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This note provides the mathematical derivations, and extensive simulation studies.

S1 What are regular estimators?

According to the definition in ?, it is assumed that there is a true distribution generating the

data, indexed by a parameter θ. In practice, a sampled data set is distributed according to θn

where θn is
√
n-consistent for the true θ. This process by which data are sampled from a

√
n

perturbation of the truth is called a local data generating process. Regularity, or “local uniform

consistency”, means that the estimator for β (some parameter of the distribution indexed by

θ) does not depend on the local data generating process.

S2 Mathematical derivations.

S2.1 The tangent space of a model for p(X) in a case-control

study

We here show that the tangent space, or the collection of scores, for p(X) (disease probability

in the general population) in a case-control study is related to the tangent space for pcc(X)

(disease probability in the case-control study population) via the “scaling factor” pcc(X)/p(X).

Or in other words, a score for pcc(X) evaluated in a case-control study is multiplied by this

scaling factor to obtain a score for p(X). A general score for the disease probability pcc(X) in

the case control study is given by:

Sh(X)
{
D − pcc(X)

}
.

Recall the identity

logitp(X) = logitpcc(X) + log

[
p(D = 1)

{
1− p(D = 1|S = 1)

}
p(D = 1|S = 1)

{
1− p(D = 1)

}]
⇓

p(X)

1− p(X)
=

pcc(X)

1− pcc(X)

[
p(D = 1)

{
1− p(D = 1|S = 1)

}
p(D = 1|S = 1)

{
1− p(D = 1)

}].
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We make a few transformations in order to write this score in terms of
{
D − p(X)

}
:

Sh(X)
{
D − pcc(X)

}
= Sh(X)

{
D − pcc(X)

}
pcc(X)

{
1− pcc(X)

}pcc(X)
{

1− pcc(X)
}

= Sh(X)
(−1)1−D

pDcc(X)
{

1− pcc(X)
}1−D

pcc(X)
{

1− pcc(X)
}

= Sh(X)
(−1)1−Dpcc(X){

pcc(X)
1−pcc(X)

}D

= Sh(X)
(−1)1−Dpcc(X)([

p(X)
1−p(X)

][
p(D=1|S=1){1−p(D=1)}
p(D=1){1−p(D=1|S=1)}

])D

Since:
(−1)(1−D)

p(X)D−1{1− p(X)}−D
= D − p(X),

we get:

Sh(X)
{
D − pcc(X)

}
= Sh(X)

pcc(X)

p(X)

{
D − p(X)

}{p(D = 1)p(D = 0|S = 1)

p(D = 1|S = 1)p(D = 0)

}D

∝ Sh(X)
pcc(X)

p(X)

{
D − p(X)

}{p(D = 1)p(D = 0|S = 1)

p(D = 1|S = 1)p(D = 0)

}D

· p(D = 0)

p(D = 0|S = 1)p(S = 1)

=
S

p(S = 1|D)

pcc(X)

p(X)
h(X)

{
D − p(X)

}
.

As required.

In the main manuscript, we showed that scores of the tangent space in the nonparametric

model are
S

p(S = 1|D)
h(X)

{
D − p(X)

}
,

and this holds since the function h(X) can be written as h̃(X)pcc(X)/p(X) for some h̃(X) =

h(X)p(X)/pcc(X). However, in the parametric and nonparametric cases, CTX 6= pcc(X)/p(X)C̃TX,

since pcc(X)/p(X) is not fixed.

S2.2 Proof of Theorem 1

Before approaching this proof, Lemma 1 provides the form of h2(X, D) in each of the link

functions under consideration.

Lemma 1

1. Any function h2(X, D) such that E{h(X, D)|X} = 0, where the expectation is taken in

the general population, can be written as

h2(X, D) = γ(X){D − p(X)},

for any function γ(X). This parametrization will be used in the linear link ca se.
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2. h2(X, D) can equivalently be written in the form

h2(X, D) = h(X)
[
1− exp

(
ν(X, D)− logE

[
exp

{
ν(X, D)

}
|X
]) ]

,

where h(X) is any function of X, and ν(X, D) is such that ν(X, 0) = 0. We will use this

parametrization in the log link case.

Proof of Lemma 1

1. Define the two sets A1 = {h2(X, D) : E{h(X, D)|X} = 0} (where the expectation is

taken in the general population) and A2 = {γ(X){D− p(X)} : γ(X) any function of X}.
We show that the two sets are equal. The first direction, A2 ⊆ A1 is trivial, by noting

that E(D|X) = p(X). To show that A1 ⊆ A2, let h2(X, D) be an element of A1. We

show that it is also an element of A2. Choose γ(X) = h2(X, 1)− h2(X, 0). Then we can

verify that for this choice of γ(X), indeed h2(X, D) = γ(X){D − p(X)} = {h2(X, 1) −
h2(X, 0)}{D − p(X)}.

For D = 1, we have that h1(X, 1) = γ(X){1 − p(X)} yields h2(X, 0) = −{h2(X, 1) −
h2(X, 0)}p(X), and for D = 0, h1(X, 0) = γ(X){0 − p(X)} also gives h2(X, 0) =

−{h2(X, 1) − h2(X, 0)}p(X). This equality is true: E{h2(X, D)|X} = 0 = h2(X, 0){1 −
p(X)}+ h2(X, 1)p(X).

2. First, rewrite

h(X)
{

1− exp
(
ν(X, D)− logE

[
exp

{
ν(X, D)

}∣∣X])} =

h(X)

E[exp{ν(X, D)}|X]

(
E[exp{ν(X, D)}|X]− exp

{
ν(X, D)

})
.

We show that

E[exp{ν(X, D)}|X]− exp
{
ν(X, D)

}
= {p(X)−D}[exp{ν(X, 1)} − exp{ν(X, 0)}],

and therefore γ(X) = h(X)/
(
E[exp{ν(X, D)}|X][exp{ν(X, 1)}−exp{ν(X, 0)}]

)
. To show

the required equality, notice that since D is binary:

exp{ν(X, D)} = D
[

exp{ν(X, 1)} − exp{ν(X, 0)}
]

+ exp{ν(X, 0)}.

Writing E[exp{ν(X, D)}|X] using simple algebra, the results follows.

Proof of the theorem. Recall

Ucont(β) =

n∑
i=1

Si

π(Di)

(
h1(Xi)

[
Yi − g−1{µ(Xi;β)}

]
− h2(Xi, Di)

)
.

Consider the parametric submodel ft(O) = ft(Y |D,S = 1,X)f(S = 1|D)ft(D|X)ft(X), where

ft=0(O) = f(O) is the true law. Denote by Ssub(O) = Ssub(Y |D,S = 1,X) + Ssub(D|X) +

Ssub(X) the scores in the submodel (e.g. Ssub(O) = ∂/∂t log{ft(O)}, etc.)
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Let:

Ψt(β, h1, h2) = Et

{
S

π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2(X, D)

)}
under the submodel, where β may not be the true value β0. Then, (assuming that integration

and differentiation are exchangeable),

∂Ψt(β, h1, h2)

∂t

∣∣∣∣
t=0

=
∂

∂t
Et

{
S

π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X, D)

)}
= E

{
S(O)

S

π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2(X, D)

)}
+
∂

∂t
E
{

S

π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X, D)

)}
.

Consider the second argument.

∂

∂t
E
{

S

π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X, D)

)}
= − ∂

∂t
E
{

S

π(D)
h2,t(X, D)

}
.

From Lemma 1 (a), with the log link function we have:

∂

∂t
E
{

S

π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X, D)

)}
=

− ∂

∂t
E
{

S

π(D)
h2,t(X, D)

}
= − ∂

∂t
E
{
h(X) exp

(
ν(X, D)− logEt[exp{ν(X, D)}|X]

)}
= −E

[
h(X) exp{ν(X, D)} ∂

∂t
Et[exp{ν(X, D)}|X]−1

]
= E

(
h(X)E

[
exp{ν(X, D)}

∣∣X]E[exp{ν(X, D)}|X]−2 ∂

∂t
Et[exp{ν(X, D)}|X]

)
= E

(
h(X)E

[
exp{ν(X, D)}

∣∣X]−1 E
[
exp{ν(X, D)}Ssub(D|X)

∣∣X])
= E

[
h(X)E

{
exp

(
ν(X, D)− logE [exp{ν(X, D)}|X]

)
Ssub(D|X)

∣∣X}]
= E

{
h(X) exp

(
ν(X, D)− logE[exp{ν(X, D)}|X]

)
Ssub(D|X)

}
= E

{
h2(X, D)Ssub(D|X)

}
= E

{
S

π(D)
h2(X, D)Ssub(D|X)

}
.

We now show the same result for the identity link. We use Lemma 1 (b) and get:

∂

∂t
E
{

S

π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2,t(X, D)

)}
= − ∂

∂t
E
}

S

π(D)
h2,t(X, D)

}
= − ∂

∂t
E
[

S

π(D)
γ(X){D − pt(X)}

]
=

∂

∂t
E
{

S

π(D)
γ(X)pt(X)

}
= E

[
S

π(D)
γ(X)E

{
DSsub(D|X)

∣∣X}] = E
(

S

π(D)
γ(X)E

[
{D − p(X)}Ssub(D|X)

∣∣X])
= E

[
S

π(D)
γ(X){D − p(X)}Ssub(D|X)

]
= E

{
S

π(D)
h2(X, D)Ssub(D|X)

}
.
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Recall that p(X) is restricted via some nonparametric, semiparameteric or parameteric model,

and denote its tangent space by ΛD,sub ⊆ ΛD,npar where ΛD,npar is the tangent space in the un-

restricted model for p(X). The score Ssub(D|X) satisfies Ssub(D|X) ∈ ΛD,sub, since this tangent

space is spanned by all scores of in the submodel for p(D|X). Therefore, Ssub(D|X) is orthog-

onal to the orthocomplement of the submodel tangent space Λ⊥D,sub. Denote the projection of

a vector v on a space U by Π
(
v
∣∣U). We can decompose

S

π(D)
h2(X, D) = Π

(
S

π(D)
h2(X, D)

∣∣∣∣ΛD,sub

)
+ Π

(
S

π(D)
h2(X, D)

∣∣∣∣Λ⊥D,sub

)
and the latter term is orthogonal to Ssub(D|X). Thus,

E
{

S

π(D)
h2(X, D)Ssub(D|X)

}
= E

{
Π

(
S

π(D)
h2(X, D)

∣∣∣∣ΛD,sub

)
Ssub(D|X)

}
.

It follows that

∂

∂t
Ψ(β, h1, h2)

∣∣∣∣
t=0

= E
{
Ssub(O)

S

π(D)

(
h1(X)

[
Y − g−1{µ(X;β)}

]
− h2(X, D)

)}
−E
{

Π

(
S

π(D)
h2(X, D)

∣∣∣∣ΛD,sub

)
Ssub(D|X)

}
. (B. 1)

To complete, it suffices to note that

E
[
Π

(
S

π(D)
h2(X, D)

∣∣∣∣ΛD,sub

){
Ssub(X) + Ssub(Y |D,X)

}]
= 0. (B. 2)

Combining identities (B. 1) and (B. 2), and since every influence functions ψ in the restricted

model satisfies the following equation:

∂Ψt(β, h1, h2)

∂t

∣∣∣∣
t=0

= E{Ssub(O)ψT },

it follows that every influence function in the restricted model is of the form

Sh1(X)

π(D)

[
Y−g−1{µ(X;β)}

]
− S

π(D)
h2(X, D)+Π

(
S

π(D)
h2(X, D)

∣∣∣∣ΛD,sub

)
.

S2.3 Proof of Corollary 1

Corollary 1 follows since if p(X) is unrestricted, then so is the tangent space unrestricted

Λd,sub = ΛD,npar, and the projection of a vector on the submodel tangent space does not

change the vector, i.e.

Π

(
S

π(D)
h2(X, D)

∣∣∣∣ΛD,sub

)
=

S

π(D)
h2(X, D),

so that the influence function has to be

Sh1(X)

π(D)

[
Y − g−1{µ(X;β)}

]
,

the IPW influence function.
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S2.4 Proof of Theorem 2

Suppose that h1(X) is fixed, and p(X) is known. We here find the function h2(X, D) that

minimizes the variance over all functions in the submodel tangent space. First, note that we

can write the influence functions for β in the form:

ψ(β) =
Sh1(X)

π(D)

[
Y − g−1{µ(X;β)}

]
−Π

(
S

π(D)
h2(X, D)

∣∣∣∣Λ⊥D,sub ∩ ΛD,npar

)
= Π

(
Sh1(X)

π(D)

[
Y − g−1{µ(X;β)}

]∣∣∣∣Λ⊥D,sub ∩ ΛD,npar

)
−Π

(
S

π(D)
h2(X, D)

∣∣∣∣Λ⊥D,sub ∩ ΛD,npar

)
+Π

(
Sh1(X)

π(D)

[
Y − g−1{µ(X;β)}

]∣∣∣∣ΛD,sub

)
,

so that minimizing the variance of ψ(β) over functions h2(X, D) is equivalent to minimizing

the variance of the first two terms (since the third term is orthogonal to the term involving

h2(X, D)). Consider finding hopt
2 (X, D) that satisfies the normal equations:

0 = E
{

S

π(D)
h2(X, D)

(
Sh1(X)

π(D)
[Y − g−1{µ(X;β)}]− S

π(D)
hopt
2 (X, D)

)}
= E

{
S

π(D)
h2(X, D)

(
Sh1(X)

π(D)
[E(Y |X, D)− g−1{µ(X;β)}]− S

π(D)
hopt
2 (X, D)

)}
.

This equality is satisfied by

hopt
2 (X, D) = h1(X)

[
E(Y |X, D)− g−1{µ(X;β)}

]
,

as required.

S2.5 Proof of Theorem 3

We here find the function hopt
1 (X) that using it in the estimating equation Ucont(β) yields the

most efficient (with minimal variance) estimator of β̂. According to the generalized information

equality (?), for every function h1(X):

−E
[
∂Uopt

cont

{
β;h1(X)

}
∂β

∣∣∣∣
β=β0

]
= E

[
Uopt

cont

{
β;h1(X)

}
Ucont

{
β;hopt

1 (X)
}T ∣∣∣∣

β=β0

]
.

Then:

E
[

S

π(D)
h1(X)

∂g−1{µ̃(X, D;β)}
∂β

∣∣∣∣
β=β0

]
= E

[
h1(X)

∂g−1{µ̃(X, D;β0)}
∂β

]
= E

{
h1(X)hopt

1 (X)E
(

1

π(D)

[
Y − g−1{µ̃(X, D;β0)}

]2∣∣∣∣X)}.
This equation is satisfied by:

∂g−1{µ̃(X, D;β0)}
∂β

= hopt
1 (X)E

(
1

π(D)

[
Y − g−1{µ̃(X, D;β0)}

]2∣∣∣∣X).
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Recall that µ̃(X, D;β) = g{E(Y |X, D)}. We can then write:

hopt
1 (X) = E

[
1

π(D)

{
Y − E(Y |X, D)

}2∣∣∣∣X]−1
∂g−1{µ̃(X, D;β0)}

∂β

= E
{

1

π(D)
Var
(
Y
∣∣X, D)∣∣∣∣X}−1

∂g−1{µ̃(X, D;β0)}
∂β

,

as required.

S2.6 Deriving the locally semiparametric efficient influence func-

tion

We first derive the estimating equation for θ accounting for the estimation of α, and then provide

the corresponding influence function for θ. Denote the true value of α by α0, and recall that

V(α) is the estimating equation for α, and denote for simplicity U(θ;α) = Uopt
cont(θ). (In fact,

the following derivation holds for any estimating equation U(θ;α), in particular to any functions

h1(X), h2(X, D), not just the optimal ones). Let Vi(α),Ui(θ;α) be the contributions of the ith

subject to the estimating equations. To estimate α,θ, one solves PnVi(α) = 0, PnUi(θ;α) = 0,

where Pn(xi) = 1/n
∑n

i=1 xi.

Consider the following expansions of the estimating equations around α0:

√
nPnUi(θ; α̂) =

√
nPnUi(θ;α)

∣∣∣∣
α=α0

+
√
nPn

∂

∂α
Ui(θ; α̂)

∣∣∣∣
α=α0

(α̂−α0) + op(1)

=
√
nPnUi(θ;α0) + E

{
∂

∂α
U(θ;α0)

}√
n(α̂−α0) + op(1).

Similarly,

√
nPnVi(α̂) =

√
nPnVi(α0) + E

{
∂

∂α
V(α0)

}√
n(α̂−α0) + op(1).

From the estimation procedure, we have that by definition
√
nPnVi(α̂) = 0. Therefore, com-

bining these two equations we get:

√
nPnUi(θ; α̂) =

√
nPn

[
Ui(θ;α0)− E

{
∂

∂α
U(θ;α0)

}
E

{
∂

∂α
V(α0)

}−1

Vi(α0)

]
+ op(1).

So that there is an additional term, namely
√
nPnE

{
∂

∂αU(θ;α0)
}
E
{

∂
∂αV(α0)

}−1
Vi(α0),

that accounts for the estimation of α. Notice that in order to estimate θ we do not in fact

need to use this estimating equation, since
√
nPnVi(α0) is estimated by

√
nPnVi(α̂) = 0.

However, for the purpose of variance estimation, it is important to use this estimating equation

and account for the estimation of α.

Using the same technic, we obtain

√
nPnUi(θ̂; α̂) =

√
nPnUi(θ0; α̂) + E

{
∂

∂θ
U(θ0; α̂)

}√
n(θ̂ − θ0) + op(1),
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and since
√
nPnUi(θ̂; α̂) = 0, we get:

√
n(θ̂ − θ0) =

√
nPn

[
E

{
∂

∂θ
U(θ0; α̂)

}−1

Ui(θ0; α̂)

]
+ op(1),

and we see that θ̂ is an asymptotically linear estimator with the ith influence function given by

ψi(θ;α) = E

{
∂

∂θ
Ui(θ0; α̂)

}−1

Ui(θ0; α̂).

Notice that

∂

∂θ
Ui(θ0; α̂) =

∂

∂θ

[
Ui(θ;α0)− E

{
∂

∂α
U(θ;α0)

}
E

{
∂

∂α
V(α0)

}−1

Vi(α0)

]
=

∂

∂θ
Ui(θ;α0)− E

{
∂

∂α
U(θ;α0)

}
E

{
∂

∂α
V(α0)

}−1
∂

∂θ
Vi(α0)

=
∂

∂θ
Ui(θ;α0),

since Vi(α0) does not depend on θ.

S2.7 Proof of Corollary 2

Under the standard regularity conditions found in ?, the asymptotic normality of θ̂ follows

from the central limit theorem, and its mean and covariance are as indicated since we assume

that the models for θ̂ = (β, δ) are correctly specified, so that ψ(θ;α) has mean zero. Local

efficiency follows from Theorem 3, in which we provide the efficient influence function, and from

the definition of local efficiency (?).

S3 Computation of the control function estimator

Here we describe how to compute estimators of β for the identity and log links, when p(X) is

modeled parametrically with p(X;α). In general, to find the estimator β̂ we need to solve the

estimating equation Ûopt
cont(β) = 0, defined as Uopt

cont(β) with ĥ1(X), ĥ2(X, D), and p̂(X). This

can be performed using the Newton-Raphson (NR) algorithm.

Let δ denote the parameters for either ν(X, D; δ) (log link) or γ(X; δ) (identity link). Let

θ = (βT , δT )T . It is convenient to estimate θ jointly, by modifying the estimating equation

Uopt
cont(β) to define Uopt

cont(θ) by taking

hopt
1 (X) = E

{
1

π(D)
var(Y |D,X)

∣∣∣∣X}−1
∂

∂θ

[
g−1{µ(X, D;θ)

}]
.

The estimation procedure takes the following steps:

1. Estimate the parameters of p(D = 1|X, S = 1), the probability of disease conditional on

covariates in the case-control study population, using logistic regression with an offset,
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by exploiting the known relationship between disease probability in the population to

disease probability in the case-control sample:

logitp(X) = logitp(D = 1|X, S = 1) + log

[
p(D = 1)

{
1− p(D = 1|S = 1)

}
p(D = 1|S = 1)

{
1− p(D = 1)

}] (C. 1)

where p(D = 1) is the disease prevalence in the general population, and p(D = 1|S = 1)

is the fraction of cases in the case-control sample.

2. Obtain starting values for θ according to the specifics given below.

3. Plug α̂ into Uopt
cont(θ) and solve Ûopt

cont(θ̂) = 0 using NR.

This procedure is implemented in the R package RECSO (?). Note that the estimating equation

Uopt
cont(θ) is geared towards increasing the efficiency of the estimator for β, so δ̂ may not be an

efficient estimator.

Next we detail the estimation procedure for p(D = 1|X, S = 1), and θ for each choice of

link function.

S3.1 Computation of p̂(D = 1|X, S = 1) using a parametric model

Let V(α) be the estimating equation for parameters α of p(D = 1|X, S = 1;α). In the simple

logistic model, it is given by:

V(α) =

n∑
i=1

Sixi{Di − p(Di = 1|Xi, Si = 1)}

where p(Di = 1|xi, Si = 1) is modeled through the inverse of the logit transformation, i.e.

p(Di = 1|xi, Si = 1) = exp(αTxi)/{1 + exp(αTxi)}. Here, we do not correct for the sampling

bias resulting from the case-control ascertainment (e.g. we do not use IPW), but to later obtain

estimates of the disease probability p̂(X) we use the correction (C. 1).

S3.2 Identity link

To solve the estimating equation Ûident(β) = 0 for β, we follow the steps described above.

First, we estimate α̂. Second, we calculate staring values for θ. For staring values of δ, we can

estimate γ̂(X) by regressing Y on the covariates X in the cases and control groups separately,

calculating the predicted means for each subject under the two models, and taking the difference.

Initial estimators of δ can then be obtained by regressing the calculated differences on a given

design matrix, say, if a linear model is assumed. Starting value for β could be obtained as the

IPW estimator. At the third step we solve

0 =

n∑
i=1

hopt
1 (Xi)Si

π(Di)

[{
Yi − µ(Xi;β)

}
−
{
Di − p̂(Xi)

}
γ(Xi; δ)

]

using NR iterations, by which we update the estimated θ̂ until convergence.
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Note that for hopt
1 (X) we need to estimate Var

(
Y
∣∣D,X). When the outcome is continuous,

it is convenient to assume homoscedasticity , in which case hopt
1 (Xi) can be chosen

∑
d∈{0,1}

[
1

π(d)

1

n

n∑
j=1

(
yi − µ(Xi; β̂)− γ̂(Xi){d− p̂(Xi)

}2]
p(Di = d)

The estimate β̂ will remain consistent even if the homoscedasticity assumption does not hold.

S3.3 Log link

As in the identity link case, we start by estimating α̂, as described earlier. At the second step,

we calculate starting values for θ. ν̂(X, D) could be estimated, for instance, by estimating

the parameters of a generalized linear model with the log link function, of Y on the covariates

X in the cases and controls separately, calculating the predicted means E(Yi|Xj , Di = 0) and

E(Yi|Xj , Di = 1) for every subject i, and plugging-in to the equation for ν(X, D) for each

subject. We can then estimate an initial δ̂ based on a model. A starting value for β could be

the IPW estimator. We can proceed to the third step and solve

0 =

n∑
i=1

hopt
1 (Xi)Si

π(Di)

(
Yi − exp

[
µ(Xi;β) + νopt(Xi, Di; δ)− ν̄{Xi; δ, p̂(Xi)}

])
for θ using NR iterations.

Note that at the kth iteration, we also need to estimate hopt
1 (X). We can either update

the estimate of hopt
1 (X) at the kth iteration, using the estimated θ̂ from the (k− 1)th iteration,

or we can use a plug-in estimator based on the initial estimator of θ. Usually the latter option

is more stable (updating hopt
1 (X) may lead to convergence problems). Note that for hopt

1 (X)

one needs an estimate of

E
{

1

π(Di)
Var(Yi|Xi, Di)

∣∣∣∣Xi

}
=

∑
d∈{0,1}

{
1

π(Di)
Var(Yi|Xi, Di)p(Di = d|Xi)

}

for each subject i, i = 1, . . . , n. In the case of a Poisson model, we can simply use the predicted

means, as V̂ar(Y |X, D) = Ê(Y |X, Di) = exp
{
µ(X; β̂) + νopt(X, D; δ̂) − ν̄(X; δ̂)

}
. As before,

these predicted means could be updated at each iteration or be based on the initial estimators

(the more stable option).

S4 Identity link simulations - additional information

S4.1 Simulation study with a single exposure variable

The simulation study described here, is similar to the identity link simulation study presented

in the manuscript (Section 4.1), but simpler, so that only a single exposure variable is used.

In this simulation we implemented and compared the estimator TT of ?, which this estimator

is not presented in the more complex simulation studies in the manuscript, as it then suffered
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from convergence problems. The TT estimator was calculated using maximum likelihood, and

the robust standard error estimators. Results are provided under correct specification of the

selection bias function γ(X) (TT-cor) and under misspecification (TT-mis).

The simulation was generated as follows. As in the simulation study presented in the main

manuscript, first, an exposures variables X1 was sampled with distribution X1 ∼ N (2, 4). Then,

disease probabilities were calculated for each subject, from the model

logit {p(D = 1|X)} = −3.2 + 0.3X1,

and disease status was sampled. Then, the conditional mean of the secondary outcome was set

to

E(Y |X, D) = 50 + 4X1 + {D − p(X)}(3 + 2X1),

so that the population mean is µ(X,β) = XTβ with X = (1, X1)T and β = (50, 4)T , and

γ(X) = XTα with α = (3, 2)T . Finally, the residuals were normally distributed, so that Yi was

sampled from:

Yi = E(Y |Xi, Di) + εi, with εi ∼ N (0, 4).

All estimators estimated the sample mean based on the full design matrix, i.e. with

X = (1, X1)T . TT and the control function estimator estimated γ(X). When the model was

correctly specified, the design matrix in the model for γ(X) was taken to include all the terms

X = (1, X1)T , but when the model was incorrectly specified, it only had the intercept, i.e.

X = 1.

Table 1 provides comprehensive simulation results (i.e. all summary statistics for all es-

timators under investigations), while Figure 1 provides graphical results, comparing the bias,

MSE and coverage of the unbiased estimators cont-mis, cont-cor, IPW and TT-cor.

S4.2 Table summarizing the identity link simulations provided

in Section 4.1 in the manuscript

The following Table 2 provide comprehensive simulation results for the simulation study de-

scribed in Section 4.1 in the paper.
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Figure 1: Results from Identity link simulations in the simple settings with a single

covariate. Estimated bias, MSE, and coverage probability of the control function under

correct and misspecification of the selection bias function (cont-cor, cont-mis, respec-

tively), IPW and TT (correctly specified) estimators, in estimating the population effect

of X1.
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Table 1: Simulation results for estimating the effect of covariates on a normally dis-

tributed secondary outcome using the identity link function, in the first, simple settings

(a single covariate). We report results for the usual IPW estimator, the proposed estima-

tor with the control function, when the model for ν(X, D) is correctly specific (‘cont-cor’)

and when the model is misspecified (‘cont-mis1’), the näıve conditional and pooled es-

timators (Dind and pooled) with and without disease status in the regression model,

respectively, and the estimator proposed by ? (TT).

Estimator bias MSE emp sd est sd coverage

Intercept, β0 = 50

cont-cor 0.000 0.018 0.136 0.133 0.942

cont-mis −0.001 0.018 0.136 0.142 0.957

IPW −0.002 0.019 0.137 0.134 0.939

pooled 1.640 2.711 0.145 0.200 0.000

Dind −1.450 2.126 0.151 0.165 0.000

TT-cor 0.000 0.018 0.135 0.130 0.942

TT-mis −0.930 0.889 0.157 0.158 0.000

X1, β1 = 4

cont-cor −0.001 0.001 0.038 0.039 0.957

cont-mis 0.000 0.002 0.040 0.032 0.871

IPW 0.000 0.002 0.044 0.045 0.961

pooled 0.753 0.568 0.036 0.036 0.000

Dind 0.149 0.024 0.041 0.030 0.009

TT-cor 0.000 0.002 0.046 0.026 0.734

TT-mis 0.497 0.249 0.039 0.035 0.000



Table 2: Simulation results for estimating the effect of covariates on a normally dis-

tributed secondary outcome using the identity link function, in the second settings (two

covariates, interaction term in the population regression and selection bias models). We

report results for the usual IPW estimator, the proposed estimator with the control func-

tion, when the model for ν(X, D) is correctly specific (‘cont-cor’) and when the model

is misspecified (‘cont-mis1’) and the näıve conditional and pooled estimators (Dind and

pooled) with and without disease status in the regression model, respectively.

Estimator bias MSE emp sd est sd coverage

Intercept, β0 = 50

cont-cor 0.007 0.019 0.138 0.139 0.958

cont-mis1 0.007 0.019 0.138 0.139 0.959

cont-mis2 0.007 0.019 0.138 0.141 0.961

cont-mis3 0.006 0.019 0.139 0.150 0.971

cont-mis4 0.006 0.019 0.139 0.153 0.973

IPW 0.006 0.019 0.139 0.141 0.964

pooled 1.520 2.332 0.150 0.227 0.000

Dind −1.577 2.515 0.165 0.183 0.000

X1, β1 = 4

cont-cor −0.001 0.001 0.038 0.042 0.967

cont-mis1 −0.001 0.001 0.038 0.044 0.971

cont-mis2 −0.001 0.001 0.038 0.047 0.982

cont-mis3 0.000 0.002 0.040 0.034 0.906

cont-mis4 0.000 0.002 0.040 0.035 0.923

IPW 0.000 0.002 0.045 0.047 0.964

pooled 0.724 0.526 0.038 0.041 0.000

Dind 0.077 0.008 0.042 0.034 0.398

X2, β2 = 3

cont-cor 0.028 0.228 0.477 0.491 0.960

cont-mis1 0.024 0.236 0.485 0.526 0.970

cont-mis2 0.026 0.238 0.487 0.431 0.913

cont-mis3 0.017 0.268 0.517 0.656 0.984

cont-mis4 0.021 0.268 0.517 0.536 0.953

IPW 0.024 0.272 0.521 0.521 0.950

pooled 2.256 5.461 0.608 0.648 0.051

Dind −0.061 0.419 0.645 0.479 0.852

X1X2, β3 = 3

cont-cor 0.005 0.022 0.148 0.207 0.998

cont-mis1 0.011 0.025 0.159 0.164 0.955

cont-mis2 0.014 0.032 0.179 0.116 0.775

cont-mis3 0.016 0.039 0.197 0.146 0.843

cont-mis4 0.015 0.047 0.216 0.146 0.795

IPW 0.018 0.076 0.275 0.247 0.909

pooled 0.317 0.126 0.160 0.117 0.297

Dind 0.366 0.156 0.148 0.086 0.085
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S5 Simulation study: log link

We compared the control function estimator to pooled and Dind, that were calculated using

generalized linear models in standard software. We simulated two covariates, X1 and X2, with

X1 ∼ N (1, 0.2) and X2 ∼ N (1.5, 0.2). Primary disease probability was calculated by

logit {p(D = 1|X)} = −2.12 + 0.3X1 +X2,

so that disease prevalence is 0.12. Disease statuses were sampled from the calculated probabil-

ities. The secondary outcome mean was calculated by:

E(Y |X, D) = exp
{

3 + 0.7X1 + (0.3 + 0.5X1 + 0.5X1X2)D
}

× exp
[
− log{exp(0.5 + 0.3X1 + 0.3X2 + 0.3X1X2)p(D = 1|X) + p(D = 0|X)}

]
,

so that the population mean is exp
{
µ(X,β)

}
= exp(XTβ) with X = (1, X1, X2, X1X2)T and

β = (3, 0.7, 0.5, 0.5)T , and ν(X, D) = DXTα with α = (0.5, 0.3, 0.3, 0.3)T . Then Y was sampled

from Poisson distributed, i.e. Y ∼ Poisson{E(Y |X, D)}. 1000 cases and controls were sampled

from the generated population.

All estimators estimated the sample mean based on the full design matrix, i.e. with

X = (1, X1, X2, X1X2)T . The control function estimator estimated ν(X, D). When the model

was correctly specified, the design matrix was taken to include all of X. To study the effect of

misspecification, we implemented the control function estimator with the following misspecifi-

cations of the selection bias function ν(X, D): cont-mis1 had design matrix X = (1, X1, X2).

cont-mis2 had design matrix X = (1, X1)T , cont-mis3 had X = (1, X2)T , and cont-mis4 had

only intercept.

Figure 2, provides the bias, MSE and coverage probabilities of the IPW and the control

function estimators, calculated over the 1000 simulations. Table 8 reports, for each estimator

and each estimated parameter, the estimator’s mean bias, MSE, empirical standard deviation

over all simulations, mean estimated standard deviation, and coverage probability. The bias of

the control function estimator is small under correct specification of the selection bias function,

but increases as more information is lost in various forms of misspecification. For instance,

consider the estimator β1, the coefficient of X1. When the interaction term, or both interaction

term and X2, are not included in the design matrix for ν(X, D) (cont-mis1, cont-mis2), it

becomes slightly biased. When both interaction term and X1, or all covariates, are not included

in the design matrix (cont-mis3, cont-mis4), its bias more than doubles. However, surprisingly,

the MSE of the control function estimators is superior to the IPW, and performs well even when

the model for ν(X, D) is misspecified. When the model for ν(X, D) is misspecified, the bias, the

MSE and the empirical standard deviation of the control function estimator were higher than

under correct specification. Coverage probability was inflated and very close to 1, both when

the model for ν(X, D) was correctly specified and when it was misspecified. In comparison,

the coverage probability of the IPW estimator was accurate. Finally, as in the identity link

simulations, the näıve estimators Dind and pooled yielded biased estimators with, substantially

lower than nominal, coverage probability.
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Figure 2: Results from log link simulations. Estimated bias, MSE, and coverage probabil-

ity of the control function under correct and misspecification of the selection bias function

(cont-cor, cont-mis1, . . ., cont-mis4), and IPW, in estimating population means.



Table 3: Simulation results for estimating the effect of covariates on a Poisson distributed

secondary outcome using the log link function. We report results for the usual IPW

estimator, the proposed estimator with the control function, when the model for ν(X, D)

is correctly specific (‘cont-cor’) and when the model is misspecified, under four forms of

misspecification (‘cont-mis1’, . . ., ‘cont-mis4’), and the näıve conditional and pooled

estimators (Dind and pooled) with and without disease status in the regression model,

respectively.

Estimator bias MSE emp sd est sd coverage

Intercept, β0 = 3

cont-cor −0.009 0.023 0.151 0.645 1.000

cont-mis1 0.057 0.025 0.148 0.642 1.000

cont-mis2 −0.181 0.059 0.163 0.637 1.000

cont-mis3 −0.272 0.101 0.165 0.638 1.000

cont-mis4 −0.482 0.264 0.178 0.642 1.000

IPW −0.020 0.546 0.739 0.730 0.944

pooled 0.025 0.444 0.666 0.064 0.135

Dind −0.484 0.245 0.104 0.064 0.002

X1, β1 = 0.7

cont-cor 0.006 0.015 0.124 0.641 1.000

cont-mis1 −0.059 0.018 0.122 0.639 1.000

cont-mis2 0.031 0.022 0.144 0.635 1.000

cont-mis3 0.257 0.079 0.115 0.627 1.000

cont-mis4 0.315 0.118 0.136 0.628 1.000

IPW 0.016 0.543 0.737 0.725 0.944

pooled 0.095 0.447 0.662 0.059 0.150

Dind −0.078 0.016 0.097 0.060 0.623

X2, β2 = 0.5

cont-cor 0.006 0.006 0.079 0.424 1.000

cont-mis1 −0.038 0.007 0.077 0.423 1.000

cont-mis2 0.119 0.020 0.078 0.416 1.000

cont-mis3 0.096 0.018 0.094 0.421 1.000

cont-mis4 0.231 0.062 0.094 0.419 1.000

IPW 0.014 0.238 0.488 0.481 0.940

pooled 0.044 0.193 0.437 0.041 0.148

Dind −0.348 0.126 0.067 0.041 0.002

X1X2, β3 = 0.5

cont-cor −0.004 0.002 0.047 0.422 1.000

cont-mis1 0.039 0.004 0.046 0.420 1.000

cont-mis2 −0.021 0.003 0.052 0.415 1.000

cont-mis3 −0.091 0.010 0.044 0.413 1.000

cont-mis4 −0.128 0.019 0.049 0.409 1.000

IPW −0.012 0.236 0.486 0.477 0.941

pooled −0.049 0.190 0.433 0.038 0.141

Dind −0.002 0.004 0.063 0.038 0.758
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S6 Simulation study mimicking the T2D case-control

study data set

The goal of these simulations was to study the performance of the control function estimator

in simulations mimicking the T2D data set, by using the same variable types, as well as effect

sizes, as seen in the data. We considered a few forms of misspecification of the selection bias

function, to glean into the plausible effects of misspecification on estimation.

First, we took two SNPs that were found to be significantly associated with log-BMI an

entire GWAS data analysis. These SNPs, dubbed SNP1 and SNP2, had very low Minor Allele

Frequency (MAF), about 3%. We estimated the logistic disease model with the predictors:

smoking status, alcohol measure, physically active status, and SNP1 and SNP2. We also es-

timated the regression model E[Y |X] of log-BMI with age, smoking status, physically active

status, SNP1, SNP2, and the interaction between SNP1 and physical activity status as predic-

tors. In addition, we estimated a regression model for the selection bias function with smoking

status and SNP1 as predictors. Note that for simplicity, we did not adjust for the principal

components of the genetic data in these analysis. We used the estimated effects, rounded to

the third digit, as effect values in the simulations. We then employed a few variations. We now

describe the sampling and generation of the simulated data, and then the different variations

of the simulation study.

S6.1 Data sampling and generation:

We simulated a super population of 15,000 individuals. Then sampled cases and controls from

this population, based only on disease status. For each of 1000 simulations, the super population

was simulated as follows:

• SNP1 and SNP2 were sampled with replacement from the true SNP data.

• Binary smoking status as well as physically active status were sampled from a binary dis-

tribution, with parameter p estimated from the diabetes data set (for simplicity, ignoring

case-control sampling).

• Alcohol measures and age were sampled form the case-control study data, with replace-

ment.

• Disease probability was calculated by the inverse of the logistic model with parameters

as estimated from the data, with adaptation of the intercept to have disease prevalence

of about 8.4%, and possible variation as described later.

• Log-BMI values were simulated from a normal distribution, using the mean and variance

parameters estimated from the diabetes data set, with possible variations as described

later.

We sampled 500 cases and 500 controls from the super population.



S6. SIMULATION STUDY MIMICKING THE T2D CASE-CONTROL STUDY
DATA SET

S6.2 Variations of the simulation

To study the effect of some properties of the data on the estimators, we applied the following

variations, so that the simulations were ran with all combinations of the following options:

1. SNP1 and SNP2 where either the SNPs with very low MAF used to estimate the model

parameters, or other two SNPs with high MAF (closer to 50%).

2. The effect of SNP1 on disease was set to a ‘high’ effect of 1.3 (instead of -0.04).

3. The effect of SNP1 on the selection bias function was set to a ‘high’ effect of -1 (instead

of -0.053).

S6.3 Misspecification of the selection bias function

We studied the control function estimator when the selection bias function is correctly specified,

and also when it is misspecified, in the following ways. Recall that a correct specification refers

to a linear model with an intercept, SNP1, and smoking status. The effect sizes were:

αintercept = −0.158

αsmoke = 0.022

αsnp1 = −0.053 or (if set to ‘high’) αsnp1 = −0.2.

We allowed for the following misspecifications of the selection bias function:

1. cont-mis1: no SNP1 effect (just intercept and smoking status).

2. cont-mis2: no smoking status effect (just intercept and SNP1).

3. cont-mis3: neither SNP1 nor smoking status (just intercept).

S6.4 Conclusions

In the following, figures and tables provide the simulations results. The figures focus on the

various control-function estimates, and IPW (which can also be thought of as type of control-

function estimator with the selection bias misspecified and equal to zero), and compare between

the bias and MSE of the SNP effects. The tables provide comprehensive simulation results for

all measures and estimators used.

1. The control function estimator improves over IPW when the effect of SNP1 (or more

generally, covariates or exposures) on either the disease model or the selection bias model

is high, and it is in fact included in the disease/selection bias model. In other words,

cont-mis2 performs better than cont-mis1 and cont-mis3, that do not include effects of

SNP1. Also, its performance is almost identical to the cont-cor and better than the usual

IPW.

2. The improvement seen in the control function estimator was in the effect (bias or MSE)

estimate of SNP1 and the interaction SNP1 and being physically active. The various
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control function estimators (i.e. under the different forms of misspecification) had similar

behavior with respect to the estimation of SNP2 effect.

3. The control function estimators were never worse than IPW in terms of MSE.

4. When the MAF of the SNPs was low (rare SNP), coverage probabilities of all estimators

were reduced, compared to when the MAF was relatively high (common SNP).

S6.5 Figures and tables summarizing the results
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Figure 3: Comparison between the estimated bias of SNP1 effect, over 1000 simulations,

of the control-function estimator under various forms of mispecification (mis1, mis2,

mis3) and under correct specification (cor) of the selection bias function, and of the

IPW. We compare between all combinations in which SNP1 and SNP2 have either low

or high MAF, the effect of SNP1 on the disease model is either low or high, and the

effect of SNP1 on the selection bias model (γ(X)) is either low or high.

cor mis1 mis2 mis3 ipw

low snp1 −> D, low snp1 −>γ(X)

ab
so

lu
te

 b
ia

s

0.
00

0
0.

01
0

0.
02

0
0.

03
0

SNP1 effect = −0.032

cor mis1 mis2 mis3 ipw

low snp1 −> D, high snp1 −>γ(X)

ab
so

lu
te

 b
ia

s

0.
00

0
0.

01
0

0.
02

0
0.

03
0

cor mis1 mis2 mis3 ipw

high snp1 −> D, low snp1 −>γ(X)

ab
so

lu
te

 b
ia

s

0.
00

0
0.

01
0

0.
02

0
0.

03
0

cor mis1 mis2 mis3 ipw

high snp1 −> D, high snp1 −>γ(X)

ab
so

lu
te

 b
ia

s

0.
00

0
0.

01
0

0.
02

0
0.

03
0

cor mis1 mis2 mis3 ipw

ab
so

lu
te

 b
ia

s

0.
00

0
0.

01
0

0.
02

0
0.

03
0

cor mis1 mis2 mis3 ipw

0.
00

0
0.

01
0

0.
02

0
0.

03
0

cor mis1 mis2 mis3 ipw

0.
00

0
0.

01
0

0.
02

0
0.

03
0

cor mis1 mis2 mis3 ipw

0.
00

0
0.

01
0

0.
02

0
0.

03
0

hi
gh

 M
A

F
   

   
   

   
   

  l
ow

 M
A

F



TAMAR SOFER, MARILYN C. CORNELIS, PETER KRAFT AND

ERIC J. TCHETGEN TCHETGEN

Figure 4: Comparison between the Mean Square Error (MSE) of SNP1 effect, over 1000

simulations, of the control-function estimator under various forms of mispecification

(mis1, mis2, mis3) and under correct specification (cor) of the selection bias function,

and of the IPW. We compare between all combinations in which SNP1 and SNP2 have

either low or high MAF, the effect of SNP1 on the disease model is either low or high,

and the effect of SNP1 on the selection bias model (γ(X)) is either low or high.
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DATA SET

Figure 5: Comparison between the estimated bias of the effect of the interaction

Active×SNP1 effect, over 1000 simulations, of the control-function estimator under var-

ious forms of mispecification (mis1, mis2, mis3) and under correct specification (cor) of

the selection bias function, and of the IPW. We compare between all combinations in

which SNP1 and SNP2 have either low or high MAF, the effect of SNP1 on the disease

model is either low or high, and the effect of SNP1 on the selection bias model (γ(X))

is either low or high.
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Figure 6: Comparison between the Mean Square Error (MSE) of the interaction

Active×SNP1 effect, over 1000 simulations, of the control-function estimator under var-

ious forms of mispecification (mis1, mis2, mis3) and under correct specification (cor) of

the selection bias function, and of the IPW. We compare between all combinations in

which SNP1 and SNP2 have either low or high MAF, the effect of SNP1 on the disease

model is either low or high, and the effect of SNP1 on the selection bias model (γ(X))

is either low or high.
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DATA SET

Figure 7: Comparison between the estimated bias of SNP2 effect, over 1000 simulations,

of the control-function estimator under various forms of mispecification (mis1, mis2,

mis3) and under correct specification (cor) of the selection bias function, and of the

IPW. We compare between all combinations in which SNP1 and SNP2 have either low

or high MAF, the effect of SNP1 on the disease model is either low or high, and the

effect of SNP1 on the selection bias model (γ(X)) is either low or high.
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Figure 8: Comparison between the Mean Square Error (MSE) of SNP2 effect, over 1000

simulations, of the control-function estimator under various forms of mispecification

(mis1, mis2, mis3) and under correct specification (cor) of the selection bias function,

and of the IPW. We compare between all combinations in which SNP1 and SNP2 have

either low or high MAF, the effect of SNP1 on the disease model is either low or high,

and the effect of SNP1 on the selection bias model (γ(X)) is either low or high.
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S6. SIMULATION STUDY MIMICKING THE T2D CASE-CONTROL STUDY
DATA SET

Estimator Bias MSE emp sd est sd coverage

Intercept, β0 = 3.077

cont-cor 0.001 0.002 0.047 0.048 0.952

cont-mis1 0.001 0.002 0.046 0.048 0.951

cont-mis2 0.001 0.002 0.046 0.048 0.951

cont-mis3 0.001 0.002 0.046 0.048 0.951

ipw 0.001 0.002 0.047 0.048 0.949

pooled −0.061 0.005 0.040 0.040 0.667

dind 0.012 0.002 0.037 0.037 0.945

Age, β1 = 0.002

cont-cor 0.000 0.000 0.001 0.001 0.943

cont-mis1 0.000 0.000 0.001 0.001 0.944

cont-mis2 0.000 0.000 0.001 0.001 0.943

cont-mis3 0.000 0.000 0.001 0.001 0.943

ipw 0.000 0.000 0.001 0.001 0.939

pooled 0.000 0.000 0.001 0.001 0.949

dind 0.000 0.000 0.001 0.001 0.953

Smoker, β2 = −0.012

cont-cor 0.001 0.000 0.017 0.017 0.933

cont-mis1 0.001 0.000 0.017 0.017 0.932

cont-mis2 0.001 0.000 0.017 0.017 0.933

cont-mis3 0.001 0.000 0.017 0.017 0.934

ipw 0.001 0.000 0.017 0.017 0.932

pooled −0.003 0.000 0.013 0.013 0.944

dind 0.018 0.000 0.012 0.012 0.684

Physically active, β3 = −0.032

cont-cor 0.000 0.000 0.015 0.015 0.942

cont-mis1 0.000 0.000 0.015 0.015 0.942

cont-mis2 0.000 0.000 0.015 0.015 0.942

cont-mis3 0.000 0.000 0.015 0.015 0.943

ipw 0.000 0.000 0.015 0.015 0.943

pooled 0.006 0.000 0.013 0.013 0.929

dind −0.003 0.000 0.012 0.012 0.954

SNP1, β4 = −0.032

cont-cor −0.001 0.002 0.049 0.045 0.916

cont-mis1 −0.001 0.002 0.049 0.045 0.910

cont-mis2 −0.001 0.002 0.049 0.045 0.915

cont-mis3 −0.001 0.002 0.049 0.045 0.913

ipw −0.002 0.002 0.049 0.045 0.914
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pooled −0.027 0.002 0.040 0.039 0.883

dind −0.023 0.002 0.035 0.036 0.902

SNP2, β5 = −0.040

cont-cor 0.001 0.001 0.035 0.034 0.931

cont-mis1 0.001 0.001 0.035 0.034 0.930

cont-mis2 0.001 0.001 0.035 0.034 0.930

cont-mis3 0.001 0.001 0.035 0.034 0.929

ipw 0.001 0.001 0.035 0.034 0.930

pooled 0.006 0.001 0.031 0.031 0.942

dind −0.001 0.001 0.028 0.028 0.946

Active×SNP1, β6 = −0.021

cont-cor −0.001 0.006 0.078 0.072 0.926

cont-mis1 −0.001 0.006 0.078 0.071 0.926

cont-mis2 −0.001 0.006 0.079 0.072 0.926

cont-mis3 −0.001 0.006 0.078 0.071 0.926

ipw −0.002 0.006 0.079 0.071 0.926

pooled 0.001 0.004 0.067 0.063 0.940

dind 0.001 0.003 0.059 0.058 0.948

Table 4: Simulation results, averaged over 1000 simulations, for estimat-

ing the effect of covariates on a the simulated log(BMI) outcomes. The

SNPs used had low MAF, the effect of SNP1 on the disease distribution

was low, and its effect on the selection bias function was low.



S6. SIMULATION STUDY MIMICKING THE T2D CASE-CONTROL STUDY
DATA SET

Estimator Bias MSE emp sd est sd coverage

Intercept, β0 = 3.077

cont-cor −0.001 0.003 0.056 0.055 0.943

cont-mis1 −0.001 0.003 0.056 0.055 0.942

cont-mis2 −0.001 0.003 0.056 0.055 0.943

cont-mis3 −0.001 0.003 0.056 0.055 0.942

ipw −0.001 0.003 0.057 0.055 0.946

pooled −0.069 0.007 0.050 0.049 0.699

dind 0.043 0.004 0.044 0.043 0.834

Age, β1 = 0.002

cont-cor 0.000 0.000 0.001 0.001 0.944

cont-mis1 0.000 0.000 0.001 0.001 0.944

cont-mis2 0.000 0.000 0.001 0.001 0.944

cont-mis3 0.000 0.000 0.001 0.001 0.944

ipw 0.000 0.000 0.001 0.001 0.941

pooled 0.000 0.000 0.001 0.001 0.939

dind 0.000 0.000 0.001 0.001 0.941

Smoker, β2 = −0.012

cont-cor 0.000 0.000 0.017 0.017 0.950

cont-mis1 0.000 0.000 0.017 0.017 0.953

cont-mis2 0.000 0.000 0.017 0.017 0.953

cont-mis3 0.000 0.000 0.017 0.017 0.953

ipw 0.000 0.000 0.017 0.017 0.949

pooled −0.009 0.000 0.014 0.014 0.918

dind 0.021 0.001 0.013 0.012 0.613

Physically active, β3 = −0.032

cont-cor 0.001 0.001 0.027 0.027 0.953

cont-mis1 0.001 0.001 0.027 0.027 0.952

cont-mis2 0.001 0.001 0.027 0.027 0.952

cont-mis3 0.001 0.001 0.027 0.027 0.951

ipw 0.001 0.001 0.027 0.027 0.959

pooled 0.006 0.001 0.024 0.025 0.953

dind −0.006 0.001 0.022 0.021 0.947

SNP1, β4 = −0.032

cont-cor 0.000 0.000 0.014 0.013 0.944

cont-mis1 0.000 0.000 0.014 0.013 0.944

cont-mis2 0.000 0.000 0.014 0.013 0.944

cont-mis3 0.000 0.000 0.014 0.013 0.944

ipw 0.000 0.000 0.014 0.013 0.942
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pooled −0.026 0.001 0.012 0.012 0.426

dind −0.021 0.001 0.010 0.010 0.490

SNP2, β5 = −0.040

cont-cor 0.000 0.000 0.014 0.014 0.943

cont-mis1 0.000 0.000 0.014 0.014 0.943

cont-mis2 0.000 0.000 0.014 0.014 0.943

cont-mis3 0.000 0.000 0.014 0.014 0.944

ipw 0.001 0.000 0.014 0.014 0.945

pooled 0.006 0.000 0.012 0.012 0.919

dind −0.003 0.000 0.010 0.010 0.937

Active×SNP1, β6 = −0.021

cont-cor −0.001 0.000 0.021 0.021 0.949

cont-mis1 −0.001 0.000 0.021 0.021 0.949

cont-mis2 −0.001 0.000 0.021 0.021 0.949

cont-mis3 −0.001 0.000 0.021 0.021 0.949

ipw −0.001 0.000 0.021 0.021 0.951

pooled 0.002 0.000 0.019 0.019 0.949

dind 0.002 0.000 0.016 0.016 0.936

Table 5: Simulation results, averaged over 1000 simulations, for estimat-

ing the effect of covariates on a the simulated log(BMI) outcomes. The

SNPs used had high MAF, the effect of SNP1 on the disease distribution

was low, and its effect on the selection bias function was low.
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DATA SET

Estimator Bias MSE emp sd est sd coverage

Intercept, β0 = 3.077

cont-cor −0.003 0.002 0.049 0.048 0.947

cont-mis1 −0.003 0.002 0.049 0.048 0.948

cont-mis2 −0.003 0.002 0.049 0.048 0.947

cont-mis3 −0.003 0.002 0.049 0.048 0.948

ipw −0.003 0.002 0.050 0.048 0.947

pooled −0.064 0.006 0.040 0.040 0.650

dind 0.008 0.001 0.037 0.037 0.945

Age, β1 = 0.002

cont-cor 0.000 0.000 0.001 0.001 0.944

cont-mis1 0.000 0.000 0.001 0.001 0.945

cont-mis2 0.000 0.000 0.001 0.001 0.945

cont-mis3 0.000 0.000 0.001 0.001 0.946

ipw 0.000 0.000 0.001 0.001 0.939

pooled 0.000 0.000 0.001 0.001 0.945

dind 0.000 0.000 0.001 0.001 0.951

Smoker, β2 = −0.012

cont-cor 0.000 0.000 0.017 0.017 0.947

cont-mis1 0.000 0.000 0.017 0.017 0.947

cont-mis2 0.000 0.000 0.017 0.017 0.948

cont-mis3 0.000 0.000 0.017 0.017 0.947

ipw 0.000 0.000 0.017 0.017 0.944

pooled −0.003 0.000 0.013 0.013 0.944

dind 0.018 0.000 0.012 0.012 0.690

Physically active, β3 = −0.032

cont-cor 0.000 0.000 0.015 0.015 0.945

cont-mis1 0.000 0.000 0.015 0.015 0.945

cont-mis2 0.000 0.000 0.015 0.015 0.945

cont-mis3 0.000 0.000 0.015 0.015 0.945

ipw 0.000 0.000 0.015 0.015 0.947

pooled 0.006 0.000 0.013 0.013 0.925

dind −0.003 0.000 0.012 0.012 0.929

SNP1, β4 = −0.032

cont-cor −0.003 0.002 0.045 0.043 0.924

cont-mis1 −0.003 0.002 0.044 0.041 0.921

cont-mis2 −0.003 0.002 0.045 0.043 0.926

cont-mis3 −0.003 0.002 0.044 0.041 0.918

ipw −0.004 0.002 0.045 0.043 0.924
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pooled −0.044 0.003 0.028 0.029 0.676

dind −0.002 0.001 0.026 0.027 0.951

SNP2, β5 = −0.040

cont-cor 0.001 0.001 0.036 0.035 0.927

cont-mis1 0.001 0.001 0.036 0.035 0.927

cont-mis2 0.001 0.001 0.036 0.035 0.927

cont-mis3 0.001 0.001 0.036 0.035 0.927

ipw 0.001 0.001 0.036 0.035 0.930

pooled 0.005 0.001 0.031 0.031 0.943

dind −0.002 0.001 0.029 0.028 0.954

Active×SNP1, β6 = −0.021

cont-cor 0.000 0.005 0.073 0.067 0.908

cont-mis1 −0.001 0.005 0.071 0.064 0.907

cont-mis2 0.000 0.005 0.072 0.067 0.906

cont-mis3 0.000 0.005 0.071 0.064 0.906

ipw −0.002 0.006 0.074 0.067 0.896

pooled −0.003 0.002 0.047 0.047 0.946

dind −0.001 0.002 0.043 0.044 0.954

Table 6: Simulation results, averaged over 1000 simulations, for estimat-

ing the effect of covariates on a the simulated log(BMI) outcomes. The

SNPs used had low MAF, the effect of SNP1 on the disease distribution

was high, and its effect on the selection bias function was low.



S6. SIMULATION STUDY MIMICKING THE T2D CASE-CONTROL STUDY
DATA SET

Estimator Bias MSE emp sd est sd coverage

Intercept, β0 = 3.077

cont-cor 0.001 0.003 0.056 0.056 0.956

cont-mis1 0.001 0.003 0.056 0.056 0.956

cont-mis2 0.001 0.003 0.056 0.056 0.956

cont-mis3 0.001 0.003 0.056 0.056 0.956

ipw 0.001 0.003 0.056 0.056 0.954

pooled −0.023 0.003 0.048 0.050 0.923

dind 0.017 0.002 0.042 0.043 0.939

Age, β1 = 0.002

cont-cor 0.000 0.000 0.001 0.001 0.953

cont-mis1 0.000 0.000 0.001 0.001 0.954

cont-mis2 0.000 0.000 0.001 0.001 0.953

cont-mis3 0.000 0.000 0.001 0.001 0.954

ipw 0.000 0.000 0.001 0.001 0.953

pooled 0.000 0.000 0.001 0.001 0.958

dind 0.000 0.000 0.001 0.001 0.967

Smoker, β2 = −0.012

cont-cor 0.000 0.000 0.017 0.017 0.945

cont-mis1 0.000 0.000 0.017 0.017 0.946

cont-mis2 0.000 0.000 0.017 0.017 0.945

cont-mis3 0.000 0.000 0.017 0.017 0.948

ipw 0.000 0.000 0.017 0.017 0.943

pooled −0.003 0.000 0.014 0.014 0.950

dind 0.023 0.001 0.012 0.012 0.527

Physically active, β3 = −0.032

cont-cor −0.001 0.001 0.027 0.028 0.948

cont-mis1 −0.001 0.001 0.027 0.028 0.949

cont-mis2 −0.001 0.001 0.027 0.028 0.947

cont-mis3 −0.001 0.001 0.027 0.028 0.949

ipw −0.001 0.001 0.027 0.028 0.943

pooled 0.006 0.001 0.026 0.028 0.968

dind −0.002 0.001 0.024 0.024 0.948

SNP1, β4 = −0.032

cont-cor 0.000 0.000 0.014 0.014 0.938

cont-mis1 0.000 0.000 0.014 0.013 0.939

cont-mis2 0.000 0.000 0.014 0.014 0.939

cont-mis3 0.000 0.000 0.014 0.013 0.938

ipw 0.000 0.000 0.014 0.014 0.940
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pooled −0.058 0.003 0.012 0.012 0.002

dind 0.006 0.000 0.011 0.011 0.919

SNP2, β5 = −0.040

cont-cor 0.000 0.000 0.014 0.014 0.951

cont-mis1 0.000 0.000 0.014 0.014 0.953

cont-mis2 0.000 0.000 0.014 0.014 0.954

cont-mis3 0.000 0.000 0.014 0.014 0.954

ipw 0.000 0.000 0.014 0.014 0.955

pooled 0.004 0.000 0.012 0.012 0.925

dind −0.004 0.000 0.010 0.010 0.926

Active×SNP1, β6 = −0.021

cont-cor 0.000 0.000 0.021 0.021 0.948

cont-mis1 0.000 0.000 0.021 0.021 0.947

cont-mis2 0.000 0.000 0.021 0.021 0.946

cont-mis3 0.000 0.000 0.021 0.021 0.946

ipw 0.001 0.000 0.022 0.021 0.943

pooled 0.000 0.000 0.019 0.019 0.961

dind −0.002 0.000 0.017 0.017 0.943

Table 7: Simulation results, averaged over 1000 simulations, for estimat-

ing the effect of covariates on a the simulated log(BMI) outcomes. The

SNPs used had high MAF, the effect of SNP1 on the disease distribution

was high, and its effect on the selection bias function was low.
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DATA SET

Estimator Bias MSE emp sd est sd coverage

Intercept, β0 = 3.077

cont-cor 0.001 0.002 0.047 0.048 0.952

cont-mis1 0.001 0.002 0.047 0.049 0.948

cont-mis2 0.001 0.002 0.047 0.048 0.952

cont-mis3 0.001 0.002 0.047 0.049 0.947

ipw 0.001 0.002 0.048 0.049 0.946

pooled −0.060 0.006 0.047 0.047 0.753

dind 0.031 0.003 0.043 0.043 0.885

Age, β1 = 0.002

cont-cor 0.000 0.000 0.001 0.001 0.944

cont-mis1 0.000 0.000 0.001 0.001 0.949

cont-mis2 0.000 0.000 0.001 0.001 0.944

cont-mis3 0.000 0.000 0.001 0.001 0.949

ipw 0.000 0.000 0.001 0.001 0.944

pooled 0.000 0.000 0.001 0.001 0.944

dind 0.000 0.000 0.001 0.001 0.946

Smoker, β2 = −0.012

cont-cor 0.001 0.000 0.017 0.017 0.934

cont-mis1 0.001 0.000 0.017 0.017 0.942

cont-mis2 0.001 0.000 0.017 0.017 0.934

cont-mis3 0.001 0.000 0.017 0.017 0.943

ipw 0.001 0.000 0.017 0.017 0.940

pooled −0.006 0.000 0.015 0.015 0.938

dind 0.020 0.001 0.014 0.014 0.694

Physically active, β3 = −0.032

cont-cor 0.000 0.000 0.015 0.015 0.942

cont-mis1 0.000 0.000 0.015 0.015 0.947

cont-mis2 0.000 0.000 0.015 0.015 0.942

cont-mis3 0.000 0.000 0.015 0.015 0.947

ipw 0.000 0.000 0.015 0.015 0.945

pooled 0.006 0.000 0.013 0.015 0.970

dind −0.005 0.000 0.012 0.013 0.960

SNP1, β4 = −0.032

cont-cor −0.004 0.004 0.060 0.064 0.966

cont-mis1 −0.008 0.004 0.066 0.055 0.900

cont-mis2 −0.004 0.004 0.060 0.064 0.965

cont-mis3 −0.008 0.004 0.066 0.055 0.902

ipw −0.009 0.005 0.069 0.065 0.945
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pooled −0.445 0.212 0.121 0.045 0.004

dind −0.440 0.204 0.104 0.041 0.001

SNP2, β5 = −0.040

cont-cor 0.001 0.001 0.036 0.035 0.932

cont-mis1 0.001 0.001 0.036 0.035 0.935

cont-mis2 0.001 0.001 0.036 0.035 0.933

cont-mis3 0.001 0.001 0.036 0.035 0.936

ipw 0.001 0.001 0.036 0.035 0.934

pooled 0.008 0.001 0.035 0.035 0.943

dind −0.001 0.001 0.032 0.032 0.947

Active×SNP1, β6 = −0.021

cont-cor −0.001 0.006 0.079 0.098 0.975

cont-mis1 −0.005 0.011 0.105 0.087 0.918

cont-mis2 −0.001 0.006 0.079 0.098 0.978

cont-mis3 −0.005 0.011 0.105 0.087 0.918

ipw −0.006 0.013 0.115 0.101 0.941

pooled 0.034 0.041 0.200 0.073 0.497

dind 0.035 0.031 0.172 0.066 0.509

Table 8: Simulation results, averaged over 1000 simulations, for estimat-

ing the effect of covariates on a the simulated log(BMI) outcomes. The

SNPs used had low MAF, the effect of SNP1 on the disease distribution

was low, and its effect on the selection bias function was high.



S6. SIMULATION STUDY MIMICKING THE T2D CASE-CONTROL STUDY
DATA SET

Estimator Bias MSE emp sd est sd coverage

Intercept, β0 = 3.077

cont-cor −0.003 0.004 0.061 0.073 0.984

cont-mis1 −0.003 0.005 0.068 0.081 0.981

cont-mis2 −0.003 0.004 0.061 0.073 0.984

cont-mis3 −0.003 0.005 0.068 0.081 0.982

ipw −0.005 0.007 0.082 0.079 0.927

pooled −0.092 0.039 0.175 0.175 0.904

dind 0.574 0.340 0.101 0.094 0.000

Age, β1 = 0.002

cont-cor 0.000 0.000 0.001 0.001 0.985

cont-mis1 0.000 0.000 0.001 0.002 0.980

cont-mis2 0.000 0.000 0.001 0.001 0.985

cont-mis3 0.000 0.000 0.001 0.002 0.980

ipw 0.000 0.000 0.002 0.002 0.937

pooled 0.000 0.000 0.004 0.003 0.938

dind 0.000 0.000 0.002 0.002 0.931

Smoker, β2 = −0.012

cont-cor −0.001 0.001 0.023 0.024 0.964

cont-mis1 −0.001 0.001 0.025 0.026 0.959

cont-mis2 −0.001 0.001 0.023 0.025 0.968

cont-mis3 −0.001 0.001 0.025 0.026 0.964

ipw −0.001 0.001 0.025 0.027 0.958

pooled −0.100 0.012 0.049 0.051 0.502

dind 0.075 0.006 0.028 0.027 0.224

Physically active, β3 = −0.032

cont-cor 0.001 0.001 0.027 0.029 0.967

cont-mis1 0.000 0.001 0.031 0.046 0.996

cont-mis2 0.001 0.001 0.027 0.029 0.967

cont-mis3 0.000 0.001 0.031 0.046 0.996

ipw 0.000 0.001 0.031 0.031 0.958

pooled 0.004 0.003 0.055 0.088 0.995

dind −0.067 0.008 0.062 0.047 0.653

SNP1, β4 = −0.032

cont-cor 0.000 0.000 0.017 0.019 0.968

cont-mis1 −0.001 0.000 0.019 0.021 0.967

cont-mis2 0.000 0.000 0.017 0.019 0.968

cont-mis3 −0.001 0.000 0.019 0.021 0.967

ipw −0.001 0.000 0.020 0.021 0.961
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pooled −0.442 0.197 0.041 0.042 0.000

dind −0.411 0.170 0.026 0.022 0.000

SNP2, β5 = −0.040

cont-cor 0.002 0.000 0.019 0.019 0.940

cont-mis1 0.002 0.000 0.021 0.020 0.945

cont-mis2 0.002 0.000 0.019 0.019 0.940

cont-mis3 0.002 0.000 0.021 0.020 0.945

ipw 0.002 0.000 0.021 0.021 0.944

pooled 0.037 0.003 0.042 0.042 0.867

dind −0.020 0.001 0.023 0.023 0.861

Active×SNP1, β6 = −0.021

cont-cor 0.000 0.001 0.024 0.029 0.984

cont-mis1 0.000 0.001 0.027 0.031 0.983

cont-mis2 0.000 0.001 0.024 0.029 0.984

cont-mis3 0.000 0.001 0.027 0.031 0.983

ipw 0.000 0.001 0.031 0.031 0.953

pooled 0.039 0.006 0.070 0.068 0.893

dind 0.039 0.004 0.049 0.036 0.735

Table 9: Simulation results, averaged over 1000 simulations, for estimat-

ing the effect of covariates on a the simulated log(BMI) outcomes. The

SNPs used had high MAF, the effect of SNP1 on the disease distribution

was low, and its effect on the selection bias function was high.
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DATA SET

Estimator Bias MSE emp sd est sd coverage

Intercept, β0 = 3.077

cont-cor −0.003 0.002 0.050 0.048 0.947

cont-mis1 −0.003 0.003 0.051 0.050 0.941

cont-mis2 −0.003 0.002 0.050 0.048 0.947

cont-mis3 −0.003 0.003 0.051 0.050 0.943

ipw −0.003 0.003 0.052 0.050 0.935

pooled −0.064 0.006 0.049 0.048 0.729

dind 0.031 0.003 0.044 0.044 0.885

Age, β1 = 0.002

cont-cor 0.000 0.000 0.001 0.001 0.945

cont-mis1 0.000 0.000 0.001 0.001 0.944

cont-mis2 0.000 0.000 0.001 0.001 0.945

cont-mis3 0.000 0.000 0.001 0.001 0.942

ipw 0.000 0.000 0.001 0.001 0.934

pooled 0.000 0.000 0.001 0.001 0.947

dind 0.000 0.000 0.001 0.001 0.952

Smoker, β2 = −0.012

cont-cor 0.000 0.000 0.017 0.017 0.946

cont-mis1 0.000 0.000 0.018 0.018 0.948

cont-mis2 0.000 0.000 0.017 0.017 0.948

cont-mis3 0.000 0.000 0.018 0.018 0.949

ipw 0.000 0.000 0.018 0.018 0.949

pooled −0.002 0.000 0.016 0.016 0.950

dind 0.026 0.001 0.014 0.015 0.568

Physically active, β3 = −0.032

cont-cor 0.000 0.000 0.015 0.015 0.945

cont-mis1 0.000 0.000 0.015 0.015 0.946

cont-mis2 0.000 0.000 0.015 0.015 0.945

cont-mis3 0.000 0.000 0.015 0.015 0.947

ipw 0.000 0.000 0.015 0.015 0.945

pooled 0.006 0.000 0.013 0.016 0.967

dind −0.006 0.000 0.013 0.014 0.952

SNP1, β4 = −0.032

cont-cor −0.012 0.007 0.081 0.093 0.975

cont-mis1 −0.019 0.009 0.095 0.067 0.839

cont-mis2 −0.012 0.007 0.081 0.093 0.975

cont-mis3 −0.019 0.009 0.094 0.068 0.842

ipw −0.020 0.011 0.101 0.096 0.954
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pooled −0.529 0.286 0.073 0.035 0.000

dind −0.474 0.228 0.063 0.032 0.000

SNP2, β5 = −0.040

cont-cor 0.001 0.001 0.036 0.035 0.931

cont-mis1 0.001 0.001 0.038 0.036 0.935

cont-mis2 0.001 0.001 0.036 0.035 0.928

cont-mis3 0.001 0.001 0.038 0.036 0.935

ipw 0.000 0.001 0.038 0.036 0.935

pooled 0.005 0.001 0.038 0.037 0.948

dind −0.004 0.001 0.035 0.033 0.944

Active×SNP1, β6 = −0.021

cont-cor 0.000 0.006 0.077 0.141 0.999

cont-mis1 −0.007 0.018 0.133 0.106 0.885

cont-mis2 0.000 0.006 0.077 0.141 0.999

cont-mis3 −0.007 0.018 0.133 0.106 0.889

ipw −0.009 0.025 0.156 0.147 0.944

pooled −0.008 0.016 0.127 0.057 0.625

dind −0.004 0.012 0.108 0.051 0.659

Table 10: Simulation results, averaged over 1000 simulations, for esti-

mating the effect of covariates on a the simulated log(BMI) outcomes.

The SNPs used had low MAF, the effect of SNP1 on the disease distri-

bution was high, and its effect on the selection bias function was high.
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DATA SET

Estimator Bias MSE emp sd est sd coverage

Intercept, β0 = 3.077

cont-cor 0.000 0.004 0.065 0.084 0.989

cont-mis1 0.001 0.005 0.068 0.088 0.988

cont-mis2 0.000 0.004 0.065 0.084 0.989

cont-mis3 0.001 0.005 0.068 0.088 0.988

ipw −0.001 0.008 0.092 0.094 0.951

pooled 0.077 0.037 0.176 0.186 0.941

dind 0.351 0.130 0.083 0.083 0.019

Age, β1 = 0.002

cont-cor 0.000 0.000 0.001 0.002 0.996

cont-mis1 0.000 0.000 0.001 0.002 0.994

cont-mis2 0.000 0.000 0.001 0.002 0.996

cont-mis3 0.000 0.000 0.001 0.002 0.995

ipw 0.000 0.000 0.002 0.002 0.954

pooled 0.000 0.000 0.004 0.004 0.952

dind 0.000 0.000 0.002 0.002 0.960

Smoker, β2 = −0.012

cont-cor 0.000 0.001 0.029 0.028 0.937

cont-mis1 0.000 0.001 0.031 0.029 0.930

cont-mis2 0.000 0.001 0.029 0.029 0.938

cont-mis3 0.000 0.001 0.030 0.030 0.940

ipw −0.001 0.001 0.034 0.032 0.930

pooled −0.057 0.006 0.054 0.053 0.802

dind 0.117 0.014 0.025 0.024 0.003

Physically active, β3 = −0.032

cont-cor −0.001 0.001 0.028 0.033 0.974

cont-mis1 −0.001 0.001 0.029 0.038 0.987

cont-mis2 −0.001 0.001 0.028 0.033 0.974

cont-mis3 −0.001 0.001 0.029 0.038 0.987

ipw −0.002 0.001 0.034 0.035 0.948

pooled 0.017 0.004 0.065 0.106 0.997

dind −0.040 0.005 0.059 0.047 0.818

SNP1, β4 = −0.032

cont-cor −0.002 0.001 0.023 0.027 0.978

cont-mis1 −0.002 0.001 0.023 0.021 0.937

cont-mis2 −0.002 0.001 0.023 0.027 0.978

cont-mis3 −0.002 0.001 0.023 0.021 0.937

ipw −0.003 0.001 0.027 0.028 0.955
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pooled −0.596 0.356 0.038 0.045 0.000

dind −0.168 0.029 0.027 0.021 0.000

SNP2, β5 = −0.040

cont-cor 0.001 0.000 0.022 0.022 0.970

cont-mis1 0.001 0.000 0.022 0.023 0.968

cont-mis2 0.001 0.000 0.022 0.022 0.970

cont-mis3 0.001 0.000 0.022 0.023 0.969

ipw 0.001 0.001 0.025 0.025 0.959

pooled 0.025 0.002 0.043 0.045 0.927

dind −0.033 0.002 0.021 0.020 0.614

Active×SNP1, β6 = −0.021

cont-cor 0.001 0.001 0.031 0.040 0.991

cont-mis1 0.001 0.001 0.031 0.032 0.953

cont-mis2 0.001 0.001 0.031 0.040 0.991

cont-mis3 0.001 0.001 0.031 0.032 0.953

ipw 0.002 0.002 0.041 0.042 0.954

pooled 0.012 0.004 0.064 0.072 0.967

dind 0.001 0.002 0.039 0.032 0.892

Table 11: Simulation results, averaged over 1000 simulations, for esti-

mating the effect of covariates on a the simulated log(BMI) outcomes.

The SNPs used had high MAF, the effect of SNP1 on the disease distri-

bution was high, and its effect on the selection bias function was high.
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