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Abstract: Median inferences are appealing for fitting an ARMA model with

heteroscedastic errors to financial returns, because such returns are known to have

heavy tails. To ensure that the model is still related to the conditional mean,

we test for a zero mean of the errors by using a random weighted bootstrap

method to quantify the estimation uncertainty. The proposed test is robust against

heteroscedasticity and heavy tails, because we do not infer heteroscedasticity and

need fewer finite moments. Simulations confirm that the proposed test exhibits

good finite-sample performance in terms of size and power. Empirical applications

show that we need to exercise caution when interpreting the model after using a

median inference.

Key words and phrases: ARMA model, heteroscedasticity, weighted estimation,

zero mean.

1. Introduction

Consider the following ARMA(r, s) model with general GARCH (GGARCH)

errors: {
Xt = µ+

∑r
i=1 φiXt−i +

∑s
j=1 ψjεt−j + εt,

εt = σtηt, σ
2
t = h(εt−1, εt−2, . . .),

(1.1)

where µ ∈ R, φi ∈ R for i = 1, . . . , r, ψj ∈ R for j = 1, . . . , s, {ηt} is a sequence of

independent and identically distributed (i.i.d.) random variables with mean zero

and variance one, and h is a positively measurable function. Because E(ηt) =

0 and E(η2
t ) = 1, equation (1.1) models the conditional mean and conditional

standard deviation of {Xt}. Examples of GGARCH models include the ARCH

models of Engle (1982), GARCH models of Bollerslev (1986), absolute value

GARCH models of Taylor (1986) and Schwert (1989), nonlinear GARCH models

of Engle (1990), volatility switching GARCH models of Fornari and Mele (1997),

threshold GARCH models of Zakoian (1994), and generalized quadratic ARCH

models of Sentana (1995).

For ARMA-GARCH models, the quasi-maximum likelihood estimator
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(QMLE) is often used for statistical inference, requiring E(ε4
t ) < ∞ and

E(η4
t ) < ∞ to ensure a normal limit; see Francq and Zaköıan (2004). Recently,

by assuming that the median of ηt is zero instead of E(ηt) = 0, Zhu and

Ling (2011) proposed the self-weighted quasi-maximum exponential likelihood

estimator (SWQMELE), deriving its asymptotic normality without E(ε4
t ) < ∞

and E(η4
t ) < ∞. This relaxation of the moment constraints is vital when

analyzing financial returns, which are known to have heavy tails. However,

changing E(ηt) = 0 in (1.1) to a zero median implies that one is interested in

modeling the conditional median rather than the conditional mean, which is

contrary to the purpose of the classical ARMA-GARCH models. See Fan, Qi

and Xiu (2014) for a discussion on the transformation effect of skewed data.

Recently, Zhou, Peng and Zhang (2021) developed an empirical likelihood

test for a zero mean of ηt using a median inference for an ARMA-GARCH model

under the assumption that the GARCH errors have a zero median. When we

do not reject the null hypothesis, the ARMA-GARCH model is still related to

the conditional mean, and can be inferred from fewer finite moments. Let Ft
denote the σ-field generated by {ηs : s ≤ t}. When {wt > 0} is stationary, wt is

Ft-measurable, and E(σt/wt−1) ∈ (0,∞), then the null hypothesis of a zero mean

of ηt in (1.1) is equivalent to that of a zero mean of εt/wt−1. This motivates us

to test the zero mean of εt/wt−1 without estimating σt and requiring E(ε4
t ) <∞.

Hence, unlike the test of Zhou, Peng and Zhang (2021), the proposed test is

robust against the specification of heteroscedasticity. Specifically, we use the

median inference of Zhu and Ling (2015) to estimate the ARMA model, which

has a normal limit when E(|εt|δ) < ∞, for some δ > 0. Using the sample mean

of the estimated εt, we test for a zero mean of εt/wt−1. To effectively combine

the estimation uncertainties, we use a profile empirical likelihood test based on

the estimating equation method of Qin and Lawless (1994); see Owen (2001)

for an overview of the empirical likelihood method. Applications of the empirical

likelihood method to ARMA-GARCH models include the works of Chan and Ling

(2006) for a GARCH model, Li, Liang and He (2012) for an AR-ARCH model, and

Chan, Peng and Zhang (2012) and Zhang, Li and Peng (2019) for the tail index of

a GARCH(1,1) sequence. However, the results of a simulation study show that the

profile empirical likelihood test exhibits poor finite-sample performance, possibly

because using the median inference complicates the computation of the profile

empirical likelihood method. Therefore, we propose using the random weighted

bootstrap method of Jin, Ying and Wei (2001) and Zhu (2016) to conduct the test

for a zero mean. Note that we cannot use the residual-based bootstrap method

because we do not infer heteroscedasticity.

A related study is that of Ma et al. (2021), who develop an empirical

likelihood test for a zero median of εt after estimating the ARMA model under

the assumption of E(ηt) = 0. Their proposed profile empirical likelihood method

performs well, because it uses a weighted least squares estimation to fit the ARMA
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model.

The remainder of this paper is organized as follows. Section 2 presents

the proposed methodologies and asymptotic results. Sections 3 and 4 discuss

a simulation study and a data analysis, respectively. Section 5 concludes the

paper. All proofs are provided in the Appendix.

2. Methodologies and Theoretical Results

Consider the ARMA(r, s)-GGARCH model (1.1) with a zero median of ηt
instead of a zero mean. Recall that Ft denotes the σ-field generated by {ηs :

s ≤ t}. Put θ = (µ, φ1, . . . , φr, ψ1, . . . , ψs)
′, with θ0 denoting the true value. For

ease of notation, we write ηt(θ0) = ηt, εt(θ0) = εt, and σt(θ0) = σt, and define

φ(z) = 1−
∑r

i=1 φiz
i and ψ(z) = 1 +

∑s
j=1 ψjz

j.

Given the observations {X1, . . . , Xn} and the initial values {X0, X−1, . . .},
taken as zero in our simulation study and data analysis, we express the parametric

form of (1.1) as
εt(θ) = Xt − µ−

∑r
i=1 φiXt−i −

∑s
j=1 ψjεt−j(θ),

σ2
t (θ) = h{εt−1(θ), εt−2(θ), . . .}, ηt(θ) =

εt(θ)

σt(θ)
.

In this study, we test

H0 : E
(

εt
wt−1

)
= 0 vs. Ha : E

(
εt
wt−1

)
6= 0, (2.1)

which is equivalent to

H0 : E(ηt) = 0 vs. Ha : E(ηt) 6= 0,

where {wt = w(Xt, Xt−1, . . .) > 0} is defined later. To estimate εt under the zero

median assumption, we employ the weighted least absolute deviation estimator

(LADE) of Zhu and Ling (2015), defined as

θ̂ = argmin
θ

n∑
t=1

w−1
t−1|εt(θ)|.

The resulting estimator θ̂ has a normal limit when E(|εt|δ) <∞, for some δ > 0.

Using this estimator, we estimate εt by εt(θ̂), and estimate ν = E(εt/wt−1) by

ν̂ =
1

n

n∑
t=1

w−1
t−1εt(θ̂).

To avoid estimating the complicated asymptotic variance of ν̂ when testing H0,

we adopt the random weighted bootstrap method of Jin, Ying and Wei (2001)
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and Zhu (2016):

• Step 1) Draw a random sample of size n from a distribution with mean

one and variance one, for example, the standard exponential distribution.

Denote the observations by {δbt}nt=1.

• Step 2) Solve

θ̂b = argmin
θ

n∑
t=1

δbtw
−1
t−1|εt(θ)|,

and compute

ν̂b =

∑n
t=1 δ

b
tw
−1
t−1εt(θ̂

b)∑n
t=1 δ

b
t

.

• Step 3) Repeat the first two steps B times to obtain {ν̂b}Bb=1.

Therefore, we reject the null hypothesis H0 : ν = 0 at the level a whenever

ν̂2
/{ 1

B

B∑
b=1

(ν̂b − ν̂)2

}
≥ χ2

1,1−a,

where χ2
1,1−a denotes the (1−a)th quantile of a chi-squared distribution with one

degree of freedom.

To validate the above test theoretically, we introduce some regularity

conditions.

Assumption 1. θ0 is an interior point in Θ, and for each θ ∈ Θ, φ(z) 6= 0 and

ψ(z) 6= 0 when |z| ≤ 1, and φ(z) and ψ(z) have no common root with φr 6= 0 or

ψs 6= 0.

Assumption 2. εt is strictly stationary and ergodic.

Assumption 3. E(w−4
t−1ξ

4
ρ,t−1) < ∞, for any ρ ∈ (0, 1), where ξρ,t =

1 +
∑∞

i=0 ρ
i|Xt−i|, {wt = w(Xt, Xt−1, . . .)} is a stationary sequence satisfying

inft≥1wt > c0 > 0, and wt is Ft-measurable.

Assumption 4. {ηt} is a sequence of i.i.d. random variables with median zero

and E(η2
t ) = 1.

Assumption 5. {ηt} has a continuous density function g(x) satisfying g(0) > 0

and sup
x∈R

g(x) <∞.

Assumptions 1 and 2 ensure that there exists a unique, strictly stationary

causal solution to the first and second equations, respectively, of (1.1) (see Zhu

and Ling (2015)). When εt follows a GARCH(p, q) model, Theorem 3.1 of

Basrak, Davis and Mikosch (2002) ensures Assumption 2 if the Lyapunov

exponent of the random coefficient matrices At is negative, where εt = Atεt−1+Bt
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and εt = (σ2
t+1, σ

2
t , . . . , σ

2
t−q+2, ε

2
t , . . . , ε

2
t−p+2)′. The weight wt in Assumption 3

reduces the moment effect of σt, and is defined later. Assumptions 4 and 5 allow

us to use a median inference for the ARMA model.

Theorem 1. Under Assumptions 1–5 and the null hypothesis of (2.1),

√
nν̂

d→ N(0, σ2) and
n

B

B∑
b=1

(ν̂b − ν̂)2

σ2

p→ 1 (2.2)

as B →∞ and n→∞, where

σ2 = (−Γ{2g(0)Σ}−1, 1)E[D̃1D̃
′

1](−Γ(2g(0)Σ)−1, 1)′,

Γ = E
{
w−1
t−1

∂εt(θ)

∂θ′

∣∣∣
θ=θ0

}
, Σ = E

{
(wt−1σt)

−1∂εt(θ)

∂θ

∂εt(θ)

∂θ′

∣∣∣
θ=θ0

}
,

and

D̃t =

(
w−1
t−1

∂εt(θ)

∂θ′

∣∣∣
θ=θ0

sgn(εt), w
−1
t−1εt

)′
.

Theorem 1 shows that our proposed test for H0 : ν = 0 has the asymptotically

correct size. To investigate the local power of the proposed test, we consider the

following local alternative hypothesis:

Ha : ν =
M√
n
, for some constant M. (2.3)

Theorem 2 shows that the power of the proposed test goes to one as |M | → ∞.

Theorem 2. Suppose that Assumptions 1–5 hold for model (1.1). Under the

alternative hypothesis of (2.3),

√
nν̂√

nB−1
∑B

t=1(ν̂b − ν̂)2

d→ N

(
M

σ
, 1

)

as n→∞ and B →∞, where σ is defined in Theorem 1.

As in Ling (2007) and Zhu and Ling (2011, 2015), the key idea when

choosing wt is to bound ξρ,t, defined in Assumption 3. There are many different

choices, including the one in Ling (2007). Because
∑∞

i=0 e
log(h) log2(i+1) < ∞ and

elog(h) log2(t+1) ≥ ρt, for sufficiently large t and any given ρ ∈ (0, 1) and h ∈ (0, 1),

we can use
∑t−1

i=0 e
log(h) log2(i+1)|Xt−i| to bound ξρ,t, and thus control the moment

effect of σt+1. To avoid overweighting, we use the weight function

wt(h) = max

(
C,

t−1∑
i=0

elog(h) log2(i+1)|Xt−i|
)
, for some h ∈ (0, 1) and t = 1, . . . , n,

(2.4)
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where C is chosen as the 90% quantile of |Xt| and w0(h) = 1. As in He et al.

(2020), we can show that the aforementioned weight function, with C replaced by

the corresponding sample quantile, does not change the asymptotic distribution.

As in the case of a kernel density estimation, choosing an optimal h in terms of

the coverage probability is challenging, requiring the Edgeworth expansion for

the proposed test statistic. In our simulation study and data analysis, we use

h = 0.2 and 0.4, which exhibit good finite-sample performance.

3. Simulation Study

In this section, we examine the finite-sample performance of the proposed

test in terms of size and power.

We generate 5, 000 random samples with sample size n = 1,000 and 2,500

from ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models, with µ =

0.1, φ1 = 0.5, ψ1 = 0.2, ω = 0.1, a1 = 0.1, b1 = 0.8, and ηt = V/
√
E(V 2), where

V = I

(
U <

1

2

)
V1 − I

(
U ≥ 1

2

)
V2,

with U ∼ Uniform(0, 1), V1 ∼ Pareto(1, α1) (i.e., P (V1 ≤ x) = 1− (1 + x)−α1 for

x ≥ 0), and V2 ∼ Pareto(1, α2) being independent. It is easy to check that

E(V ) =
1

2

(
1

α1 − 1
− 1

α2 − 1

)
and E(V 2) =

1

(α1 − 1)(α1 − 2)
+

1

(α2 − 1)(α2 − 2)
,

and that ηt has a zero median, right tail index α1, left tail index α2, a zero mean

if α1 = α2, and a nonzero mean if α1 6= α2.

We take α1 = α2 = 2.2, 2.5, 3 to compute the size, and α1 = 3.2 or 3.5 with

α2 = 3 to calculate the power, giving E(ηt) = −0.024. To implement the proposed

test for a zero mean after using the median inference, we use B = 1,000 in the

random weighted bootstrap method, and the weight function wt(h) in (2.4), with

h = 0.2 and 0.4. We report the empirical size of the test at levels 10% and 5% in

Table 1, and the empirical power in Table 2, showing that the proposed test has

an accurate size and nontrivial power. Furthermore, using h = 0.2 and h = 0.4

gives robust results, and the power increases when the sample size becomes large

or α1 is away from the null hypothesis.

4. Application: Exchange Rates

In this section, we examine the daily log-returns (×100) of the following

six exchange rates for the period May 3, 2011, to May 2, 2021: HKD/USD,

EUR/USD, CNY/USD, CAD/USD, MXN/USD, and INR/USD. We plot these

exchange rates in Figure 1.

We first estimate the tail index of {|Xt|} using the Hill estimator of Hill
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Table 1. Test size for the ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1)
models.

ARMA(1,0)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)

α1 n Level h = 0.2 h = 0.4 h = 0.2 h = 0.4

2.2 1,000 10% 0.0980 0.0944 0.0962 0.0944

5% 0.0466 0.0464 0.0468 0.0470

2,500 10% 0.0988 0.1040 0.0972 0.1018

5% 0.0486 0.0468 0.0494 0.0450

2.5 1,000 10% 0.0966 0.0974 0.0966 0.0986

5% 0.0472 0.0468 0.0474 0.0464

2,500 10% 0.1024 0.1032 0.1002 0.1016

5% 0.0528 0.0502 0.0510 0.0494

3 1,000 10% 0.0980 0.0990 0.1002 0.1008

5% 0.0442 0.0434 0.0468 0.0446

2,500 10% 0.0975 0.0990 0.0996 0.1010

5% 0.0472 0.0476 0.0472 0.0498

Table 2. Test power for the ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1)
models.

ARMA(1,0)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)

α1 n Level h = 0.2 h = 0.4 h = 0.2 h = 0.4

3.2 1,000 10% 0.2244 0.2168 0.2182 0.2140

5% 0.1386 0.1338 0.1292 0.1292

2,500 10% 0.3672 0.3648 0.3676 0.3668

5% 0.2500 0.2526 0.2546 0.2570

3.5 1,000 10% 0.6568 0.6508 0.6490 0.6484

5% 0.5188 0.5242 0.5200 0.5180

2,500 10% 0.9334 0.9322 0.9330 0.9324

5% 0.8842 0.8862 0.8842 0.8842

(1975), defined as

α̂(k) =

{
1

k

k∑
i=1

log

(
X(n−i+1)

X(n−k)

)}−1

,

with {X(t)} being the ascending order statistics of {|Xt|}. We plot the Hill

estimates against various k in Figure 2, which shows that the tail indices of all

the log-returns of the exchange rates considered here, except CAD/USD, may

be less than four, that is, EX4
t = ∞. Therefore, the inference may not have a

normal limit when we fit an ARMA-GARCH model using the QMLE. To explore

the possibility of using the SWQMELE to fit an ARMA-GARCH model, we test

whether the GARCH model has a zero mean after using a median inference. If

we do not reject the null hypothesis, then the fitted ARMA-GARCH model using
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Figure 1. Plots of the HKD/USD, EUR/USD, CNY/USD, CAD/USD, MXN/USD, and
INR/USD exchange rates for the period May 3, 2011, to May 2, 2021.

a median inference is still related to the conditional mean. Otherwise, the fitted

ARMA-GARCH model focuses on a conditional median rather than a conditional

mean, which is contrary to the conventional purpose of using a ARMA-GARCH

model.

To apply our proposed test, we use the function “auto.arima” in the R

package “forecast” with the Akaike information criterion (AIC) to obtain the

appropriate orders of the employed ARMA model. We report the fitted models

in Table 3, and plot the ACFs of the residuals in Figure 3. Using the selected

orders of the ARMA model, we compute the p-value of the proposed test using the

weight function wt(h) in (2.4), with h = 0.2 and 0.4, and B = 5,000 in the random

weighted bootstrap method. Table 3 shows that we strongly and weakly reject the

null hypothesis of a zero mean for the INR/USD and MXN/USD exchange rates,

respectively, but do not reject the null hypothesis for the other exchange rates.

Therefore, one should be cautious when interpreting data analyses for INR/USD

and MXN/USD exchange rates when using the SWQMELE to fit an ARMA-

GARCH model to the log-returns, because the ARMA part no longer models

the conditional mean. Note that the aforementioned procedure for selecting the

ARMA model uses the zero mean of the errors, rather than the null hypothesis

of a zero median of the errors, and ignores the possibility that the least squares

estimate has a nonnormal limit because there are too few finite moments. Thus,
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Figure 2. The Hill estimates for the HKD/USD, EUR/USD, CNY/USD, CAD/USD,
MXN/USD, and INR/USD exchange rates for the period May 3, 2011, to May 2, 2021.

Table 3. The fitted ARMA models and computed p-values of the proposed test for a zero
mean of the log-returns of daily exchange rates for the period May 3, 2011, to May 2,
2021.

Exchange rate ARMA model h = 0.2 h = 0.4

HKD/USD ARMA(1,3) 0.3931 0.2159

EUR/USD ARMA(0,1) 0.5625 0.4433

CNY/USD ARMA(1,2) 0.9138 0.9024

CAD/USD ARMA(2,0) 0.2306 0.1622

MXN/USD ARMA(0,1) 0.0932 0.1044

INR/USD ARMA(3,1) 0.0025 0.0009

it would be useful to develop an order-selection procedure that uses a median

inference and allows heavy-tailed residuals. This is left as a topic for future

research.

5. Conclusion

The heavy tails of financial returns make median statistical inferences popular

for fitting an ARMA model with heteroscedastic errors to such returns. To ensure

that the ARMA model is still related to the conditional mean after using a median
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Figure 3. The autocorrelation functions of the residuals.

inference, we test for a zero mean of the errors by using a random weighted

bootstrap method to quantify the uncertainty. The proposed test is robust against

heteroscedasticity and heavy tails, because it does not infer the heteroscedasticity

and requires fewer finite moments. A simulation study confirms the good finite-

sample performance of the proposed test in terms of size and power. The results

of our empirical analysis show that we need to exercise caution when using a

median inference to fit an ARMA-GARCH model to the log-returns of INR/USD

and MXN/USD exchange rates, because we reject the null hypothesis of a zero

mean of the errors in this case.
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Appendix: Proofs of Theorems 1 and 2

Throughout, define

D̃t,1 = w−1
t−1

∂εt(θ)

∂θ

∣∣∣
θ=θ0

sgn(εt), D̃t,2 = w−1
t−1εt, D̃t = (D̃′t,1, D̃t,2)′,

and recall εt = εt(θ0). First, we need two lemmas below.

Lemma 1. Under conditions of Theorem 1, there exist a constant ρ ∈ (0, 1), a

constant C > 0, and a neighborhood Θ0 of θ0 such that

sup
Θ0

|εt(θ)| ≤ Cξρ,t−1, sup
Θ0

∥∥∥∥∂εt(θ)

∂θ

∥∥∥∥ ≤ Cξρ,t−1, and sup
Θ0

∥∥∥∥∂2εt(θ)

∂θ∂θ′

∥∥∥∥ ≤ Cξρ,t−1,

where ξρ,t is defined in Assumption 3.

Proof. See Lemma A.1 of Ling (2007).

Lemma 2. Under the conditions of Theorem 1, we have as n→∞,

1√
n

n∑
t=1

D̃t
d→ N

{
0,E

(
D̃1D̃

′

1

)}
.

Proof. Recall that Ft is the σ-filed generated by the sequence {ηt, ηt−1, . . .}. It

is straightforward to verify that

E
(
D̃t,1

∣∣Ft−1

)
= E

{
w−1
t−1

∂εt(θ)

∂θ′

∣∣∣
θ=θ0

sgn(εt)

∣∣∣∣Ft−1

}
= w−1

t−1

∂εt(θ)

∂θ′

∣∣∣
θ=θ0

E
(
sgn(ηt)

)
= 0

and

E
(
D̃t,2

∣∣Ft−1

)
= E

(
w−1
t−1εt

∣∣Ft−1

)
= w−1

t−1σtE(ηt) = 0,

i.e., {D̃t} is a sequence of Martingale differences. It follows from Assumption 3,

Lemma 1, and the dominated convergence theorem that

max
1≤t≤n

∥∥∥∥ 1√
n
D̃t

∥∥∥∥ = op(1),
1

n

n∑
t=1

(
D̃tD̃

′

t

)
= E

(
D̃1D̃

′

1

)
+ op(1),

E
∥∥∥∥ max

1≤t≤n

1

n
D̃tD̃

′

t

∥∥∥∥ = o(1).

Hence, the conditions of the central limit theorem for Martingale differences are

satisfied (see Theorem 3.2 of Hall and Heyde (1980)), i.e., the theorem follows.
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Proof of Theorem 1. It follows from Theorem 2 of Zhu and Ling (2015) that

√
n(θ̂ − θ0) = −{2g(0)Σ}−1

√
n

n∑
t=1

w−1
t−1

∂εt(θ)

∂θ

∣∣∣
θ=θ0

sgn(εt) + op(1), (A.1)

where Σ is given in Theorem 1.

Using Taylor expansion, Lemma 1, and (A.1), we have

√
nν̂ =

1√
n

n∑
t=1

w−1
t−1εt(θ̂)

=
1√
n

n∑
t=1

w−1
t−1

{
εt(θ̂)− εt

}
+

1√
n

n∑
t=1

w−1
t−1εt

=
1√
n

n∑
t=1

w−1
t−1

∂εt(θ)

∂θ′

∣∣∣
θ=θ0

(θ̂ − θ0) +
1√
n

n∑
t=1

w−1
t−1εt + op(1),

= −Γ
{2g(0)Σ}−1

√
n

n∑
t=1

w−1
t−1

∂εt(θ)

∂θ

∣∣∣
θ=θ0

sgn(εt) +
1√
n

n∑
t=1

w−1
t−1εt + op(1)

d→ N

[
0, (−Γ{2g(0)Σ}−1, 1)E(D̃1D̃

′

1)(−Γ{2g(0)Σ}−1, 1)′
]
, (A.2)

where Γ = E[w−1
t−1{∂εt(θ)/∂θ′}|θ=θ0

] is given in Theorem 1. Hence, the first

equation of (2.2) follows.

Similar to the proof of Theorem 2 of Zhu and Ling (2015), we have

√
n(θ̂b − θ0) = −{2g(0)Σ}−1

√
n

n∑
t=1

δbtw
−1
t−1

∂εt(θ)

∂θ

∣∣∣
θ=θ0

sgn(εt) + op(1). (A.3)

Following the proof of (A.2) and using (A.3), we have

√
nν̂b =

1√
n

n∑
t=1

δbtw
−1
t−1εt(θ̂

b) + op(1)

=
1√
n

n∑
t=1

δbtw
−1
t−1

∂εt(θ)

∂θ′

∣∣∣
θ=θ0

(θ̂b − θ0) +
1√
n

n∑
t=1

δbtw
−1
t−1εt + op(1), (A.4)

= −Γ
{2g(0)Σ}−1

√
n

n∑
t=1

δbtw
−1
t−1

∂εt(θ)

∂θ

∣∣∣
θ=θ0

sgn(εt) +
1√
n

n∑
t=1

δbtw
−1
t−1εt + op(1).

By (A.2) and (A.4), we have

√
n(ν̂b − ν̂) = −Γ

{2g(0)Σ}−1

√
n

n∑
t=1

(δbt − 1)w−1
t−1

∂εt(θ)

∂θ

∣∣∣
θ=θ0

sgn(εt)

+
1√
n

n∑
t=1

(δbt − 1)w−1
t−1εt + op(1). (A.5)
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Put

Zb
t,1 = (δbt − 1)w−1

t−1

∂εt(θ)

∂θ

∣∣∣
θ=θ0

sgn(εt), Z
b
t,2 = (δbt − 1)w−1

t−1εt,

Zt,1 = w−1
t−1

∂εt(θ)

∂θ

∣∣∣
θ=θ0

sgn(εt), and Zt,2 = w−1
t−1εt.

Using (A.5) and letting B →∞ and n→∞, we can show that

n

B

B∑
b=1

(ν̂b − ν̂)2

=
1

B

B∑
b=1

{
Γ{2g(0)Σ}−1 1

n

n∑
t=1

Zb
t,1(Zb

t,1)′(Γ{2g(0)Σ}−1)′

+
1

n

n∑
t=1

(Zbt,2)2−2Γ{2g(0)Σ}−1 1

n

n∑
t=1

Zb
t,1Z

b
t,2

}
+ op(1)

= Γ{2g(0)Σ}−1 1

n

n∑
t=1

Zt,1(Zt,1)′(Γ{2g(0)Σ}−1)′

+
1

n

n∑
t=1

(Zt,2)2−2Γ{2g(0)Σ}−1 1

n

n∑
t=1

Zt,1Zt,2 + op(1)

= (−Γ{2g(0)Σ}−1, 1)E(D̃1D̃
′

1)(−Γ{2g(0)Σ}−1, 1)′ + op(1),

i.e., the second equation of (2.2) holds.

Proof of Theorem 2. Put D̃∗t,2 = w−1
t−1{εt−E(εt|Ft−1)} and D̃∗t = (D̃′t,1, D̃

∗
t,2)′.

Then

1√
n

n∑
t=1

D̃t =
1√
n

n∑
t=1

(
D̃′t,1, w

−1
t−1{εt − E(εt|Ft−1)}

)′
+

1√
n

n∑
t=1

(
0′, w−1

t−1E(εt|Ft−1)
)′

=
1√
n

n∑
t=1

D̃∗t +
1√
n

n∑
t=1

(
0′, w−1

t−1E(εt|Ft−1)
)′

=
1√
n

n∑
t=1

D̃∗t +
1√
n

n∑
t=1

(
0′, w−1

t−1σtE(ηt)
)′

=
1√
n

n∑
t=1

D̃∗t +
M

n

n∑
t=1

(
0′,

w−1
t−1σt

E(w−1
t−1σt)

)′
, (A.6)

where 0 is a (r + s + 1)-vector, and the last equation follows by E(w−1
t−1εt) =

E(ηt)E(w−1
t−1σt) = M/

√
n.

Because E[w−1
t−1{εt−E(εt|Ft−1)}|Ft−1] = 0, {D̃∗t } is a sequence of Martingale

differences. Like the proof of Lemma 2, we have
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1√
n

n∑
t=1

D̃∗t
d→ N

{
0,E

(
D̃1D̃

′

1

)}
as n→∞.

On the other hand, by the weak law of large numbers for stationary series, we

have
M

n

n∑
t=1

w−1
t−1σt

E(w−1
t−1σt)

p→M as n→∞.

Thus, similar to the proof of Theorem 1, as B →∞ and n→∞,

√
nν̂

d→ N

(
M, (−Γ{2g(0)Σ}−1, 1)E(D̃1D̃

′

1)(−Γ{2g(0)Σ}−1, 1)′
)
,

and
n

B

B∑
b=1

(ν̂b − ν̂)2 = σ2 + op(1),

i.e., Theorem 2 holds.
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