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Abstract: In numerous applications, data are observed at random times. Our main

purpose is to study a model observed at random times that incorporates a long-

memory noise process with a fractional Brownian Hurst exponent H. We propose

a least squares estimator in a linear regression model with long-memory noise and

a random sampling time called “jittered sampling”. Specifically, there is a fixed

sampling rate 1/N , contaminated by an additive noise (the jitter) and governed

by a probability density function supported in [0, 1/N ]. The strong consistency

of the estimator is established, with a convergence rate depending on N and the

Hurst exponent. A Monte Carlo analysis supports the relevance of the theory and

produces additional insights, with several levels of long-range dependence (varying

the Hurst index) and two different jitter densities.

Key words and phrases: Least squares estimator, long-memory noise, random times,

regression model.

1. Introduction

In research areas such as finance, network traffic, meteorology, and astron-

omy, among others, it has been noticed that observations can be carried out by

sampling with random disturbances. Examples of this sampling method are data

behavior until it is necessary to increase the sampling frequency, measurements

obtained at random times, and defining a stopping time when a particular event

occurs. In particular, Nieto-Barajas and Sinha (2015) discuss a Bayesian interpo-

lation of unequally spaced time series. The case of paleoclimate time series was

considered by Max-Moerbeck et al. (2014) and Ólafsdóttir, Schulz and Mudelsee

(2016), who estimate the significance of cross-correlations in unevenly sampled

astronomical time series. Finally, in the area of computer science, we can mention

the works of Chang (2014) and Zhao, Chen and Nakagawa (2014).
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The study of statistical models in the aforementioned situations is quite

promising, with open problems such as statistical inference and the limit be-

havior of the estimators.

We propose taking a first step in this direction by studying a least squares

(LS) estimator in a simple regression model with long-memory noise and obser-

vations measured at random times.

Previous works in this direction include Vilar (1995), who studied the non-

parametric kernel estimator of the regression function, m(x) = E(Y |X = x),

under mixing dependence conditions. In addition, the Ornstein–Uhlenbeck pro-

cess driven by Brownian motion was studied by Vilar and Vilar (2000).

Masry (1983) studied the problem of estimating an unknown probability

density function based on n independent observations sampled at random times.

Using a wavelet analysis, Bardet and Bertrand (2010) studied a nonpara-

metric estimator of the spectral density of a Gaussian process with stationary

increments, including the case of fractional Brownian motion (fBm), from the

observation of one path at some particular class of random discrete times. They

prove a central limit theorem and provide an application to biological data.

Philippe, Robet and Viano (2020) give the latest works on this topic, and

study the preservation of memory in a statistical model. With respect to the

problem of parameter estimation in time series that may be represented as a

trend plus long-memory noise, see also the works of Baillie and Chung (2002),

Brockwell (2007), and Lobato and Velasco (2002), among others.

We consider a jittered sampling (JS) scheme, which we define properly in

Section 2. The term jitter is related to temporal variability during the sending

of digital signals or to small variations in the accuracy of the clock signal; see

Bellhouse (1981) and the references therein. The term has also recently appeared

in works related to the analysis of computational images, such as Khan (2017),

Krune et al. (2016), and Subr et al. (2014)

Our main purpose in studying a model with long-memory noise is to char-

acterize the strong correlations between observations, or persistence, by a slow

decay of the correlations. To explain this phenomenon in a model, it is common

to represent it using the Hurst exponent H, which takes values in [0, 1]. In partic-

ular, the long-range dependence can be seen when H ∈ (1/2, 1). Since the work

of Mandelbrot and Van Ness (1968), the effect of long-range dependence has been

the topic of numerous. One of the most popular Gaussian stochastic processes

with long-memory is the fBm. Extensions to the fBm with the same covariance

structure are Rosenblatt, Tudor (2008) and Hermite, Tudor (2013).

With these motivations in mind, we consider the following simple regression
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model:

Yτi = aτi + ∆BH
τi , i = 0, . . . , N − 1, (1.1)

where a ∈ R is the drift parameter of the model, ∆BH
τi = BH

τi+1
− BH

τi , and

τ := {τi, 0 ≤ i ≤ N − 1} is the random time given by the JS.

The main interest in this work is to prove the strong consistency of the LS

estimator in a random sampled linear regression model with long-memory noise

and an independent set of random times given by JS. Recall that the process

Y := {Yτi , 0 ≤ i ≤ N − 1} defined by equation (1.1) has long-range dependence

and is nonstationary in the weak sense.

The remainder of the paper proceeds as follows. In Section 2, we define the

random times within the random sampled regression model with long-memory

noise and describe our notation. Section 3 is devoted to our main results. We

use a LS procedure to obtain the parameter estimation and analyze the almost

sure convergence using JS random time defined in the above section. In Section

4, a simulation study is presented to illustrate the performance of the estimator,

considering different values of H and JS random time. Finally in Section A, we

present the proof of Lemma 1, which was established in Section 3 and is necessary

to prove the almost sure convergence of the estimator.

2. Preliminaries

In this section, we introduce the main tools from the stochastic calculus

needed in the remainder of the paper. We present the random noise evaluated at

the JS random time that we consider throughout this work.

The long-memory process, BH , with Hurst parameter H ∈ (1/2, 1), is a

centered process with the following properties:

(HN1) The covariance structure is given by

RH(t, s) := E
[
BH
t B

H
s

]
=
σ2

2

[
t2H + s2H − |t− s|2H

]
. (2.1)

(HN2) It is a self-similar process (with index H) with weakly stationary incre-

ments.

Remark 1. For example, BH can represent the well known fBm. In the fBm

framework, if H = 1/2, then BH is a standard Brownian motion. Other types of

long-memory processes with the same covariance structure as (2.1) are Hermite

and Rosenblatt processes. In addition, the process BH is not a semimartingale if

H 6= 1/2. Hence, we cannot apply the classical Itô calculus to BH .
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The random time sequence τ = {τi; i = 0, . . . , N − 1} is strictly increasing;

here, N represents the sample size and also the sampling frequency or sampling

rate, that is, the average number of samples obtained in [0, 1]. In the following,

we focus on the case where τ exhibits the following feature.

JS: We assume that we observe a certain process at irregular times τ , with period

δ = 1/N > 0, but contaminated by an additive noise ν, which represents possible

measurement errors, satisfying the following hypothesis:

(HJ) ν = {νi,N ; 0 ≤ i ≤ N − 1} is a sequence of independent and identically

distributed (i.i.d.) random variables with common density function gN (·),
depending on N , with support on [0, 1/N ].

Thus, the sequence of random times τi, for 0 ≤ i ≤ N − 1, is given by

τi =
i

N
+ νi,N , i = 0, . . . , N − 1. (2.2)

Remark 2. Some examples of distributions that satisfy (HJ) are the following:

1. Uniform distribution on [0, 1/N ],

2. Triangular distribution with parameters (0, 1/2N, 1/N). The probability

density function is given by

fX(x) =


0, x < 0,

4N2x, 0 ≤ x < 1
2N ,

2N, x = 1
2N ,

4N2,
(

1
N − x

)
1

2N < x ≤ 1
N .

3. Raised cosine distribution with parameters µ = 1/2N and s = 1/2N . The

probability density function is given by

fX(x) = N

[
1 + cos

(
x− 1/2N

1/2N
π

)]
, 0 ≤ x ≤ 1

N
.

Remark 3. Note that the hypothesis (HJ) implies E(νi,N ) ≤ 1/N and V ar(νi,N ) ≤
1/N2.

Finally, we also assume the following hypothesis:

(HJN) The random time sequence τ and the long-memory noise BH are inde-

pendent.
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Remark 4. In the deterministic case, that is, τi = i/N , for 0 ≤ i ≤ N , for

the Brownian motion case, H = 1/2, the rate of the L2-convergence for the LS

estimator is obtained from the property of independent increments. In fact, we

have âN − a =
∑N−1

i=0 τi∆Bτi/
∑N−1

i=0 τ2
i = (6/((N + 1)(2N + 1)))

∑N−1
i=0 i∆Bτi

and

E
[
(âN − a)2

]
= E

( 6

(N + 1)(2N + 1)

N−1∑
i=0

i∆Bτi

)2


=
6

(N + 1)(2N + 1)
≤ 6

N2
.

A direct application of the Borel–Cantelli lemma allows us to obtain the almost

sure convergence of âN to a. In the fBm case, the increments are no longer

independent. However, for H > 1/2, a simple modification to the procedure

given in the main result (Theorem 1) of this article (Section 3) allow us to obtain

L2 and the almost sure convergence of âN to a.

In particular, Araya et al. (2023), study the consistency of the estimated drift

parameter, when νi,N has a uniform distribution.

3. Main Results

In this section, we provide our main results. We study the LS estimation

(LSE) for the random sampled linear regression model (1.1), with random times

given by JS and long-memory noise. We prove that the LSE is an unbiased

estimator for a, and that âN converges almost surely to a (strongly consistent).

Note that all the results presented here can be extended to a noise with the same

covariance structure as the fBm, such as Rosenblatt and Hermite processes.

For the estimation of the drift parameter a in the model (1.1), the LS esti-

mator is determined by

âN =

∑N−1
i=0 τiYτi∑N−1
i=0 τ2

i

. (3.1)

Recall that from (1.1) and (3.1), we have

âN − a =
(1/N)

∑N−1
i=0 τi∆B

H
τi

(1/N)
∑N−1

i=0 τ2
i

:=
AN
DN

. (3.2)

To study the asymptotic behavior of (3.2), we analyze the numerator and the

denominator separately.
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Remark 5. Note that 1− τN−1 ≤ 1/N → 0 as N →∞. Then, the almost sure

convergence of τN−1 → 1 is ensured as N goes to infinity.

Theorem 1. Let τ be given by (2.2). Assume that the regression model (1.1)

satisfies hypotheses (HN 1), (HN 2), (HJ), and (HJN). Then, the LS esti-

mator âN given in (3.1) of the drift parameter a in the model (1.1) is strongly

consistent, that is,

âN
a.s.−−−−→

N→∞
a.

Proof. To prove our main theorem, we need an auxiliary lemma related to the

almost sure convergence of the denominator DN given in (3.2). The proof of this

lemma is provided in the Appendix.

Lemma 1. Let DN be defined in (3.2). Let τ = {τi; 0 ≤ i ≤ N − 1} be the

random sampling times defined by (2.2). If τ satisfies hypothesis (HJ), then

DN
a.s.−−−−→

N→∞

1

3
.

Remark 6. A direct computation gives the convergence of DN → 1/3 if we

consider deterministic times τi = i/N .

Hence, by Lemma 1, it remains to study the asymptotic behavior of AN as

N →∞.

It is quite easy to see by the definition of AN and conditioning on τ that

E [AN ] = 0.

Let us compute E
[
A2
N

]
:

E
[
A2
N

]
= E

[
1

N2

N−1∑
i=0

τ2
i

(
BH
τi+1
−BH

τi

)2]

+E

 1

N2

∑
0≤i,j≤N−1;|i−j|=1

τiτj
(
BH
τi+1
−BH

τi

) (
BH
τj+1
−BH

τj

)
+E

 1

N2

∑
0≤i,j≤N−1;|i−j|≥2

τiτj
(
BH
τi+1
−BH

τi

) (
BH
τj+1
−BH

τj

)
:= E

[
A

(1)
N

]
+ E

[
A

(2)
N

]
+ E

[
A

(3)
N

]
, (3.3)

where we split the sum into three terms associated with the distance of the indices.

First, we study the first term in (3.3):
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E
[
A

(1)
N

]
=

1

N2

N−1∑
i=0

E

[
E

[ ∣∣∣∣ iN + νi,N

∣∣∣∣2∣∣∣BH
(i+1)/N+νi+1,N

−BH
i/N+νi,N

∣∣∣2∣∣∣∣∣ νi,N = si,

νi+1,N = si+1

]]

=
1

N2

N−1∑
i=0

∫ 1/N

0

∫ 1/N

0

∣∣∣∣ iN + si

∣∣∣∣2 E
[ ∣∣∣BH

(i+1)/N+si+1
−BH

i/N+si

∣∣∣2 ]
gN (si)gN (si+1)dsidsi+1

=
1

N2

N−1∑
i=0

∫ 1/N

0

∫ 1/N

0

∣∣∣∣ iN + si

∣∣∣∣2 ∣∣∣∣ i+ 1

N
+ si+1 −

i

N
− si

∣∣∣∣2H
gN (si)gN (si+1)dsidsi+1

=
1

N2

N−1∑
i=0

∫ 1/N

0

∫ 1/N

0

∣∣∣∣ iN + si

∣∣∣∣2 ∣∣∣∣ 1

N
+ si+1 − si

∣∣∣∣2HgN (si)gN (si+1)dsidsi+1.

From the properties of the long-memory noise, from hypotheses (HN1), (HN2),

and (HJN), and because the domain of the random variables νi,N is [0, 1/N ], we

obtain

E
[
A

(1)
N

]
≤ 1

N2

N−1∑
i=0

∫ 1/N

0

∫ 1/N

0

∣∣∣∣ iN +
1

N

∣∣∣∣2 ∣∣∣∣ 1

N
+

1

N

∣∣∣∣2H gN (si)gN (si+1)dsidsi+1

=
1

N2

N−1∑
i=0

∣∣∣∣ iN +
1

N

∣∣∣∣2 ∣∣∣∣ 1

N
+

1

N

∣∣∣∣2H ∫ 1/N

0

∫ 1/N

0
gN (si)gN (si+1)dsidsi+1

≤ 22H

N4+2H

N(N + 1)(2N + 1)

6
≤ C1(H)

N1+2H
, (3.4)

with C1(H) = 22H/3.

Second, we consider the case of |i − j| = 1 in (3.3). For simplicity, we take

j < i, that is, j = i− 1; the other case can be treated the same way. Therefore,

E
[
A

(2)
N

]
=

2

N2

N−2∑
i=0

E
[
τi+1τi

(
BH
τi+2
−BH

τi+1

) (
BH
τi+1
−BH

τi

)]
(3.5)

=
2

N2

N−2∑
i=0

∫ 1/N

0

∫ 1/N

0

∫ 1/N

0

(
i+ 1

N
+ si+1

)(
i

N
+ si

)
×

E
[(
BH

(i+2)/N+si+2
−BH

(i+1)/N+si+1

)(
BH

(i+1)/N+si+1
−BH

i/N+si

)]
gN (si)gN (si+1)gN (si+2)dsidsi+1dsi+2,
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where in the last term, we apply the conditional expectation with respect to

νi,N = si, νi+1,N = si+1 and νi+2,N = si+2. Because

E
[(
BH

(i+2)/N+si+2
−BH

(i+1)/N+si+1

)(
BH

(i+1)/N+si+1
−BH

i/N+si

)]
=

1

2

[∣∣∣∣si+2 − si +
2

N

∣∣∣∣2H − ∣∣∣∣si+2 − si+1 +
1

N

∣∣∣∣2H − ∣∣∣∣si+1 − si +
1

N

∣∣∣∣2H
]
,

we have

E
[(
BH

(i+2)/N+si+2
−BH

(i+1)/N+si+1

)(
BH

(i+1)/N+si+1
−BH

i/N+si

)]
≤ 32H

2N2H
,

(3.6)

Plugging inequality (3.6) into equation (3.5) yields

E
[
A

(2)
N

]
≤ 2

N2

N−2∑
i=0

∫ 1/N

0

∫ 1/N

0

∫ 1/N

0

[
i+ 1

N
+ si+1

] [
i

N
+ si

]
32H

2N2H

×gN (si)gN (si+1)gN (si+2)dsidsi+1dsi+2

≤ 32H

N2+2H

N−2∑
i=0

∫ 1/N

0

∫ 1/N

0

∫ 1/N

0

[
i+ 1

N
+

1

N

] [
i

N
+

1

N

]
×gN (si)gN (si+1)gN (si+2)dsidsi+1dsi+2

=
32H

N4+2H

N−2∑
i=0

(i+ 2)(i+ 1) ≤ 32H

3N4+2H
(N − 1)N(N + 1)

≤ C2(H)

N1+2H
, (3.7)

where C2(H) = 32H−1. Finally, we consider the case |i− j| ≥ 2 in (3.3). Condi-

tioning on νi,N = si, νi+1;N = si+1, νj,N = sj , and νj+1,N = sj+1, we get

E
[
A

(3)
N

]
=

1

N2
E

 ∑
0≤i,j≤N−1;|i−j|≥2

τiτj
(
BH
τi+1
−BH

τi

) (
BH
τj+1
−BH

τj

)
=

1

N2

∑
0≤i,j≤N−1;|i−j|≥2

∫ 1/N

0

∫ 1/N

0

∫ 1/N

0

∫ 1/N

0

(
i

N
+ si

)(
j

N
+ sj

)
×E

[(
BH

(i+1)/N+si+1
−BH

i/N+si

)(
BH

(j+1)/N+sj+1
−BH

j/N+sj

)]
×gN (si)gN (si+1)gN (sj)gN (sj+1)dsidsi+1dsjdsj+1

=
1

N2

∑
0≤i,j≤N−1;|i−j|≥2

∫ 1/N

0

∫ 1/N

0

∫ 1/N

0

∫ 1/N

0

(
i

N
+ si

)(
j

N
+ sj

)
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× Ii,j gN (si)gN (si+1)gN (sj)gN (sj+1)dsidsi+1dsjdsj+1, (3.8)

where

Ii,j := E
[(
BH

(i+1)/N+si+1
−BH

i/N+si)

)(
BH

(j+1)/N+sj+1
−BH

j/N+sj

)]
=

1

2

[∣∣∣∣ i− j + 1

N
+ si+1 − sj

∣∣∣∣2H +

∣∣∣∣ i− j − 1

N
+ si − sj+1

∣∣∣∣2H
−
∣∣∣∣ i− jN

+ si+1 − sj+1

∣∣∣∣2H − ∣∣∣∣ i− jN
+ si − sj

∣∣∣∣2H
]
.

For i− j = 2 (equivalently for i− j = −2), we directly get

Ii,j :=
1

2

[∣∣∣∣ 3

N
+ si+1 − sj

∣∣∣∣2H +

∣∣∣∣ 1

N
+ si − sj+1

∣∣∣∣2H
−
∣∣∣∣ 2

N
+ si+1 − sj+1

∣∣∣∣2H − ∣∣∣∣ 1

N
+ si − sj

∣∣∣∣2H
]

≤ 1

2

[∣∣∣∣ 3

N
+ si+1 − sj

∣∣∣∣2H +

∣∣∣∣ 1

N
+ si − sj+1

∣∣∣∣2H
]

≤ 1

2

[∣∣∣∣ 4

N

∣∣∣∣2H +

∣∣∣∣ 2

N

∣∣∣∣2H
]

=
22H−1(22H + 1)

N2H
. (3.9)

For |i− j| > 2, applying the Taylor expansion to the function x2H yields∣∣∣∣ i− j + 1

N
+ si+1 − sj

∣∣∣∣2H − ∣∣∣∣ i− jN
+ si − sj

∣∣∣∣2H
= 2H

∣∣∣∣ i− jN
+ si − sj

∣∣∣∣2H−1(
si+1 − si +

1

N

)
+R1

N

and ∣∣∣∣ i− jN
+ si+1 − sj+1

∣∣∣∣2H − ∣∣∣∣ i− j − 1

N
+ si − sj+1

∣∣∣∣2H
= 2H

∣∣∣∣ i− j − 1

N
+ si − sj+1

∣∣∣∣2H−1(
si+1 − si +

1

N

)
+R2

N .

Therefore,

Ii,j = 2H

(
si+1 − si +

1

N

)[∣∣∣∣ i− jN
+ si − sj

∣∣∣∣2H−1
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−
∣∣∣∣ i− j − 1

N
+ si − sj+1

∣∣∣∣2H−1
]

+R1
N −R2

N .

Again, applying the Taylor theorem to the function x2H−1, we obtain

Ii,j = 2H(2H − 1)

(
si+1 − si +

1

N

)(
sj+1 − sj +

1

N

)
×
∣∣∣∣ i− j − 1

N
+ si − sj+1

∣∣∣∣2H−2

+R3
N +R1

N −R2
N ,

which from 2H − 2 < 0, and for |i− j| > 2, implies that

Ii,j ≤
C3(H)

N2

∣∣∣∣ i− j − 1

N
+ si − sj+1

∣∣∣∣2H−2

≤ C3(H)

N2H
, (3.10)

where C3(H) = 8H(2H − 1). Note that the remainder terms R1
N , R

2
N , and

R3
N are of order N−2Hand uniformly independent on i and j. Plugging (3.9) and

(3.10) into the expression (3.8) and considering C4(H) = C3(H)+22H−1(22H+1),

we obtain

E
[
A

(3)
N

]
≤ C4(H)

N2H+2

∑
0≤i,j≤N−1;|i−j|≥2

∫ 1/N

0

∫ 1/N

0

∫ 1/N

0

∫ 1/N

0

(
i

N
+ si

)(
j

N
+ sj

)
×gN (si)gN (si+1)gN (sj)gN (sj+1)dsidsi+1dsjdsj+1

≤ C4(H)

N2H+2

∑
0≤i,j≤N−1;|i−j|≥2

(
i+ 1

N

)(
j + 1

N

)
. (3.11)

Moreover, the above sum in (3.11) can be computed as follows:

1

N2

∑
0≤i,j≤N−1;|i−j|≥2

(
i+ 1

N

)(
j + 1

N

)
=

1

N4

(
N4

4
− N3

6
− N2

4
+
N

6

)
≤ 1

4
.

Therefore,

E
[
A

(3)
N

]
≤ C5(H)

N2H
, (3.12)

where C5(H) = C4(H)/4. Substituting (3.4), (3.7), and (3.12) into the equation

in (3.3), we obtain

E
[
(AN )2

]
≤ C1(H) + C2(H)

N1+2H
+
C5(H)

N2H
. (3.13)

Because H > 1/2, the L2 rate of AN is faster than 1/N . A direct application of
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the Borell–Cantelli lemma yields AN
a.s.−−−−→

N→∞
0.

Remark 7. Under a random sampling scheme, the L2-convergence is of order

1/N2H . The Borel–Cantelli lemma allows us to get the almost sure convergence

of order 1/N2H−1.

When τi = i/N , from remark 6 and with a small modification, we can ensure

the same L2 and almost sure convergence given in Theorem 1.

For H < 1/2 (anti-persistent case), the same arguments as before assure

us that AN converges to zero in L2, and then in probability. Furthermore, DN

converges almost surely to 1/3, and therefore in probability. Using Slutsky’s

Theorem, we obtain the convergence in probability of âN to a. However, our

method does not obtain the almost sure convergence in this case (H < 1/2).

4. Simulation Study

In this section, we present a Monte Carlo simulation study to evaluate the

performance of the LS estimator for a finite sample (N = 10, 15, 20, 25, 50, 75,

and 100) in a linear regression model (1.1). We also perform a study for a large

sample size (N = 300). In both cases, 1,000 replicates of the âN are studied.

The deterministic case: We consider the model defined by equation (1.1)

observed at equally spaced times, that is, τi = i/N , for i = 0, . . . , N − 1.

The uniform and triangular cases: We review a parametric estimation when

the model is observed at random sampling times and considering the uniform and

triangular distributions, both with support on [0, 1/N ].

4.1. Small sample size

When considering the jittered sampling scheme, the squared error decreases

as the sample size increases. Figures 1 and 2 show box plots of M = 1,000 trials

of âN for N = 10, 15, 20, 25, 50, 75, 100, for three different values of H, under

three different scenarios (deterministic, uniform, and triangular cases), and for

initial values of a = 0.2 and a = 2.

As N increases, the variability of âN around the real value of the parameter,

decreases; this situation holds in the same way for the different values of H

and for the different cases considered. There is a remarkable reduction of the

interquartile range for the three different scenarios considered as the value of N

increases. From (3.13), we have that the upper bound of the convergence rate of

|âN − a| is C/N2H−1 for almost sure convergence, and 1/N2H for convergence in

probability. This upper bound is obtained for each N . Note that as long as H
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Figure 1. Box plots for âN when N = 10, 15, 20, 25, 50, 75, 100, for different values of H,
under the deterministic, uniform, and deterministic cases, for a = 0.2.

and N increase the estimation of the real parameter is more accurate. Even for

small values of N , the estimation is close to the real parameter.
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Figure 2. Box plots for âN when N = 10, 15, 20, 25, 50, 75, 100, for different values of H,
under the deterministic, uniform, and deterministic cases, for a = 2.

4.2. Large sample size

For all the simulations shown, we consider M = 1,000 replicates of the model

with the parameter a = 0.2 and a = 2, and with different values of N from N = 3

to N = 300. We also consider different values of the Hurst parameter: H = 0.05,

H = 0.25, and H = 0.45 (anti-persistent cases), and H = 0.55, H = 0.75 and
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Table 1. Uniform and triangular cases: Mean, SD, and kurtosis with a = 0.2.

Deterministic H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95

Mean 0.1998 0.1997 0.2000 0.2001 0.1997 0.2001

SD 0.0070 0.0061 0.0059 0.0056 0.0053 0.0049

Kurtosis -0.0653 0.0631 -0.1805 -0.1815 0.0401 -0.0528

Uniform H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95

Mean 0.1996 0.2000 0.1998 0.2003 0.2001 0.1999

SD 0.0069 0.0061 0.0057 0.0054 0.0053 0.0050

Kurtosis 0.0058 -0.0309 -0.2094 -0.2633 -0.0163 -0.2246

Triangular H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95

Mean 2.0002 1.9996 2.0005 1.9997 2.0002 2.0001

SD 0.0070 0.0060 0.0058 0.0059 0.0052 0.0051

Kurtosis -0.0400 -0.1758 0.0772 0.3426 -0.0475 -0.0785

H = 0.95 (long-memory cases). For a practical reason, in Figure 3, four values of

H are considered for the graphs, in Figure 4 three different values of H have been

considered. For the tables, all of the aforementioned values of H are considered.

Figure 3 shows the value of âN for each value of N from 3 to 300. For all the

values of H, the true value of the parameter is reached, even when noise driven

by an anti-persistent process (H = 0.25) is considered. For a = 0.2 and a = 2,

the uniform scheme converges faster to the real parameter. This confirms the

discussion on the convergence speed of the different values of H, and shows that

the explicit scheme can perform better for some selections of the long-memory

parameter. Tables 1 and 2 summarize the simulation results for the estimation

according to equation (3.1). The performance statistics presented are the mean,

standard deviation (SD), and kurtosis from M = 1,000 trials for N = 300 fixed

of âN . The kurtosis refers to the difference between the kurtosis of a Gaussian

distribution and that of the random variable aN .

Overall, SD decreases as the value of H increases for all H, which is expected

because, in the context of long-range dependence processes, it is quite common

for the process to be less noisy. This is a reflection of the consistency of the

estimator. On the other hand, when H increases towards one, the empirical

estimation exhibits better behavior, which is reflected in a more accurate solution.

Figure 4 shows the frequency histograms (sampling distribution) of M =

1,000 values of the variable N(âN − a) generated for different values of H. We

take the values a = 0.2 and a = 2, and the random times follow uniform and

triangular distributions, respectively.

The empirical (solid line) and theoretical (dotted line) distributions overlap.

The theoretical distribution considered is a normal distribution with parameters
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(f) Deterministic, a = 2.

Figure 3. Rate of convergence of âN under deterministic, uniform, and triangular distri-
butions and different values of H: (left) case a = 0.2, (right) case a = 2.

Table 2. Uniform and triangular cases: Mean, SD, and kurtosis with a = 2.

Deterministic H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95

Mean 2.000 2.000 2.000 1.9998 2.0000 1.9998

SD 0.0069 0.0062 0.0060 0.0057 0.0054 0.0050

Kurtosis -0.0804 -0.0948 -0.0326 0.1986 0.0797 -0.0822

Uniform H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95

Mean 1.9999 2.0004 2.0003 2.0001 2.0002 2.0001

SD 0.0069 0.0061 0.0060 0.0056 0.0054 0.0049

Kurtosis 0.0401 -0.1856 -0.2662 0.0499 -0.0646 0.0181

Triangular H = 0.05 H = 0.25 H = 0.45 H = 0.55 H = 0.75 H = 0.95

Mean 2.0002 1.9996 2.0005 1.9997 2.0002 2.0001

SD 0.0070 0.0060 0.0058 0.0059 0.0052 0.0051

Kurtosis -0.0400 -0.1758 0.0772 0.3426 -0.0475 -0.0785

µ = 0 and σ2 = 3. The value of σ2 comes from Roa, Torres and Tudor (2021),

where the authors consider the case H = 1/2, the Brownian motion, and prove

that in this case, N(âN −a) converges in distribution to N (0, 3). Note that com-
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Figure 4. (Left) Histograms for N(âN −0.2) under the uniform distribution and different
values of H. (Right) Histograms for N(âN − 2) under the triangular distribution and
different values of H.

puting the asymptotic distributions in a general case is challenging, and thus left

to future work. In conclusion, we have shown that the empirical estimation of the

LS estimator in models driven by long-memory noise under the random scheme

described by (2.2) guarantees stability and convergence, and is very accurate for

any value H ∈ (0, 1) and different values of a. Furthermore, when H increases

toward one the estimator presents less variability. The same conclusion can be

drawn when N approaches infinity. Therefore, the estimation procedure pre-

sented here is a good alternative for estimating parameters in a linear regression

model with random times and long-range dependent noise.
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Appendix

A. Proof of Lemma 1

Proof. By definition of DN given in equation (3.2), we have

DN =
1

N

N−1∑
i=0

(
i

N
+ νi,N

)2

=
1

N

N−1∑
i=0

i2

N2
+

2

N

N−1∑
i=0

iνi,N
N

+
1

N

N−1∑
i=0

ν2
i,N

= I
(1)
N + I

(2)
N + I

(3)
N .

First, I
(1)
N = (1/N3)

∑N−1
i=0 i2 = (2N3 − 3N2 +N)/6N3. Then,

lim
N→∞

I
(1)
N =

1

3
. (A.1)

Now for I
(2)
N , let γ > 0 we use the fact that 0 ≤ νi,N ≤ 1/N for all i =

0, . . . , N − 1. Now, we will apply Chebyshev inequality as follows:

P

(∣∣∣∣∣ 2

N2

N−1∑
i=0

iνi,N

∣∣∣∣∣ > 1

Nγ

)
≤ 1

N−2γ
E

( 2

N2

N−1∑
i=0

iνi,N

)2


=
4

N4−2γ
E

(N−1∑
i=0

iνi,N

)2


≤ 4

N4−2γ

(
N−1∑
i=0

i

N

)2

=
4

N4−2γ

(
N − 1

2

)2
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≤ 1

N2−2γ
.

Given that νi,N is a sequence of events in a probability space we are in position

to use Borel Cantelli Lemma; we need to find a strictly positive γ, so that

∑
N≥1

P

(∣∣∣∣∣ 2

N2

N−1∑
i=0

iνi,N

∣∣∣∣∣ > 1

Nγ

)
≤
∑
N≥1

1

N2−2γ
<∞,

to ensure the convergence of the previous sum, it is necessary to find a value for

γ such that 2− 2γ > 1, for 0 < γ < 1/2, then

I
(2)
N =

2

N

N−1∑
i=0

iνi,N
N

a.s.−−−−→
N→∞

0. (A.2)

For the third term I
(3)
N , we take into account that νi,N ∈ [0, 1/N ] for all i =

0, . . . , N − 1. Consequently

1

N

N−1∑
i=0

ν2
i,N ≤

1

N

N−1∑
i=0

1

N2
=

1

N2

a.s.−−−−→
N→∞

0. (A.3)

Finally, by (A.1), (A.2) and (A.3) the result is achieved.
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Valparáıso, 2362905, Chile.

E-mail: soledad.torres@uv.cl

(Received March 2020; accepted June 2021)

mailto:lisandro.fermin@uv.cl
mailto:tania.roa@uai.cl
mailto:soledad.torres@uv.cl

	Introduction
	Preliminaries
	Main Results
	Simulation Study
	Small sample size
	Large sample size

	Proof of Lemma 1

