in Mikosch (1993) also holds

because of the remark (5) below Theorem 2.1 in Mikosch (1993) suggests that condition

(A2) is a sufficient condition. �

Lemma 3. If kernel K∗θ (x1, x2) is a positive definite kernel, then the centralized kernel

Kθ(x1, x2) is positive semi-definite.

Proof: Assume kernel function K∗θ (x, y) has eigen-depcomposition {λ∗nm, ψ∗nm(·)}∞m=1,

and centralized kernel Kθ(x, y) has eigen-decomposition {λnm, ψnm(·)}∞m=1. Since the

kernel can be normalized, we assume the sum of squared eigenvalues are bounded without

loss of generality. Recall the definition of the centralized kernel function Kθ(x1,x2) =

K∗θ (x1,x2)−K∗1,θ(x1)−K∗1,θ(x2) + µK∗ . Then we have E[Kθ(x1,X2)] = E[K∗θ (x1,X2)]−

K∗1,θ(x1) = 0, or equivalently,
∫

1 ·Kθ(x1,x2)dµ(x2) = 0, which implies that ψnm∗(·) = 1

is one of the eigenfunctions corresponding to zero eigenvalue. Due to the orthogonality

of the system, E{ψnm(X)} = 0 for m 6= m∗. By the eigen-decomposition equality in

Lemma 1 we have

λnmψnm(x1) = E{Kθ(x1,X2)ψnm(X2)} = E{K∗θ (x1,X2)ψnm(X2)} − E{K∗1,θ(X2)ψnm(X2)}

+ {µK∗ −K∗1,θ(x1)}E{ψnm(X2)} = E{K∗θ (x1,X2)ψnm(X2)} − E{K∗1,θ(X2)ψnm(X2)},
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for any m 6= m∗. By plugging in K∗θ (x1,x2) =
∑∞

m=1 λ
∗
nmψ

∗
nm(x1)ψ∗nm(x2), and multiply-

ing ψnm(x1) to both sides, we have

λnmψ
2
nm(x1) =

∑
s

λ∗nsψ
∗
ns(x1)ψnm(x1)E{ψ∗ns(X2)ψnm(X2)}−E{K∗1,θ(X2)ψnm(X2)}ψnm(x1),

for m 6= m∗. Taking expectation with respect to X1 and using the orthogonal normal

property,

λnm =
∞∑
m=1

λ∗nmE
2[ψ∗nm(X)ψnm(X)] ≥ 0, m 6= m∗.

In addition, λnm∗ = 0, then the positive semi-definiteness of centralized kernel function

can be achieved. �

Proof of Theorem 1: (i) Under the null hypothesis, Yi = µ + εi. Because the test

statistic Tn is invariant to location shift, without loss of generality, we assume µ = 0 in

the following proof. Then T 0
n := TH0

n , the reduced version under null hypothesis, can be

written as

T 0
n =

1

n(n− 1)σ2

∑
i 6=j

K(Xi,Xj)(εi− ε̄)(εj− ε̄){1+(
σ2

σ̂2
−1)} := T 0

n1{1+(
σ2

σ̂2
−1)} (S1.6)

Since σ2/σ̂2 − 1 = op(1), under the null, we have T 0
n/
√
V2n = T 0

n1/
√
V2n{1 + op(1)}.

We now study the asymptotic distribution of T 0
n1/
√
V2n using the U-statistic theory.

By plugging in the full expression of ε̄ = n−1
∑n

i=1 εi, the leading order of T 0
n1/
√
V2n can
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be written as the sum of three U-statistics of different orders

T 0
n1√
V2n

= U (2)
n + U (3)

n + U (4)
n + ∆0

n, (S1.7)

where U (2)
n =

∑
i 6=j Ψ(2)(Zi,Zj)/P

2
n ,

U (3)
n =

1

P 3
n

∑
i 6=j 6=k

Ψ(3)(Zi,Zj,Zk), U (4)
n =

1

P 4
n

∑
i 6=j 6=k 6=l

Ψ(4)(Zi,Zj,Zk,Zl),

∆0
n = op(U

(2)
n +U

(3)
n +U

(4)
n ), and Z = (X, ε). P k

n is the number of k-permutations of n, Ψ(k)

is the kernel function of k-th order U-statistic U (k)
n for k = 2, 3, 4 and of the following

symmetric form Ψ(2)(Zi,Zj) = K(Xi,Xj)[εiεj − n−1(εi + εj)
2]/σ2, Ψ(3)(Zi,Zj,Zk) =

ϕ(3)(i, j, k) + ϕ(3)(j, k, i) + ϕ(3)(i, k, j) and

Ψ(4)(Zi,Zj,Zk,Zl) =ϕ(4)(i, j, k, l) + ϕ(4)(i, k, j, l) + ϕ(4)(i, l, j, k) + ϕ(4)(j, k, i, l)

+ ϕ(4)(j, l, i, k) + ϕ(4)(k, l, i, j),

where ϕ(3)(i, j, k) = −K(Xi,Xj)(εiεk+εjεk−ε2k/n)/(3σ2) and ϕ(4)(i, j, k, l) = K(Xi,Xj)εkεl/(6σ
2).

To study the distribution of T 0
n1/
√
V2n, we will look at the asymptotic properties of each

U-statistic U (k)
n respectively. Specifically, we are going to show the following

(a) : nU (2)
n

d→
∞∑
m=1

λK,m(χ2
m − 1), (S1.8)

(b) : nU (3)
n

p→ 0, (S1.9)

(c) : nU (4)
n

p→ 0. (S1.10)
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To see (a), we define the first-order and second-order projections of the kernel Ψ(2)(·) as

φ
(2)
1 (zi) = E{Ψ(2)(zi,Zj)} = 0 and φ(2)

2 (zi, zj) = E{Ψ(2)(zi, zj)} = Ψ
(2)
2 (zi, zj), and their

corresponding variances σ2
2,1 = Var[φ(2)

1 (Zi)], σ
2
2,2 = Var[φ(2)

2 (Zi,Zj)]. It is not difficult to

prove that U (2)
n is first-order degenerated, i.e., σ2

2,1 = 0 and σ2
2,2 = 2VK,2{1 + o(1)} 6= 0.

By Lemma 2, nU (2)
n

d→
∑∞

m=1 λKz ,m(χ2
m − 1), where {λKz ,m}∞m=1 are the eigenvalues of

kernel function Kz(z1, z2) = K(x1, x2)ε1ε2 with respect to the distribution function Fz,

i.e., solution of integral equations

∫
Kz(z1, z2)ψKz ,m(z1)dFz(z2) = λKz ,mψKz ,m(z2),m = 1, . . . ,∞. (S1.11)

It remains to prove that λKz ,m = λK,m. View kernel Kz(z1, z2) as the product of kernel

Kz,1(z1, z2) := K(x1, x2) and kernel Kz,2(z1, z2) := ε1ε2, where Kz,2 has only one non-zero

eigenvalue 1 with eigenfunction g(ε) = ε/σ under the null hypothesis. Through equations

(S1.11) above, it can be verified that eigenvalues and eigenfunctions of Kz(z1, z2) are

{λK,m} and {ψm(x) · g(ε)}∞m=1 respectively. (b) and (c) can be achieved similarly by

proving means and variances of the first- and second-order projections of U (3)
n and U (4)

n

are all zero.

(ii) Based on the proof in part (i), we will only need to show that nU (2)
n /
√

2
d→

N(0, 1). To this end, we write nU (2)
n /
√

2 =
√

2
∑n

i=1 ξi/(n− 1) = an
∑n

i=1 ξi where ξi =∑i−1
j=1 Ψ(2)(Zi,Zj) and an =

√
2/(n−1). Let F0 = {∅,Ω}, Fi = σ{Z1, · · · ,Zi} be the σ-

field generated by Z1, · · · ,Zi. Then, we know that E{ξi|Fi−1} = 0 and {ξi, 1 ≤ i ≤ n}
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is a martingale difference sequence with respect to the σ-fields {Fi, 1 ≤ i ≤ n}. Let

σ2
ni = E(ξ2

i |Fi−1). Then, to show the central limit theorem, it suffices to show that

∑n
i=1 σ

2
ni

Var(
∑n

i=1 ξi)

p→ 1 and
∑n

i=1E(ξ4
i )

Var2(
∑n

i=1 ξi)
→ 0. (S1.12)

We first show the first part of (S1.12). Because E(
∑n

i=1 σ
2
ni) = Var(

∑n
i=1 ξi), it suffices

to show that Var(
∑n

i=1 σ
2
ni) = O{Var2(

∑n
i=1 ξi)}. By definition, we have

σ2
ni =

i−1∑
j,k

K2(Xj, Xk)ζjk,n,

where K2(x, y) = E{K(x,X)K(X, y)} and ζjk,n = (1− 2
n
)2σ2εjεk+n−2(κ4 +σ2ε2k+σ2ε2j +

ε2jε
2
k). Because E{K2(Xj,Xk)} = 0 for j 6= k, we have

E(σ2
ni) = (i− 1)E{K2(X1,X1)}E(ζn1),

where ζj,n = (1− 2
n
)2σ2ε2j+n

−2(κ4+2σ2ε2j+ε
4
j). Moreover, becauseE{K2(Xj,Xj)K2(Xj,Xt)} =

0 for j 6= t, we have

E(σ4
ni) =

i−1∑
j=1

E{K2
2(Xj,Xj)ζj,n}+

i−1∑
j 6=s

E{K2(Xj,Xj)K2(Xs,Xs)ζj,nζs,n}

+ 2
i−1∑
j 6=k

E{K2
2(Xj,Xk)ζ

2
jk,n}

= (i− 1)E{K2
2(X1,X1)}E(ζ2

1,n) + (i− 1)(i− 2)E2{K2(X1,X1)}E2(ζ1,n)

+ 2(i− 1)(i− 2)E{K2
2(X1,X2)}E(ζ2

12,n).
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Similarly, it can be shown that, for i < j,

E(σ2
niσ

2
nj) = (i− 1)E{K2

2(X1,X1)}E(ζ2
1,n) + (i− 1)(j − 2)E2(ζn1)E2(ζ1,n)

+ 2(i− 1)(i− 2)E{K2
2(X1,X2)}E(ζ2

12,n).

Thus, we have

Var(
n∑
i=1

σ2
ni) = {

n∑
i=2

(i− 1) + 2
∑
i<j

(i− 1)}Var{K2(X1,X1)}Var(ζ1,n)

+ 2{
n∑
i=2

(i− 1)(i− 2) + 2
∑
i<j

(i− 1)(i− 2)}E{K2
2(X1,X2)}E(ζ2

12,n).

Because E(ε81) <∞, the order of Var(
∑n

i=1 σ
2
ni) = O[max{n4E{K2

2(X1,X2), n3E{K2
2(X1,X1)}].

Moreover, we know that Var(
∑n

i=1 ξi) is at the order of n2. So, Var(
∑n

i=1 σ
2
ni) =

o{Var2(
∑n

i=1 ξi)} if max(E{K2
2(X1,X2)}, E{K2

2(X1,X1)}/n) = o(1). Define K2(x, y) =

E{K(x,X)K(y,X)}. If E{K2
2(X1,X2)} = o(V 2

2n) and E{K2
2(X1,X1)} = o(nV 2

2n), then

the first part of (S1.12) holds. If E{K4
2(X1,X2)} = o(V 4

2n) holds, then E{K2
2(X1,X2)} =

o(V 2
2n) holds.

We then show the second part of (S1.12). By a straightforward computation, we

have

E(ξ4
i ) =

i−1∑
j=1

E
[
K4

2(Xi,Xj){εiεj − n−1(εi + εj)
2}4
]

+ 3
i−1∑
l 6=j

E
[
K2

2(Xi,Xj)K2
2(Xi,Xl){εiεj − n−1(εi + εj)

2}2{εiεl − n−1(εi + εl)
2}2
]
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≤ C
[
(i− 1)E{K4

2(X1,X2)}+ (i− 1)(i− 2)E{K2
2(X1,X2)K2

2(X1,X3)}
]
,

where C is a constant. Therefore, the second part of (S1.12) holds if E{K2
2(X1,X2)K2

2(X1,X3)} =

o(nV 4
2n) and E{K4

2(X1,X2)} = o(n2V 4
2n). Both conditions hold if E{K4

2(X1,X2)} =

o(V 4
2n). �

Remark 3: Derivation of the adjusted variance σ2
Tn,adj

. Consider

n(n− 1)Tn1 =
2

σ2
YTHK0HY − 1

σ4(n− 1)
YTHK0HYYTHY , G1 −G2,

By using results from Zhong and Chen (2011), we have E(G1) = 2tr(HK0),

E(G2) =
1

(n− 1)
[tr(HK0)tr(H) + 2tr(HK0) + ∆tr(HK0H ◦H)],

Var(G1) = 8tr(HK0HK0) + 4∆tr(A ◦A),

Cov(G1, G2) =
1

(n− 1)
[16tr(HK0HK0) + 4tr2(HK0) + 4tr(HK0HK0)tr(H)]

+
2∆

(n− 1)
[tr(HK0)tr(A ◦H) + tr(H)tr(A ◦A) + tr(A2 ◦H) + 2tr(A ◦A)]

+
2(τ6 − 15− 6∆)

(n− 1)
tr(A ◦A ◦H)

where τk = E {(Y − µ)/σ}k for any k ∈ N . Applying the results from Bao and Ullah

(2010),

E(YTAYYTAYYTHYYTHY)/σ8



Tao He, Ping-Shou Zhong, Yuehua Cui and Vidyadhar Mandrekar

= tr2(HK0)tr2(H) + 10tr2(HK0)tr(H) + 2tr2(H)tr(HK0HK0) + 20tr(HK0HK0)tr(H)

+ 24tr2(HK0) + 48tr(HK0HK0) +Rn

where Rn = γ2fγ2 + γ4fγ4 + γ6fγ6 + γ2
2fγ22 , γ2 = τ4 − 3 = ∆, γ4 = τ6 − 15∆ − 15,

γ6 = τ8 − 28γ4 − 35∆2 − 210∆− 105, and

fγ2 = n−1tr2(HK0)
{

5(n− 1)2 + 8n+ 24(n− 1)
}

+ n−1tr(HK0HK0)
{

10(n− 1)2 + 64(n− 1)
}

+ tr(A ◦A)
{

(n− 1)2 + 2n−1(n− 1)2 + 16(n− 1) + 48 + 16n−1(n− 1)
}
,

fγ4 = 2tr2(HK0)n−2(n− 1)2 + 4tr(HK0HK0)n−2(n− 1)2 + tr(A ◦A)n−1(n− 1)(2n+ 18),

fγ6 = tr(A ◦A)n−2(n− 1)2,

fγ22 = tr2(HK0)n−2
(
2n2 − 2n+ 4

)
+ tr(A ◦A)n−1

{
8n− 16 + (n− 1)2

}
+ tr(HK0HK0)n−2

(
24n2 − 32n+ 12

)
.

Hence,

(n− 1)2Var(G2) =E(YTAYYTAYYTHYYTHY)/σ8 − {E(G2)}2

=tr2(HK0)
{

6(n− 1) + 20
}

+ tr(HK0HK0)
{

2(n− 1)2 + 20(n− 1) + 48
}

−
{

4∆tr(HK0)tr(A ◦H) + ∆2tr2(A ◦H) + 2∆tr(HK0)tr(H)tr(A ◦H)
}

+Rn.

Denote S1 = −2tr2(HK0)/(n−1)+tr(HK0HK0)
{

2−12/(n−1)
}
and S2 = −tr2(HK0)∆/n+
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6tr(HK0HK0)∆/n+ ∆tr(A ◦A), then we have

Var(G1 −G2) = S1 + S2 + o(S1 + S2)

= tr(HK0HK0){2− 12(n− 1)−1 + 6∆n−1}

+ tr2(HK0){−2(n− 1)−1 −∆n−1}+ ∆tr(A ◦A) + o(S1 + S2),

where it can be proved tr(A◦A) = n−1
{

2tr(K2)−tr2(HK0)−2tr(HK0HK0)
}
{1+o(1)}.

Therefore, Var(nTn1) = (n− 1)−2Var(G1 −G2), which is an adjustment for the variance

of test statistic nTn, since Var(nTn) = Var(nTn1){1 + o(1)}. This finishes the proof. �

Proof of Remark 4: Let Tn =
∑

i 6=jKθ(Xi,Xj)(Yi − Ȳn)(Yj − Ȳn)/{n(n − 1)σ̂2} and

Tn1 =
∑

i 6=jKθ(Xi,Xj)(Yi − Ȳn)(Yj − Ȳn)/{n(n − 1)σ2} be the statistics using the true

centralized kernel Kθ. Let T̂n =
∑

i 6=jKn,θ(Xi,Xj)(Yi − Ȳn)(Yj − Ȳn)/{n(n − 1)σ̂2}

and T̂n1 =
∑

i 6=jKn,θ(Xi,Xj)(Yi − Ȳn)(Yj − Ȳn)/{n(n − 1)σ2} be the ones using empir-

ically centralized kernel Kn,θ. Following similar arguments in the proof of Theorem 1,

nTn/
√
V2n = nTn1/

√
V2n{1 + op(1)} and nT̂n/

√
V2n = nT̂n1/

√
V2n{1 + op(1)}. To show

nTn/
√
V2n = nT̂n/

√
V2n{1 + op(1)}, it remains to show (nTn1 − nT̂n1)/

√
V2n = op(1).

In fact, ∆n,D = V
−1/2

2n (nTn1−nT̂n1) =
∑

i 6=j Dij(Yi− Ȳ )(Yj − Ȳ )/{(n− 1)σ2}, where

D = V
−1/2

2n (K − Kn), Dij = V
−1/2

2n {K∗1,θ(Xj) − (n − 1)−1
∑

k 6=jK
∗
kj + K∗1,θ(Xi) − (n −

1)−1
∑

k 6=iK
∗
ki + n−1(n− 1)−1

∑
k 6=lK

∗
kl − µK∗} and K∗ij = K∗(Xi,Xj). Viewing ∆n,D as

a special case that was considered in proof of Theorem 1, it is not difficult to see that

E(∆n,D) = 0, and the asymptotic variance of ∆n,D is 2E(D2
ij) ≤ CV −1

2n (2σ2
∆,1 + σ2

∆,2) for
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some constant C, where σ2
∆,1 = E{K∗1,θ(Xj)−(n−1)−1

∑
k 6=jK

∗
kj}2 and σ2

∆,2 = E{n−1(n−

1)−1
∑

k 6=lK
∗
kl − µK∗}2. In the following we will show that V −1

2n (2σ2
∆,1 + σ2

∆,2) = o(1).

Let {λ∗nm, ψ∗nm}∞m=1 be the eigen-decomposition of kernelK∗. Denote V ∗2n =
∑∞

m=1 λ
∗2
nm,

κm = E{ψ∗nm(X)}, ν1 =
∑

m=1 λ
∗
nmκ

2
m and ν2 =

∑
m=1 λ

∗2
nmκ

2
m. Since the ∆D,n is invari-

ant when the kernel is scaled, we can assume λ∗1 = 1 without loss of generality. Then it

can be shown that σ2
∆,1 = n−1(V ∗2n − ν2) and σ2

∆,2 = 4n−1ν2 + n−2V ∗2n. Moreover, it has

been studied in Lindsay et al. (2014) that V2n = V ∗2n−2ν2+ν2
1 , where 1 ≤ ν2 ≤ ν1 ≤

√
V ∗2 ,

Therefore,

V −1
2n (2σ2

∆,1 + σ2
∆,2) =

2

n

V ∗2n + ν2

V2n

{1 + o(1)} ≤ 2

n

V ∗2n +
√
V ∗2n

V ∗2n − 2ν2 + ν2
1

≤ 2

n

V ∗2n +
√
V ∗2n

V ∗2n − 2
√
V ∗2n

,

which is o(1) no matter V ∗2n is infinite or finite. �

Polynomial Kernel: Consider the polynomial kernel K∗n,θ(Z1,Z2) = (ZT
1 ΛZ2)d where

Z1 and Z2 are independent multivariate distributed normal random vectors with mean

µ∗ and variance Ip. Then the corresponding centralized kernel is

Kn,θ(Z1,Z2) = K∗n,θ(Z1,Z2)−E{K∗n,θ(Z1,Z2)|Z1}−E{K∗n,θ(Z1,Z2)|Z2}+E{K∗n,θ(Z1,Z2)}.

Let J = {j1, · · · , jp} be a set of non-negative integers such that j1 + · · · + jp = d and

{k1, · · · , kSJ} be a subset of {1, · · · , p} for which jk1 6= 0, · · · , jkSJ 6= 0. It follows that

E{K∗n,θ(Z1,Z2)|Z1} =
∑

j1+j2+···+jp=d

d!

j1! · · · jp!
E
{ p∏
k=1

ηjkk Z
jk
1kZ

jk
2k|Z1

}
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=
∑

j1+j2+···+jp=d

d!

j1! · · · jp!
E

SJ∏
l=1

η
jkl
kl
Z
jkl
1kl
E(Z

jkl
2kl

).

We then write the centralized kernel as

Kn,θ(Z1,Z2) =
∑

j1+j2+···+jp=d

d!

j1! · · · jp!

SJ∏
l=1

η
jkl
kl
{Zjkl

1kl
− E(Z

jkl
1kl

)}{Zjkl
2kl
− E(Z

jkl
2kl

)}.

Following the derivation in Liang and Lee (2013), the eigenvalues λn and eigenfunctions

φ(·) of K satisfy the following equation

∫ ∑
j1+j2+···+jp=d

d!

j1! · · · jp!

SJ∏
l=1

η
jkl
kl
{Zjkl

kl
− E(Z

jkl
kl

)}{W jkl
kl
− E(W

jkl
kl

)}φ(Z)f(Z)dZ = λnφ(W),

where f(Z) is the density function of Z. The above equation then can be written as

∑
j1+j2+···+jp=d

( d!

j1! · · · jp!

)1/2
SJ∏
l=1

η
jkl/2

kl
{W jkl

kl
− E(W

jkl
kl

)}Cj1,··· ,jp = λnφ(W), (S1.13)

where

Cj1,··· ,jp =
( d!

j1! · · · jp!

)1/2
SJ∏
l=1

∫
η
jkl/2

kl
{Zjkl

kl
− E(Z

jkl
kl

)}φ(Z)f(Z)dZ.

From equation (S1.13), we obtain

φ(W) = λ−1
n

∑
j1+j2+···+jp=d

( d!

j1! · · · jp!

)1/2
SJ∏
l=1

η
jkl/2

kl
{W jkl

kl
− E(W

jkl
kl

)}Cj1,··· ,jp . (S1.14)
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Plugging the equation φ(·) into the expression of Cj1,··· ,jp , we have

Cj1,··· ,jp =
( d!

j1! · · · jp!

)1/2
SJ∏
l=1

∫
η
jkl/2

kl
{Zjkl

kl
− E(Z

jkl
kl

)}

×
[
λ−1
n

∑
i1+i2+···+ip=d

( d!

i1! · · · ip!

)1/2
SI∏
l=1

η
ikl/2

kl
{Zikl

kl
− E(Z

ikl
kl

)}Ci1,··· ,ip
]
f(Z)dZ,

where I = {k1, · · · , kSI} ⊂ {1, · · · , p} for which jk1 6= 0, · · · , jkSI 6= 0. Because of

the independence among {Z1, · · · , Zp}, the integration in the above equation is zero

whenever I is not the same as J . Therefore, we can write the above equation as

λnCj1,··· ,jp =
∑

ik1+ik2+···+ikSJ
=d

( d!

j1! · · · jp!

)1/2

(
d!

ik1 ! · · · ikSJ !

)1/2

µJCi1,··· ,ip ,

where µJ =
∏SJ

l=1 η
(ikl+jkl )/2

kl
E
[
{Zjkl

kl
−E(Z

jkl
kl

)}{Zikl
kl
−E(Z

ikl
kl

)}
]
. Here {k1, · · · , kSJ} is a

subset of {1, · · · , p} for which jk1 6= 0, · · · , jkSJ 6= 0 and i1, · · · , ip has the same non-zero

support as {j1, · · · , jp} on J .

Let Mp,d = (M
(J)
p,d ) be a dp × dp matrix with the entries M (J)

p,d given by

M
(J)
p,d =

( d!

j1! · · · jp!

)1/2( d!

ik1 ! · · · ikSJ !

)1/2

µJ ,

where dp =
(
d+p−1
d

)
. Then, the eigenvalues of the kernel K∗ are given by the following

equation:

Mp,dC = λnC,
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where C = (CJ) is a dp-dimensional eigenvector that containing all Cj1,··· ,jp for which

j1 + · · ·+ jp = d.

Based on the above results, the eigenvalues of the kernel K∗ are given by the eigen-

values of the matrix Mp,d. Therefore, V2n is a summation of the squares of M (J)
p,d . If

Cov(Zu
k , Z

v
k) for any integers u, v ∈ {1, · · · , d} are uniformly bounded (for k = 1, · · · , p)

above and below, then applying the Cauchy-schwarz inequality, we have

V2n �
∑

ik1+···+ikSJ
=d

∑
jk1+···+jkSJ

=d

d!

ik1 ! · · · ikSJ !

d!

jk1 ! · · · jkSJ !

kSJ∏
l=1

η
(ikl+jkl )

k

�
∑

ik1+···+ikSJ
=d

d!

ik1 ! · · · ikSJ !

kSJ∏
l=1

η
2ikl
k =

∑
i1+···+ip=d

d!

i1! · · · ip!

p∏
k=1

η2ik
k = trd(Σ2).

This completes the proof of the polynomial example. �

Proof of Theorem 2: Under the alternative hypothesis H1n, Yi = µ+dn(Xi)+εi, where

Edn(Xi) = 0, E(εi) = 0, and Var(εi) = σ2. Without loss of generality, we also assume

µ = 0 in the following proof. Similar to (S1.6), considering the following expansion

Tn =
1

n(n− 1)σ2

∑
i 6=j

K(Xi,Xj)(Yi − Ȳn)(Yj − Ȳn){1 + (
σ2

σ̂2
− 1)} := Tn1{1 + (

σ2

σ̂2
− 1)}.

Under condition (3.9), E(Yi) = 0 and E(Y 2
i ) = σ2 + E{d2

n(Xi)} = σ2{1 + o(1)}, it is

not difficult to see σ̂2 p→ σ2. Hence it is enough to study the behavior of Tn1. By plugging

in expression of Yi and Yj under H1n, Tn1 could be decomposed into two parts: T 0
n1 and

T̃ 0
n1, where asymptotic distribution of T 0

n1 is the null distribution and has been studied in
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Theorem 1. The remainder term T̃ 0
n1 can be expressed as the sum of the following three

terms

T̃ 0
n1 = {Θ(2)

n + Θ(3)
n + Θ(4)

n }{1 + op(1)}, (S1.15)

where

Θ(2)
n =

√
V2n

n2σ2

∑
i 6=j

Kθ(Xi,Xj)
[
UiUj + Uiεj + Ujεi −

1

n
(Ui + Uj)

2 − 2

n
(Ui + Uj)(εi + εj)

]
,

Θ(3)
n =

√
V2n

n3σ2

∑
i 6=j 6=k

Kθ(Xi,Xj)
[
− (Ui + Uj)(Uk + εk)− (εi + εj)Uk +

1

n
(U2

k + 2Ukεk)
]
,

Θ(4)
n =

√
V2n

n4σ2

∑
i 6=j 6=k 6=l

Kθ(Xi,Xj)(UkUl + Ukεl + Ulεk),

and Ui = dn(Xi). Denote the eigenvalues of normalized kernel Kθ(x, y) as {λK,m}∞m=1,

where
∑

m λ
2
K,m = 1 and λK,m ≥ 0 for each m. Notice that kernel Kθ and Kθ have the

same eigenfucntions {ψnm(X)}∞m=1. Besides, for centralized kernel, µm := E{ψnm(X)} =

0 form ∈ N \{m∗}, where µm∗ = 1 corresponds to zero eigenvalue (λm∗ = 0) (See Lemma

3 in the first section). Let G = {m : λm > 0}, then Kθ(x1, x2) =
∑

m∈G λmψm(x1)ψm(x2)

and µm = 0 for all m ∈ G. Define bnm := E
{
ψnm(X)dn(X)

}
representing the projection

of function dn(X) onto the eigen-function ψnm(X).

In the following we will show that (a) E(σ−1
Tn
nT̃ 0

n1)−Ψ(dn) = o(1), and (b) Var(nT̃ 0
n1) =

o{Var(nT 0
n1)}. To prove (a) and (b), let us study the asymptotic behavior of each term
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in nσ−1
Tn
T̃ 0
n1 = nσ−1

Tn
(Θ

(2)
n + Θ

(3)
n + Θ

(4)
n ). Firstly split

σ−1
Tn
nΘ(2)

n = n
(
S̃11 + 2S̃12 + 2S̃13 + 2S̃14

)
{1 + op(1)}, (S1.16)

where

S̃11 :=

√
V2n

n2σ2σTn

∑
i 6=j

Kθ(Xi,Xj)UiUj, S̃12 =

√
V2n

n2σ2σTn

∑
i 6=j

Kθ(Xi,Xj)Uiεj,

S̃13 = −
√
V2n

n3σ2σTn

∑
i 6=j

Kθ(Xi,Xj)U
2
i , S̃14 = −

√
V2n

2n3σ2σTn

∑
i 6=j

Kθ(Xi,Xj)Uiεi.

We want to show nS̃11
p→ Ψ(dn) and nS̃1j

p→ 0 for j = 2, 3, 4. Actually, E(nS̃11) =

nσ−1
Tn

√
V2n

∑∞
m=1 b

2
nmλK,m = Ψ(dn){1 + o(1)}, and

n2S̃2
11 =

V2n

n2σ4σ2
Tn

∑
i6=j,k 6=l
m1,m2∈G

λK,m1λK,m2ψnm1(Xi)ψnm1(Xj)ψnm2(Xk)ψnm2(Xl)UiUjUkUl.

Define index subsets Ic = {(i, j, k, l)||{i, j}∩{k, l}| = c, i, j, k, l ∈ {1, · · · , n}, i 6= j, k 6= l}

for c = 0, 1, 2, where | · | denotes the set cardinality. For example, I0 represents set

{(i, j, k, l) ∈ |i, j, k, l ∈ {1, · · · , n}, i 6= j 6= k 6= l}. Then n2S̃2
11 = J0 + J1 + J2, where

Jc =
V2n

n2σ4σ2
Tn

∑
i,j,k,l∈Ic
m1,m2∈G

λK,m1λK,m2ψnm1(Xi)ψnm1(Xj)ψnm2(Xk)ψnm2(Xl)UiUjUkUl.

By using the orthogonal and centralized properties of eigen-functions, it can be proved



Tao He, Ping-Shou Zhong, Yuehua Cui and Vidyadhar Mandrekar

that

E(J0) = E2(nS̃11){1 + o(1)} = Ψ2(dn){1 + o(1)},

E(J1) =
4V2n

n2σ4σ2
Tn

∑
i6=j 6=k

m1,m2∈G

λK,m1λK,m2E{ψnm1(Xi)ψnm2(Xi)U
2
i }E{ψnm1(Xj)Uj}E{ψnm2(Xk)Uk}

= 4nV2nσ
−4σ−2

Tn

( ∑
m1,m2∈G

λK,m1λK,m2bnm1bnm2em1,m2

)
{1 + o(1)},

E(J2) = 2nV2nσ
−4σ−2

Tn

( ∑
m1,m2∈G

λK,m1λK,m2e
2
m1,m2

)
{1 + o(1)},

where em1,m2 = E[ψnm1(X)ψnm2(X)d2
n(X)]. Under condition (3.9), we can prove that

|bnm| ≤ D1

[
Ed8

n(X)
]1/8, and |em1,m2| ≤ D2

[
Ed8

n(X)
]1/4 for some finite constants D1 and

D2, by using Cauchy-Schwartz inequality. Therefore, E(J1) ≤ 2σ−4D2
1D2·n

[
Ed8

n(X)
]1/2

=

o(1), E(J2) ≤ σ−4D2
2 ·n

[
Ed8

n(X)
]1/2

= o(1), and Var(nS̃11) = o(1) under condition (3.9).

Hence nS̃11
p→ Ψ(dn) = O(1). It remains to prove nS̃1j

p→ 0 for j = 2, 3, 4 in (S1.16).

It is easy to see that E(nS̃12) = E(nS̃13) = E(nS̃14) = 0 by using the centralized

kernel property. Moreover, it can be proved that Var(nS̃12) = Var(nS̃13) = Var(nS̃14) =

o(1). Actually,

Var(nS̃12) =
V2n

σ2σ2
Tn

∑
m∈G

λ2
K,mem,m{1 + o(1)} ≤ (

√
2σ)−2D2[Ed8

n(X)]1/4,

Var(nS̃13) =
V2n

n2σ4σ2
Tn

{∑
m∈G

λ2
K,mfm +

∑
m1,m2

λK,m1λK,m2e
2
m1,m2

}
{1 + o(1)}

≤ (
√

2nσ2)−2[Ed8
n(X)]1/2(D3 +D2

2)
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Var(nS̃14) =
V2n

n2σ2σ2
Tn

∑
m∈G

λ2
K,mem,m{1 + o(1)} ≤ (

√
2nσ)−2D2[Ed8

n(X)]1/4,

where fm = E[ψ2
m(X)d4

n(X)] ≤ D3[Ed8
n(X)]1/2 for some constant D3 > 0. The variance

above are all of order o(1) under condition (3.10). For the triple sum terms Θ
(3)
n in

(S1.15),

S̃21 =

√
V2n

n3σ2σTn

∑
i 6=j 6=k

Kθ(Xi,Xj)Uiεk, S̃22 =

√
V2n

n3σ2σTn

∑
i 6=j 6=k

Kθ(Xi,Xj)UiUk,

S̃23 =

√
V2n

n3σ2σTn

∑
i 6=j 6=k

Kθ(Xi,Xj)Ukεi, S̃24 =

√
V2n

n4σ2σTn

∑
i 6=j 6=k

Kθ(Xi,Xj)Ukεk,

S̃25 =

√
V2n

n4σ2σTn

∑
i 6=j 6=k

Kθ(Xi,Xj)U
2
k .

Similarly, it is not difficult to see that E(nS̃2j) = 0 for j = 1, ..., 5. Furthermore, up to a

factor of {1 + o(1)}, we have the following

Var(nS̃21) =
1

2σ2

∑
m∈G

λ2
K,m
(
b2
nm + 2n−1em,m

)
,

Var(nS̃22) =
1

2σ4

∑
m1,m2∈G

λK,m1λK,m2

(
b2
nm1

b2
nm2

+ n−1d2
m1,m2

E[d2
n(X)] + 2n−1bnm1cm2dm1,m2

)
+

1

2σ4

∑
m∈G

λ2
K,m
(
b2
nmE[d2

n(X)] + n−1em,mE[d2
n(X)] + n−1c2

m

)
,

Var(nS̃23) =(2nσ4)−1
(∑
m∈G

λ2
K,mb

2
nm + E[d2

n(X)]
)
,

Var(nS̃24) =(n3σ4)−1E[d2
n(X)],
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Var(nS̃25) =(2n2σ4)−1

(
E2[d2

n(X)] + 2n−1E[d4
n(X)]

)
+

2

n3σ4

∑
m∈G

λ2
K,mb

2
nm,

where cm = E[ψnm(X)d2
n(X)], and dm1,m2 = E[ψnm1(X)ψnm2(X)dn(X)]. Under condition

(3.9), all the triple sum terms are of small order. Finally consider the following quadruple

sum terms Θ
(4)
n in (S1.15),

S̃31 =
V1

n4σ2σTn

∑
i 6=j 6=k 6=l

Kθ(Xi,Xj)UkUl, S̃32 =
V1

n4σ2σTn

∑
i 6=j 6=k 6=l

Kθ(Xi,Xj)Ukεl.

It can be shown that E(nS̃31) = E(nS̃31) = 0, and

Var(nS̃31) =
1

2n2σ2

(
E[d2

n(X)]
∑
m∈G

λ2
K,mb

2
nm +

(∑
m∈G

λK,mbnm
)2

+ E2[d2
n(X)]VK,2

)
{1 + o(1)},

Var(nS̃32) =
1

2n2σ2

(∑
m∈G

λ2
K,mb

2
nm + E[d2

n(X)]VK,2
)
{1 + o(1)},

are of order o(1) under condition (3.10). Therefore, nσ−1
Tn
T̃ 0
n1

d→ Ψ(dn) under the local

hypothesis H1n (3.9). This finishes the proof of Theorem 2. �

Proof of Proposition 1: (i) We will firstly show that the leading order of σ̂2
Tn

is σ̂2
Tn1

=

2n−1(n− 1)−1tr[(K0)2], which can be written as a U-statistic. Denote ΛK = diag(K), a

diagonal matrix with the same diagonal elements as matrix K. Then on one hand, we

can see K0 = K−ΛK and tr[(K0)2] = tr(K2)− tr(Λ2
K). On the other hand,

tr(HK0HK0) = tr(K2)−2tr(HKHΛK)+tr(HΛKHΛK) = {tr(K2)−tr(Λ2
K)}{1+op(1)}.
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It remains to show that σ̂2
Tn1
/σ2

Tn

p→ 1 as n→∞. As a U-statistic, the variance of σ̂2
Tn1

can be derived following the classical method. In fact, Var(σ̂2
Tn1
/2V2n) = O(n−1), and

E(σ̂2
Tn1
/2V2n) = E(σ̂2

Tn1
/σ2

Tn
) = 1. This finishes the proof of part (i).

(ii) It is sufficient to prove E(δ̂K/δK) → 1 and Var(δ̂K/δK) → 0 as n → ∞. Let

σ2
n(a) = nVar(δ̂K). Then we have

E

(
δ̂K
δK

)
= E

(√
nσ−1

n (a)(δ̂K − δK)√
nσ−1

n (a)δK

)
+ 1,

and

Var

(
δ̂K
δK

)
= Var

(√
nδ̂K√
nδK

)
=
σ2
n(a)

nδ2
K

.

Therefore, it remains to show that σ2
n(a)/(nδ2

K) = o(1). Since the leading order of δ̂K is

a U-statistic, we can obtain its variance using classical results. That is,

σ2
n(a) = nVar(δ̂K) =

[
4Var{h(X)g(X)}+ 4σ2Var{g(X)}+ 4σ2δ2

K +Rn

]
{1 + o(1)},

whereRn = 2n−1Var{K(X1,X2)h(X1)h(X2)}+4n−1σ2Var{K(X1,X2)h(X1)}+2n−1σ4V2n,

and g(x) = E[K(x,X)h(X)]. Applying the conditional variance formula, we obtain that

Var{h(X2)g(X2)} ≤ Var{K(X1,X2)h(X1)h(X2)} and Var{g(X2)} ≤ Var{K(X1,X2)h(X1)}.

Then the ratio consistency is proved.

In the following we will show that the kernel K̂θ ∈ FK,1 with probability 1. This is
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equivalent to show that P
(
∪K∈FK,1 {K̂θ = K}

)
= 1. Because

P
(
∪K∈FK,1 {K̂θ = K}

)
≥ max

K∈FK,1
P (K̂θ = K) ≥ P (K̂θ = K̃θ),

one only need to show that P (K̂θ = K̃θ) = 1. Define F (1) = {Kθ ∈ FK,0 : Vmax,Kθ =

o(nδ2
Kθ)}, and F (2) = FK,0 \ F (1). It is not difficult to see that for any Kθ ∈ F (2),

nδ2
Kθ = O(Vmax,Kθ). Let us consider two different cases: Kθ ∈ F (1), or Kθ ∈ F (2).

Specifically, we will show for each of the two cases, for j = 1, 2,

lim
n→∞

P
( ⋂

Kθ∈F (j),Kθ∈FK,0

{σ̂−1

Tn,K̃θ
δ̂K̃θ > σ̂−1

Tn,Kθ δ̂Kθ}
)

= 1. (S1.17)

To show (S1.17), we note that

P
( ⋂

Kθ∈Fj ,Kθ∈FK,0

{σ̂−1

Tn,K̃θ
δ̂K̃θ > σ̂−1

Tn,Kθ δ̂Kθ}
)

= 1− P
( ⋃

Kθ∈Fj ,Kθ∈FK,0

{σ̂−1

Tn,K̃θ
δ̂K̃θ ≤ σ̂−1

Tn,Kθ δ̂Kθ}
)

≥ 1−
∑

Kθ∈Fj ,Kθ∈FK,0

P
(
σ̂−1

Tn,K̃θ
δ̂K̃θ ≤ σ̂−1

Tn,Kθ δ̂Kθ

)
.

Thus, to show (S1.17) is equivalent to show that, for Kθ ∈ FK,0,

P
(
σ̂−1

Tn,K̃θ
δ̂K̃θ ≤ σ̂−1

Tn,Kθ δ̂Kθ

)
= o(

1

|FK,0|
), (S1.18)

where |FK,0| is the cardinality of the candidate kernel set FK,0.

Consider the first case where Kθ ∈ F (1) and Kθ ∈ FK,0. Let ∆Kθ = σ−1

Tn,K̃θ
δK̃θ −

σ−1
Tn,KθδKθ . Because K̃θ maximizes σ−1

Tn,KθδKθ , we have ∆Kθ > 0 for any Kθ 6= K̃θ. Then,
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we have the following

P
(
σ̂−1

Tn,K̃θ
δ̂K̃θ ≤ σ̂−1

Tn,Kθ δ̂Kθ

)
=P
{(
σ̂−1

Tn,K̃θ
δ̂K̃θ − σ

−1

Tn,K̃θ
δK̃θ
)
−
(
σ̂−1
Tn,Kθ δ̂Kθ − σ

−1
Tn,KθδKθ

)
≤ −∆Kθ

}
≤P
{
|σ̂−1

Tn,K̃θ
δ̂K̃θ − σ

−1

Tn,K̃θ
δK̃θ |+ |σ̂

−1
Tn,Kθ δ̂Kθ − σ

−1
Tn,KθδKθ | ≥ ∆Kθ

}
≤P
{ |σ̂−1

Tn,K̃θ
δ̂K̃θ − σ

−1

Tn,K̃θ
δK̃θ |

σ−1

Tn,K̃θ
δK̃θ

≥ ∆Kθ

2σ−1

Tn,K̃θ
δK̃θ

}
+ P

{ |σ̂−1
Tn,Kθ δ̂Kθ − σ

−1
Tn,KθδKθ |

σ−1
Tn,KθδKθ

≥ ∆Kθ

2σ−1
Tn,KθδKθ

}
≤4Var(δ̂K̃θ/δK̃θ)

σ−2

Tn,K̃θ
δ2
K̃θ

∆2
Kθ

+ 4Var(δ̂Kθ/δKθ)
σ−2
Tn,Kθδ

2
Kθ

∆2
Kθ

≤
4Vmax,K̃θ
nδ2

K̃θ

σ−2

Tn,K̃θ
δ2
K̃θ

∆2
Kθ

+
4Vmax,Kθ
nδ2

Kθ

σ−2
Tn,Kθδ

2
Kθ

∆2
Kθ

.

Because σ−2

Tn,K̃θ
δ2
K̃θ
/∆2

Kθ = O(1) and Vmax,K̃θ/(nδ
2
K̃θ

) = o(1/|FK,0|), the first term in the

above inequality is a smaller order of 1/|FK,0|. SinceKθ ∈ F (1), we have Vmax,Kθ/(nδ
2
Kθ) =

o(1). If σ−2
Tn,Kθδ

2
Kθ/∆

2
Kθ = O(1/|FK,0|), then the second term in the above inequality is a

smaller order of 1/|FK,0|. Thus, (S1.17) holds.

In the second case when Kθ ∈ F (2), we have

P
(
σ̂−1

Tn,K̃θ
δ̂K̃θ ≤ σ̂−1

Tn,Kθ δ̂Kθ

)
=P

(
σ̂−1

Tn,K̃θ
δ̂K̃θ − σ

−1

Tn,K̃θ
δK̃θ ≤ σ̂−1

Tn,Kθ δ̂Kθ − σ
−1

Tn,K̃θ
δK̃θ

)
=P
{
σ̂−1

Tn,K̃θ
δ̂K̃θ − σ

−1

Tn,K̃θ
δK̃θ ≤

1

n

√
n(δ̂Kθ − δKθ)
σn,Kθ

√
nσn,Kθ
σTn,Kθ

σTn,Kθ
σ̂Tn,Kθ

+
δKθ
σTn,Kθ

σTn,Kθ
σ̂Tn,Kθ

− σ−1

Tn,K̃θ
δK̃θ

}
,

where σ2
n,Kθ is the variance of

√
nδ̂Kθ . We can show that

√
nσn,Kθ
σTn,Kθ

=

√
nσ2

n,Kθ
2V2n(Kθ)

�

√
nδ2

Kθ + 2V2n(Kθ)

2V2n(Kθ)
= O(1),
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indicating that the second term on right hand side of the inequality in the probability is

of order Op(1/n). Similarly, the third term on the right hand side is also of Op(1/n) for

Kθ ∈ F (2). Hence, we have

P
(
σ̂−1

Tn,K̃θ
δ̂K̃θ ≤ σ̂−1

Tn,Kθ δ̂Kθ

)
= P

(
σ−1

Tn,K̃θ
δ̂K̃θ − σ

−1

Tn,K̃θ
δK̃θ ≤ −σ

−1

Tn,K̃θ
δK̃θ

)
{1 + o(1)}

≤ P
{∣∣σ−1

Tn,K̃θ
δ̂K̃θ − σ

−1

Tn,K̃θ
δK̃θ
∣∣

σ−1

Tn,K̃θ
δK̃θ

≥ 1
}
{1 + o(1)} ≤ Var(δ̂K̃θ/δK̃θ) = o(1/|FK,0|).

In summary, we have (S1.18) holds for any Kθ ∈ FK,0. This completes the proof of

second part.

(iii) Let φn(K̂θ) ∈ {0, 1} be the decision rule associated with the kernel K̂θ where

φn(K̂θ) = 1 indicates the rejection of null hypothesis. Similarly, we can define φn(K̃θ)

and φn(K) for the decision rules associated with the K̃θ and K respectively. Note that

for any kernel K that satisfies equation (4.10) in the main text and alternative h(x) with

σ2
h = E{h2(X)} <∞,

φn(K) = 1

(
nTn
σ̂Tn,K

> z1−α

)
= 1

(
nδ̂K

σ̂2σ̂Tn,K
> z1−α

)

= 1

(
nδK

σTn,K(σ2 + σ2
h)
· δ̂K
δK
· σTn,K
σ̂Tn,K

> z1−α

)
p→ 1,

as n → ∞, where 1(·) is an indicator function. Since both K̃θ and K satisfy condition

(4.10), we have φn(K̃θ)− φn(K)
p→ 0. Therefore,

φn(K̂θ)− φn(K) = φn(K̂θ)− φn(K̃θ) + φn(K̃θ)− φn(K)
p→ 0.
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This completes the proof. �

Let TK be the integral operator defined using kernelK, i.e., TKf =
∫
K(x, ·)f(x)dµ(x)

for f ∈ L2(µ). Then the eigenvalues corresponding to kernel function K are actually the

ones correspond to integral operator, and we denote them by λ(TK) in the following.

Lemma 4. For the given regularized kernel KR,γ in the paper, we have

λm(TKR,γ ) =
γλm(TK)

γ + λm(TK)
.

Proof: Applying the result from Dauxois et al. (1982), we have

n−1λm(K)− λm(TK)
a.s.→ 0, n→∞ (S1.19)

and

n−1λm(KR,γ)− λm(TKR,γ )
a.s.→ 0, n→∞ (S1.20)

for any integer m. Next we will show that λ(KR,γ) = γλ(K)/{n−1λ(K) + γ}. If we

assume kernel matrix K has eigen-decomposition QΛQT , where Λ = diag{Λ1, ...,Λn},

then

KR,γ = QΛQT −QΛQT (nγQQT + QΛQT )−1QΛQT

= Q
{
Λ−Λ(nγI + Λ)−1Λ

}
QT ,
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which implies λm(KR,γ) = Λm−
Λ2
m

nγ + Λm

=
γΛm

γ + Λm/n
=

γλm(K)

γ + λm(K)/n
. Hence we have

n−1λm(KR,γ)−
γλm(TK)

γ + λm(TK)
=

γλm(K)/n

γ + λm(K)/n
− γλm(TK)

γ + λm(TK)

a.s.→ 0. (S1.21)

Combing (S1.20) and (S1.21), we can see λm(TKR,γ ) = γλm(TK)/{γ + λm(TK)}. �

S2 Regularized kernel and its oracle property

The regularization is most effective in the “sparse” case where the non-zero projections

reside only in the first N coordinates corresponding to the N largest eigenvalues. To

appreciate that, we hereafter consider the setting where λnm = cmλ1n and {cm}∞m=1 is a

decreasing sequence satisfying c1 = 1. Let {b2
nm � Bp,m ∈ S1} be the set of non-zero

projections whose squares are of the same order as Bp, and S1 is a subset of {1, · · · , N}.

Here a � b means that a and b are of the same order.

To show the effectiveness of regularization, we compare the SNR ΨR(dn, γ) to an

“oracle" SNR ΨO
R(dn, γ) using regularized kernel. The oracle SNR is an ideal SNR which

eliminates all the coordinates with zero projections. The oracle SNR is used for com-

parison purpose but it cannot be realized by any test procedure in practice. The oracle

SNR ΨO
R(dn, γ) is defined as

ΨO
R(dn, γ) = Cn ·

∑
m∈S1

λnmb
2
nm/(λnm + γ)√∑

m∈S1
λ2
nm/(λnm + γ)2

.
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The following theorem provides the maximum orders of ΨO
R(dn, γ) and ΨR(dn, γ).

Theorem 3. Let |S1| be the cardinality of signal set S1. Assume that the regulariza-

tion parameter γ∗ satisfies γ∗ = o(λnN), γ∗ = O(λnN1), λnN2 = o(γ∗), and R2/Nγ
∗2 =

o(1) where N1 = [N log logN ], N2 = [N logN ], and R2 =
∑∞

m=N2
λ2
nm. Then (i)

maxγ ΨO
R(dn, γ) � ΨO

R(dn, γ
∗) and both at the order

√
|S1|CnBp for large p; (ii) there

exist constants J0, J1 and J2 such that, for large p,

J1|S1|CnBp√
N logN

≤ ΨR(dn, γ
∗) ≤ J2|S1|CnBp√

N{1 + J0 logN(cN2/cN1)
2}
.

Proof: (i) Consider the regularized oracle location shift ΨO
R(dn, γ), whose order is pro-

portional to

f(γ) :=

∑
m∈S1

gm(γ)√∑
m∈S1

g2
m(γ)

,

where gm(γ) = λnm/(λnm + γ). It can be shown that function f(γ) is maximized

when gm(γ) is a non-zero constant for m ∈ S1. Denote f1(γ) =
∑

m∈S1
gm(θ), and

f2(γ) =
√∑

m∈S1
g2
m(γ). Since f ′1 =

∑
g′m(γ) and f ′2 =

∑
gm(γ)g′m(γ)/f2, then f ′(γ) = 0

(i.e., f ′1f2 − f1f
′
2 = 0) is equivalent to

∑
m1 6=m2∈S1

gm1(γ)g′m2
(γ)

(
gm1(γ)− gm2(γ)

)
= 0,

where γ̂ = 0 (i.e., gm(γ̂) = 1) is one of the solutions. Then we can show that sgn(f ′′)|γ=γ̂ =

sgn(f ′′1 f2− f1f
′′
2 )γ=γ̂, where (f ′′1 f2− f1f

′′
2 )γ=γ̂ = −

∑
m∈S1

λ−2
nm|S1|2 + (

∑
m∈S1

λ−1
nm)2|S1| is
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strictly less than zero when there exists at least one m ∈ S1 such that λnm 6= 1, by using

Cauchy-Schwarz inequality. For the case where λnm = 1 for all m ∈ S1, f(γ) =
√
|S1|

does not depend on γ̂. On the other hand, using the Cauchy-Schwarz inequality, we

have |f(γ)| ≤
√
|S1|. Therefore, maxγ ΨO

R(dn, γ) � maxγ f(γ)CnBp = f(γ̂)CnBp =√
|S1|CnBp. Furthermore, if γ∗ = o(λnN), then gm(γ∗) at the order of 1 for m ≤ N and

µOR(dn, γ
∗) �

√
|S1|CnBp. Hence maxγ ΨO

R(dn, γ) � ΨO
R(dn, γ

∗) �
√
|S1|CnBp.

(ii) It is not difficult to see for a regularization parameter γ∗ satisfying conditions

in Theorem 3, gm(γ∗) → 1 for m = 1, · · · , N , and gm(γ∗) → 0 for m ≥ N2. Since

γ∗ = o(λnN), there exists ε1 > 0 small enough s.t. γ∗ < ε1λnN , hence |S1|/(1 + ε1) ≤∑
m∈S1

λnm/{λnm + γ∗} ≤ |S1|. Similarly, there exists ε2 > 0 small enough s.t. λnN2 <

ε2γ
∗, and R2/{(1 + ε2)2γ∗2} ≤

∑∞
m=N2

{λnm(λnm + γ∗)−1}2 ≤ R2/γ
∗2. Then, we have

ΨR(dn, γ
∗) ≥ J1|S1|CnBp√

N logN +R2/γ∗2
(S2.1)

for some positive constant J1. Assuming γ∗ = J0λnN1 , then

ΨR(dn, γ
∗) ≤ J2|S1|CnBp√

N(1 + ε2)2/(1 + ε1)2 + (N logN −N)J−2
0 (cN2/cN1)

2 +R2/γ∗2
. (S2.2)

Since ε1 and ε2 go to 0, and R2/γ
∗2 = o(N), we obtain the conclusion in part (ii) by

combining (S2.1) and (S2.2). �
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From Theorem 3, if |S1| � N , we have

J1

√
|S1|CnBp√
log |S1|

≤ ΨR(dn, γ
∗) ≤

J2

√
|S1|CnBp√

1 + J0 log |S1|(cN2/cN1)
2
.

Therefore, the SNR ΨR(dn, γ
∗) of the proposed test with regularized kernel can attain

the SNR ΨO
R(dn, γ

∗) of the oracle test within a factor of a slowly varying function log(N).

The above regularization could enhance the dimensionality that the proposed test

could handle. Recall the local alternatives considered in Theorem 2 in the paper. Let

dn(x) = bR,n(γ∗)∆n(x) where ∆n(x) is a function such that E {Kθ(X1,X2)∆n(X1)∆n(X2)}

is a constant. Using the regularized kernel with regularization parameter γ∗, the pro-

posed test has a non-trivial power if bR,n(γ∗) is at the order bR,n(γ∗) = V
1/4

2n ρ1/4(γ∗)/
√
n

where

ρ(γ∗) =
( ∑∞

m=1 λ
2
nm/(λnm/γ

∗ + 1)2

{
∑

m∈S1
λnmb2

nm/(λnm/γ
∗ + 1)}2

)( V2

{
∑

m∈S1
λnmb2

nm}2

)−1

.

Assume γ∗ satisfies the conditions in Theorem 3. Then we have

ρ(γ∗) � N

|S1|2
· (
∑
m∈S1

cm)2.

If |S1| � N and cm = m−α for α > 1/2, then ρ(γ∗) = O(N−min{2α−1,1}) = o(1). This

means that the smallest detectable order using a regularized kernel is smaller than that

of an unregularized kernel. The improvement is significant when N is large and α > 1.

Moreover, the test is consistent if V2n = o{n2ρ−1(γ∗)}. Comparing to the unregularized
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case which requires V2n = o{n2}, the regularized kernel is powerful for higher dimensional

functions since ρ(γ∗)→ 0.

S3 Some additional simulation results

S3.1 Simulation studies with p < n

In this subsection, we present some additional simulation studies in the cases of p < n.

The simulation settings are introduced in Section 5 of the main paper with the h(x) =

hL(x)− E(hL) in setting (i) under the alternatives where

hL(x) = c1(x1 + x2 − x3) + c2{exp(−x2
2)H2(x2) + exp(−x2

3)H5(x3)}+ c3{x1x3 + cos(x2
3)},

where Hk(·) is the kth order Hermite polynomial. We considered two scenarios with

S1 = {c1 = 0.002, c2 = 0.2, c3 = 0.002} and S2 = {c1 = 1.2, c2 = 0.012, c3 = 0.012}.

In scenarios S1, c2 are chosen to be much larger than c1 such that the non-linear parts

dominate the functions while in S2, c1 are much larger than c2 so that the linear parts

dominate.

Table S1 summarizes the empirical size of the proposed test under low-dimensional

cases with normally and Laplace distributed errors at the nominal level 5%. We can see

that the empirical size of the proposed test was reasonably controlled at the nominal

level for all three types of kernels and different error distributions.

Table S2 and S3, respectively, contain the empirical power of the proposed test for
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scenarios S1 and S2 under the setting (i). Several observations are given below. (1)

There is a clear difference in power among the three types of kernels KE, KG and KL,

especially when p and n are relatively small. The power difference was especially striking

in Table S3 for scenarios S1. The power based on the exponential and Gaussian kernels

were both higher than that using the linear kernel. This is understandable since the

non-linear parts dominate the function hL(x) in scenarios S1 and exponential kernel and

Gaussian kernel contain richer non-linear eigenfunctions than that of the linear kernel,

which can capture more information of non-linear functions; (2) The power increased as

the sample size increased in all the cases; and (3) The proposed test was very robust to

the change of error distributions.

Table S1: Empirical size (in percentages) of the proposed test for Gaussian and Laplace errors with
low-dimensional dependent covariates using different kernels.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG

40

3 5.8 5.5 5.6 5.1 4.6 4.7

5 6.0 5.8 5.9 4.9 4.8 4.8

10 6.0 6.2 6.2 4.7 4.4 4.6

60

3 5.5 5.4 5.6 4.6 4.6 4.6

5 5.8 5.5 5.6 5.3 5.4 5.5

10 5.6 5.4 5.6 4.6 4.8 4.8

100

3 5.3 5.4 5.6 4.8 4.6 4.7

5 5.3 5.3 5.3 4.3 4.0 4.1

10 5.5 5.3 5.4 4.9 4.5 4.6
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Table S2: Empirical power (in percentages) of the proposed test for Gaussian and Laplace errors with
dependent covariates using different kernels in the setting of p << n under scenario S1 . The estimated
theoretical power is given in the parenthesis, and the percentage of a kernel being selected among the
three candidate kernels using the proposed kernel selection method is displayed underneath it.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG

40

3 72.6 (65.5) 10.5 (17.3) 29.6 (37.4) 76.0 (67.5) 11.7 (19.0) 32.0 (39.2)

(96.8) (0.0) (3.2) (95.9) (0.0) (4.1)

5 27.0 (34.8) 9.9 (16.7) 15.2 (24.1) 26.2 (34.0) 10.8 (17.5) 15.5 (24.1)

(79.5) (0.0) (20.5) (84.2) (0.2) (15.6)

10 14.9 (21.8) 9.6 (16.0) 11.5 (18.6) 15.8 (23.1) 10.4 (16.8) 13.6 (20.0)

(63.1) (1.7) (35.2) (64.1) (1.9) (34.0)

60

3 99.2 (93.4) 12.6 (21.3) 70.4 (59.7) 99.0 (92.9) 13.9 (22.2) 70.8 (60.9)

(99.5) (0.0) (0.5) (98.6) (0.0) (1.4)

5 51.5 (51.4) 11.7 (19.3) 24.1 (32.2) 52.3 (52.4) 12.4 (19.6) 24.9 (33.0)

(90.9) (0.0) (9.1) (93.2) (0.0) (6.8)

10 18.5 (26.4) 9.8 (17.0) 12.4 (20.9) 19.6 (27.0) 10.9 (17.7) 14.2 (20.9)

(72.0) (0.4) (27.6) (70.5) (0.2) (29.3)

100

3 100 (100) 28.6 (35.9) 100 (98.8) 100 (100) 30.3 (36.7) 100 (100)

(100) (0.0) (0.0) (100) (0.0) (0.0)

5 98.2 (88.8) 17.8 (26.6) 64.6 (57.7) 95.8 (87.1) 12.9 (27.2) 63.0 (57.8)

(97.9) (0.0) (2.1) (97.8) (0.0) (2.2)

10 36.5 (42.0) 15.0 (21.8) 22.2 (30.0) 34.7 (40.4) 13.6 (20.7) 19.4 (28.5)

(81.2) (0.1) (18.7) (80.1) (0.0) (19.9)

S3.2 Simulation studies with p > n

The simulation setups for p > n are similar to those given in Section 5 of the paper

except that we consider n = 40, 60 and 100, and p = (150, 200, 250) in this subsection.

The true function h(·) was chosen as hH(·) as defined in Section 5 except that we consider

two more scenarios S5 and S6 regarding the choice of c1, c2 and c3. In particular, S5 =

{c1 = 0.01, c2 = 10, c3 = 0.01} and S6 = {c1 = 100u, c2 = 0.1u, c3 = 0.1u, u = 0.0015}.

In scenarios S5, c2 are chosen to be much larger than c1 such that the non-linear parts
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Table S3: Empirical power (in percentages) of the proposed test for Gaussian and Laplace errors with
dependent covariates using different kernels in the setting of p << n under scenario S2 . The estimated
theoretical power is given in the parenthesis, and the percentage of a kernel being selected among the
three candidate kernels using the proposed kernel selection method is displayed underneath it.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG

40

3 60.5 (60.5) 62.1 (61.0) 63.4 (62.3) 60.2 (61.0) 61.0 (60.5) 62.1 (61.8)

(37.5) (32.3) (30.2) (37.9) (35.5) (26.6)

5 49.6 (49.5) 49.4 (49.8) 50.7 (51.1) 43.4 (46.2) 45.0 (46.5) 46.3 (47.8)

(38.6) (30.2) (31.2) (37.7) (29.6) (32.7)

10 33.8 (37.5) 32.9 (36.8) 34.6 (37.9) 29.8 (35.3) 31.5 (35.5) 32.9 (36.4)

(39.7) (33.3) (27.0) (36.6) (32.7) (30.7)

60

3 79.3 (78.2) 79.0 (77.6) 80.3 (78.8) 78.6 (77.4) 78.1 (77.1) 79.1 (78.3)

(38.5) (29.4) (32.1) (35.6) (29.6) (34.8)

5 66.8 (65.6) 69.4 (66.3) 70.5 (67.8) 69.8 (68.3) 70.3 (68.5) 72.5 (70.0)

(35.1) (24.3) (40.6) (33.9) (25.0) (41.1)

10 49.2 (50.1) 49.9 (50.7) 51.7 (52.0) 49.8 (50.5) 50.6 (50.6) 51.8 (51.9)

(35.0) (29.9) (35.1) (35.0) (30.7) (34.3)

100

3 97.1 (95.6) 96.9 (95.6) 97.4 (96.1) 96.8 (96.0) 96.5 (96.0) 96.8 (96.4)

(39.4) (23.2) (37.4) (35.0) (26.2) (38.8)

5 92.1 (89.7) 92.8 (90.5) 93.2 (91.2) 89.6 (87.7) 89.7 (87.6) 90.7 (88.6)

(33.2) (18.2) (48.6) (34.4) (18.2) (47.4)

10 78.6 (75.6) 80.0 (76.6) 81.0 (77.7) 78.1 (75.0) 78.0 (75.7) 79.4 (76.9)

(31.4) (23.3) (45.3) (32.7) (20.1) (47.2)

dominate the functions while in S6, c1 are much larger than c2 so that the linear parts

dominate. All the results for evaluating empirical power are based on 1000 simulation

replicates and that for empirical size are based on 5000 simulation replicates. The kernels

considered here are the same as those considered in Section 5 of the paper.

Table S4 summarizes the empirical size of the proposed test with normally and

Laplace distributed errors at the nominal level 5%. We can see that the empirical size

of the proposed test was reasonably controlled at the nominal level for all three types
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of kernels and different error distributions. The corresponding empirical powers are

reported in Tables S5 and S6 under setting (ii). The phenomena we observed in Tables

S5 and S6 are very similar to those in Table 2 in the paper.

To check the performance of the proposed method when the underlying function

contains “equivalent” linear and non-linear functions, we enlarge the coefficient c3 but

make the coefficients c1 and c2 to be much smaller. We also compare our proposed

method with the method proposed by Liu et al. (2007). The simulation results are

summarized in Table S7.

Table S4: Empirical size (in percentages) of the proposed test with p > n for Gaussian and Laplace
errors with dependent covariates using different kernels.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG

40

150 5.9 5.8 5.9 4.2 4.2 4.0

200 6.4 6.4 6.4 4.7 4.7 4.7

250 5.7 5.5 5.6 4.9 4.7 4.7

60

150 5.4 5.3 5.3 4.9 4.7 4.8

200 5.7 5.9 5.8 4.1 4.0 4.1

250 6.0 5.9 5.9 4.9 4.7 4.8

100

150 5.3 5.4 5.4 5.0 5.0 5.0

200 5.5 5.4 5.4 5.4 5.2 5.3

250 5.4 5.4 5.5 4.9 4.8 4.9

S3.3 Simulation studies with p >> n and Laplace errors

In this subsection, we include simulation results for p >> n with the same settings as

those reported in Section 5 of the main paper. But we replace the Gaussian errors by

Laplace errors to check the robustness of the proposed methods to the changes of the
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Table S5: Empirical power (in percentages) of the proposed test for Gaussian and Laplace errors with
dependent covariates using different kernels in the setting of p > n under scenario S5 . The estimated
theoretical power is given in the parenthesis, and the percentage of a kernel being selected among the
three candidate kernels using the proposed kernel selection method is displayed underneath it.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG

40

150 70.6 (71.6) 64.0 (64.8) 63.9 (65.3) 71.0 (72.6) 65.4 (72.6) 65.3 (66.5)

(94.8) (2.9) (2.3) (95.3) (1.9) (2.8)

200 42.7 (50.7) 39.6 (45.7) 39.6 (46.3) 39.0 (48.1) 34.4 (43.2) 34.8 (43.7)

(89.4) (3.4) (7.2) (86.6) (4.8) (8.6)

250 26.1 (37.1) 23.8 (33.4) 26.5 (34.0) 27.0 (38.3) 24.6 (34.8) 24.6 (35.3)

(81.8) (4.4) (13.8) (82.9) (5.0) (12.1)

60

150 89.0 (86.9) 84.2 (81.5) 84.1 (81.8) 89.8 (87.6) 86.1 (82.6) 86.4 (82.8)

(96.6) (2.4) (1.0) (96.9) (2.4) (0.7)

200 59.6 (61.5) 53.5 (56.0) 53.1 (56.4) 59.1 (61.3) 53.8 (56.2) 53.4 (56.6)

(89.7) (6.2) (4.1) (89.6) (5.2) (5.2)

250 40.2 (45.7) 35.3 (41.9) 35.4 (42.3) 35.0 (43.0) 32.1 (39.5) 32.1 (40.0)

(81.9) (8.9) (9.2) (82.7) (8.1) (9.2)

100

150 99.2 (98.4) 98.5 (96.9) 98.6 (97.0) 99.0 (98.2) 98.4 (96.9) 98.4 (96.9)

(99.2) (0.8) (0.0) (99.1) (0.8) (0.1)

200 88.5 (85.7) 84.2 (81.8) 84.4 (82.0) 87.0 (84.0) 82.8 (79.8) 82.9 (79.9)

(94.1) (3.9) (2.0) (94.9) (3.6) (1.5)

250 61.8 (63.1) 58.4 (59.0) 58.5 (59.3) 63.8 (64.0) 60.0 (60.2) 59.9 (60.4)

(84.3) (10.7) (5.0) (87.4) (8.1) (4.5)
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Table S6: Empirical power (in percentages) of the proposed test for Gaussian and Laplace errors with
dependent covariates using different kernels in the setting of p > n under scenario S6 . The estimated
theoretical power is given in the parenthesis, and the percentage of a kernel being selected among the
three candidate kernels using the proposed kernel selection method is displayed underneath it.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG

40

150 67.1 (69.1) 67.3 (68.2) 67.4 (68.7) 66.7 (68.7) 67.5 (68.0) 67.2 (68.4)

(47.8) (20.8) (31.4) (44.8) (22.1) (33.1)

200 59.5 (61.6) 60.5 (62.6) 60.4 (63.1) 59.4 (63.4) 60.0 (63.2) 60.0 (63.7)

(53.9) (14.2) (31.9) (53.8) (13.6) (32.6)

250 54.4 (59.7) 54.1 (58.0) 54.3 (58.7) 52.7 (58.9) 53.4 (60.0) 52.5 (58.4)

(62.4) (8.8) (28.8) (63.1) (9.6) (27.3)

60

150 90.3 (87.1) 90.3 (87.1) 90.4 (87.3) 86.0 (84.1) 86.5 (84.1) 86.6 (84.2)

(36.1) (34.6) (29.3) (36.7) (33.1) (30.2)

200 81.7 (81.0) 82.1 (80.8) 82.3 (81.1) 82.4 (80.9) 83.2 (80.7) 83.3 (81.0)

(46.6) (27.6) (27.8) (44.2) (26.6) (31.2)

250 73.3 (76.1) 73.3 (75.7) 74.4 (76.4) 76.8 (76.2) 77.3 (76.8) 77.2 (76.5)

(51.2) (19.7) (29.1) (50.7) (20.1) (29.2)

100

150 99.3 (98.6) 99.1 (98.5) 99.2 (98.6) 98.9 (97.9) 99.0 (98.0) 99.0 (98.0)

(24.9) (45.8) (29.3) (26.2) (46.4) (27.4)

200 98.3 (97.2) 98.6 (97.3) 98.6 (97.3) 98.5 (96.6) 98.5 (96.7) 98.5 (96.7)

(31.6) (39.1) (29.3) (31.1) (41.9) (27.0)

250 98.0 (96.0) 98.1 (96.0) 98.1 (96.0) 97.2 (95.1) 97.2 (95.1) 97.2 (95.1)

(33.3) (38.3) (28.4) (35.2) (34.8) (30.0)

error distributions.

Table S8 summarizes the empirical sizes of the proposed test and the test procedure

(LLD) proposed by Liu et al. (2007) for high-dimensional and functional covariates with

Laplace errors. We see that both methods were robust to the change of error distributions

and can control the type I errors reasonably well under Laplace errors. The empirical

power of the proposed test and LLD test are summarized in Table S9. We can see that

the power patterns for Laplace errors were very similar those for Gaussian errors. The
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Table S7: Empirical power (in percentages) of the proposed test (Proposed) and the method (LLD)
proposed by Liu et al. (2007) for Gaussian and Laplace errors with dependent covariates using different
kernels when (c1, c2, c3) = (0.1, 0.1, 10). The estimated theoretical power is given in the parenthesis,
and the percentage of a kernel being selected among the three candidate kernels using the proposed
kernel selection method is displayed underneath it.

Gaussian Error Laplace Error

n p method KE KL KG KE KL KG

60

200 Proposed 83.0(76.4) 83.0(76.5) 83.2(76.7) 83.8(77.8) 83.7(77.7) 83.8(77.9)

(35.9) (32.3) (31.8) (36.1) (33.6) (30.3)

LLD 79.1 80.5 80.7 79.7 81.9 81.8

250 Proposed 76.3(70.4) 74.9(70.2) 75.3(70.4) 74.9(69.6) 75.1(69.4) 75.1(69.7)

(39.7) (32.3) (28.0) (37.7) (31.3) (31.0)

LLD 71.9 73.0 73.3 69.2 71.9 72.1

100

200 Proposed 98.8(96.6) 98.9(96.7) 98.9(96.7) 99.9(96.7) 99.0(96.7) 99.0(96.8)

(34.7) (34.1) (31.2) (31.8) (37.2) (31.0)

LLD 98.6 98.7 98.7 98.9 99.0 99.0

250 Proposed 97.6(94.9) 97.8(94.9) 97.8(95.0) 98.9 (94.9) 99.1(94.9) 99.0(95.0)

(35.1) (36.6) (28.3) (35.9) (34.9) (29.2)

LLD 97.6 97.8 97.7 98.3 98.7 98.7

kernel selection results in Table S9 were also very similar to the kernel selection results

with Gaussian errors in the main paper. This indicates that the proposed kernel selection

method was also robust to the change of error distributions.

S3.4 Simulation studies with regularization

In addition to the regularized tests with exponential kernels reported in the main text,

we include more simulation results with regularized Gaussian and linear kernels in this

subsection. We generated data and chose the function h(x) similar to those described in

Section 5.2 in the main paper. For each kernel KL and KG, we constructed the regular-

ized kernels with regularization parameter γ. We selected a sequence of regularization
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Table S8: Empirical size (in percentages) of the proposed test (Proposed) and Liu et al. (2007)’s
method (LLD) for Laplace errors with high-dimensional (p >> n) and functional covariates using
different kernels.

High-dimensional covariates Functional covariates

n p method KE KL KG KE KL KG

40

1500 Proposed 4.7 4.8 4.7 4.3 4.9 4.8

LLD 4.1 4.2 4.3 4.3 4.1 4.2

3000 Proposed 4.4 4.3 4.3 5.2 6.1 5.8

LLD 3.8 4.0 4.0 5.0 5.8 5.7

4500 Proposed 4.1 4.4 4.1 5.5 5.2 5.4

LLD 4.4 4.0 4.0 5.1 5.2 5.3

60

1500 Proposed 5.2 5.1 5.0 4.8 5.0 5.0

LLD 5.3 5.0 5.2 4.8 5.0 5.0

3000 Proposed 5.6 5.4 5.5 4.5 4.5 4.2

LLD 5.7 5.5 5.6 4.5 4.3 4.2

4500 Proposed 4.9 4.8 4.8 4.9 4.2 4.4

LLD 5.2 5.4 5.4 4.9 4.5 5.0

100

1500 Proposed 4.7 4.3 4.3 5.3 5.0 5.1

LLD 4.9 4.4 4.4 5.5 4.9 4.9

3000 Proposed 5.0 4.9 5.0 4.6 5.1 4.9

LLD 5.0 4.8 4.8 4.8 5.3 5.1

4500 Proposed 4.6 4.5 4.4 4.6 4.5 4.7

LLD 4.3 4.7 4.6 4.4 4.8 5.0
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Table S9: Empirical power (in percentages) of the proposed test (Proposed) and Liu et al. (2007)’s
method (LLD) for Laplace errors with dependent covariates using different kernels under scenarios S3
and S4. The estimated theoretical power is given in the parenthesis, and the percentage of a kernel
being selected among the three candidate kernels is displayed underneath it.

S3 S4

n p method KE KL KG KE KL KG

40

1500 Proposed 49.8(49.8) 47.3(47.6) 47.4(47.7) 58.9(57.2) 59.3(57.0) 59.2(57.1)

(84.1) (11.0) (4.9) (38.7) (34.0) (27.3)

LLD 42.8 42.3 42.3 52.6 53.8 53.9

3000 Proposed 27.7(33.1) 27.0(32.7) 27.1(32.8) 38.0(41.2) 37.8(41.1) 38.2(41.2)

(50.4) (29.9) (19.7) (36.2) (38.1) (25.7)

LLD 22.4 21.5 21.8 31.7 32.3 32.5

4500 Proposed 20.6(27.2) 19.8(27.0) 20.1(27.1) 31.8(35.5) 31.8(35.4) 32.0(35.4)

(42.5) (37.0) (20.5) (36.2) (40.4) (23.4)

LLD 15.8 16.7 16.8 26.9 27.8 27.8

60

1500 Proposed 74.2(69.1) 71.3(66.4) 71.3(66.5) 85.3(79.2) 85.0(79.1) 85.2(79.1)

(93.9) (3.6) (2.5) (37.1) (33.0) (29.9)

LLD 70.8 69.1 69.1 83.9 83.5 83.5

3000 Proposed 45.2(45.5) 44.5(45.0) 44.4(45.0) 62.6(60.0) 62.4(59.7) 62.5(59.8)

(59.7) (24.6) (15.7) (39.4) (31.3) (29.3)

LLD 40.9 40.8 40.7 58.8 59.8 59.8

4500 Proposed 31.1(34.9) 30.4(34.7) 30.1( 34.8) 51.7(51.3) 51.2(51.1) 51.7(51.2)

(43.4) (35.0) (21.6) (39.0) (33.3) (27.7)

LLD 27.5 27.4 27.4 48.1 48.2 48.3

100

1500 Proposed 98.3(94.1) 97.7(92.6) 97.7(92.7) 99.8(98.5) 99.8(98.5) 99.8(98.5)

(98.6) (0.6) (0.8) (34.8) (37.3) (27.9)

LLD 98.0 97.7 97.7 99.8 99.8 99.8

3000 Proposed 76.8(69.2) 75.2(68.4) 75.3(68.5) 95.1(88.5) 95.0(88.5) 95.0(88.5)

(68.5) (17.7) (13.8) (37.8) (33.9) (28.3)

LLD 74.4 73.4 73.4 94.5 94.7 94.7

4500 Proposed 56.0(55.8) 55.7(54.5) 55.7(54.6) 85.1(78.1) 85.2(78.0) 85.3(78.0)

(52.9) (26.9) (20.2) (40.9) (33.0) (26.1)

LLD 54.0 54.0 54.0 83.6 83.2 83.2
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parameters of different orders (γ = 10−a/n, a ∈ (−5, 2)) to check their effects on empir-

ical power. For each regularization parameter value, we constructed the corresponding

regularized test statistic and applied the test, respectively, to data generated under H0

and H1.

Figure S1 shows the empirical power and size of the proposed test using regularized

kernel KR,γ. The x-axis represents the − log10(γ) and y-axis is the empirical power or

size. The power with large regularization parameters γ was not displayed in the graph

for a better view for small γ range. When γ is large − log10(γ) ∈ (−3.222, 1.778), not

shown in Figure S1, the power of the test was the same as the one using non-regularized

kernels (0.674, and 0.672 for KG and KL), and then started to grow slowly. As for

− log10 γ ∈ (1.778, 3.778), the power peak (0.720 and 0.710, for KG and KL respectively)

of the proposed test can be observed for all the three kernels. It can be seen from Figure

S1 that the empirical size of the regularized test was all reasonably controlled.

To evaluate the method for selecting regularization parameters proposed in Section

4.2, we also marked the regularization parameter selection results in Figure S1. The

three vertical lines correspond to the first quantile (Q1), median and third quantile (Q3)

of the stabilized γ̃ obtained from the 1000 simulation replicates, where L = 5 were

chosen in stability selection. It can be seen from Figure S1 that the vertical lines were all

very close to the place where the maximum power was achieved. This suggests that the

proposed regularization selection method can locate the optimal regularization parameter

to maximize the power of the proposed test.
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Figure S1: The empirical power (left panel) and size (right panel) for regularized kernels, where the vertical
purple lines in the left panel denote the first, second and third quantile of the selected regularization parameters
among 1000 simulation replicates. For each replicate, the regularization parameter was selected by the method
introduced in Section 4.2 in the main paper.
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S3.5 Impact of kernel parameters

To understand the impact of the kernel parameters on the proposed method, we evalu-

ate our proposed method and the LLD method using linear kernel KL(x,y) = xTy/θ,

Gaussian kernel KG(x,y) = exp{−‖x − y‖2/θ} and the exponential kernel KE(x,y) =

exp{−(‖x‖2 + 3‖x− y‖2 + ‖y‖2)/θ} with two different kernel parameters θ = 2
√
p and

θ = p. The results are summarized in the Table S10. The results show that our proposed

method is robust in the kernel parameters in the sense that they have similar empirical

size and power with different kernel parameters. However, we observe that the LLD test

may be sensitive to the kernel parameter. In particular, when θ = 2
√
p, one can see that

the LLD test lost power for exponential kernel in both scenarios S3 and S4, and had a size

distortion for exponential kernel with Laplace error. These results are understandable

because the LLD test was not designed for high dimensional settings.

S3.6 Computational time

To understand the computational cost for the proposed tests with and without regu-

larized kernels, in Figures S2 and S3, we summarize the mean and standard deviation

of computational time using the simulation experiments in the scenario S3 described at

the beginning of Section 5.2 in the main paper. We considered various data dimension

p = 200, 500, 1500, and sample size n = 60, 100. We chose exponential kernel for our

illustration. The mean and standard deviation of computational time were calculated
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Table S10: Empirical size and power (in percentages) of the proposed test (Proposed) and the method
(LLD) proposed by Liu et al. (2007) for Gaussian and Laplace errors using different kernels and different
kernel parameter θ when n = 60 and p = 1500 in scenarios S3 and S4.

Gaussian Error Laplace Error

θ Scenarios method KE KL KG KE KL KG

2
√
p

Size Proposed 4.9 5.1 5.5 4.0 4.9 5.3

LLD 4.7 4.5 4.8 12.7 4.3 4.9

S3 Proposed 70.5 76.2 76.2 68.0 71.5 72.3

LLD 5.8 73.1 73.6 4.9 69.2 69.6

S4 Proposed 69.2 84.0 85.0 68.5 84.6 84.9

LLD 5.0 81.9 82.7 4.8 83.6 83.3

p

Size Proposed 5.3 5.1 5.1 5.6 5.4 5.5

LLD 3.9 4.0 4.0 5.3 5.0 5.2

S3 Proposed 76.3 74.1 74.2 74.2 71.3 71.3

LLD 73.4 71.9 71.8 70.8 69.1 69.1

S4 Proposed 84.4 84.3 84.2 85.3 85.0 85.2

LLD 83.0 83.9 83.7 83.9 83.5 83.5

based on 1000 simulation replications. We observed that the average computational cost

both tests with and without regularization are low. As expected, the computation time

for tests with regularization is longer than tests without regularization. The computa-

tional time is about linear in data dimension, which indicates that the proposed tests

are computationally efficient for high-dimensional data sets.
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Figure S2: The mean and standard deviation (vertical bars) of the computational time for the proposed tests with
kernel regularization when p = 200, 500 and 1500, and n = 60 and 100. The tests with kernel regularization are
described in Section 5.2 in the main paper. The simulation settings are the same as those described in Section 5.2
in the main paper.
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Figure S3: The mean and standard deviation (vertical bars) of the computational time for the proposed tests
without kernel regularization when p = 200, 500 and 1500, and n = 60 and 100. The simulation settings are the
same as those described in Section 5.2 in the main paper.
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