Statistica Sinica 19 (2009), 287-300

# NESTED SPACE-FILLING DESIGNS FOR COMPUTER EXPERIMENTS WITH TWO LEVELS OF ACCURACY

Peter Z. G. Qian<sup>1</sup>, Boxin Tang<sup>2</sup> and C. F. Jeff Wu<sup>3</sup>

## <sup>1</sup>University of Wisconsin, <sup>2</sup>Simon Fraser University and <sup>3</sup>Georgia Tech.

Abstract: Computer experiments with different levels of accuracy have become prevalent in many engineering and scientific applications. Design construction for such computer experiments is a new issue because the existing methods deal almost exclusively with computer experiments with one level of accuracy. In this paper, we construct some *nested space-filling designs* for computer experiments with two levels of accuracy. Our construction makes use of Galois fields and orthogonal arrays.

*Key words and phrases:* Computer experiment, Galois field, Latin hypercube design, orthogonal array, Rao-Hamming construction.

#### 1. Introduction

Experimentation to study complex real world systems in engineering and sciences can now be conducted at different levels of accuracy. Complex mathematical models, implemented in large computer codes, are widely used as a proxy to study the real systems. Conducting the corresponding physical experiments would be costly. For example, each physical run of the fluidized bed process in the food industry to coat certain food products with additives can take days or even weeks to finish (Reese, Wilson, Hamada, Martz and Ryan (2004)) while running the associated computer code only takes minutes per run. Because a large computer program can be run at different levels of sophistication with vastly varying computational times, multiple experiments with various levels of accuracy or fidelity have become prevalent in practice.

Study of such multiple experiments involves two aspects: experimental planning, and modeling and analysis of data. While some headway has been made to tackle the modeling issue (Kennedy and O'Hagan (2001), Reese et al. (2004), Qian, Seepersad, Joseph, Allen and Wu (2006) and Qian and Wu (2008)), no systematic study has hitherto been done to address the planning issue. This issue poses new challenges as the existing methods deal almost exclusively with computer experiments with one level of accuracy (Santner, Williams and Notz (2003) and Fang, Li and Sudjianto (2005)). The purpose of this article is to propose and construct some suitable designs in this new situation. For ease in presentation, we only consider the situation involving two experiments that are called the *lowaccuracy experiment* (LE) and the *high-accuracy experiment* (HE), where HE is more accurate but more expensive than LE. The sets of design points for LE and HE are denoted by  $D_l$  and  $D_h$ , respectively. Throughout we assume that the design region for both  $D_l$  and  $D_h$  is the unit hypercube. Construction of  $D_l$  and  $D_h$  is guided by three principles:

- Economy the number  $n_2$  of points in  $D_h$  is smaller than the number  $n_1$  of points in  $D_l$ ;
- Nested relationship  $D_h$  is nested within  $D_l$ , i.e.,  $D_h \subset D_l$ ;

Space-filling – both  $D_l$  and  $D_h$  achieve uniformity in low dimensions.

These principles were implicitly used in Qian et al. (2006) but not formally given therein. The principle of economy is concerned with different computing times of HE and LE; as LE is cheaper than HE, more LE runs can be afforded. The principle of nested relationship makes it easier to model data from HE and LE. It implies that, for every point in  $D_h$ , results from both LE and HE are available. This part of data can thus be used for modeling and calibrating the differences between these two experiments (Kennedy and O'Hagan (2001), Qian et al. (2006) and Qian and Wu (2008)). The principle of space-filling is based on the belief that interesting features of the true model are as likely to be in one part of the design space as in another. Designs that spread the points in a design space uniformly are often referred to as space-filling designs. Uniformity of design points can be achieved in several ways. Our focus in this paper is to consider designs that are space-filling in low dimensions (McKay, Beckman and Conover (1979), Owen (1992) and Tang (1993)). Other approaches include the use of distance criteria, as in Johnson, Moore and Ylvisaker (1990) and discrepancies as in Fang, Lin Winker and Zhang (2000), for design selection.

Considering the three principles, this paper constructs some nested spacefilling designs. A nested space-filling design consists of two sets of design points,  $D_l$  and  $D_h$ , with a nested structure  $D_h \subset D_l$  such that both  $D_h$  and  $D_l$  achieve uniformity in low dimensional projections. The basic idea is to construct an OA-based Latin hypercube  $(D_l)$  (Tang (1993)) that contains a sub-design  $(D_h)$ with an orthogonal array structure. The remainder of the article is organized as follows. Section 2 considers a motivating example. The main construction results are presented in Section 3. Section 4 concludes the paper with a discussion and some further results. Before moving on to the next section, we make a note on the terminology used in this paper. When we say that a design is space-filling in low dimensions or achieves uniformity in low dimensions, we mean that when projected onto low dimensions, the design points are evenly scattered in the design region. The precise meanings of these phrases will be made clear when we present our concrete results, as in Theorem 2 and Lemma 1.

#### 2. Background and Motivating Example

#### 2.1. Background material

We introduce Latin hypercubes, orthogonal arrays, and OA-based Latin hypercubes. An  $n \times m$  matrix  $D = (d_{ij})$  is called a Latin hypercube of n runs for m factors if each column of D is a permutation of  $1, \ldots, n$ . There are two natural ways of generating design points in the unit cube  $[0, 1]^m$  based on a given Latin hypercube. The first is through  $x_{ij} = (d_{ij} - 0.5)/n$ , with the n points given by  $(x_{i1}, \ldots, x_{im})$  with  $i = 1, \ldots, n$ . The other is through  $x_{ij} = (d_{ij} - u_{ij})/n$ , with the n points given by  $(x_{i1}, \ldots, x_{im})$  with  $i = 1, \ldots, n$ . The other is through  $x_{ij}$  are independent random variables with a common uniform distribution on [0, 1]. The difference between the two methods can be seen as follows. When projected onto each of the m variables, both methods have the property that one and only one of the n design points fall within each of the n small intervals defined by  $[0, 1/n), [1/n, 2/n), \ldots, [(n-1)/n, 1]$ . The first method gives the mid-points of these intervals while the second gives points that are uniformly distributed in their corresponding intervals.

An orthogonal array of size n, m constraints, s levels, and strength  $t \ge 2$ is an  $n \times m$  matrix with entries from a set of s levels, usually taken as  $1, \ldots, s$ , such that for every  $n \times t$  submatrix, each of the  $s^t$  level combinations occurs the same number of times. Such an array is denoted by OA(n, m, s, t). Regular fractional factorial designs, as discussed in Wu and Hamada (2000), are the most familiar examples of orthogonal arrays. Let A be an OA(n, m, s, t) with its s levels denoted by  $1, \ldots, s$ . Then in every column of A, each level occurs q = n/s times. For each column of A, if we replace the q ones by a permutation of  $1, \ldots, q$ , replace the q twos by a permutation of  $q + 1, \ldots, 2q$ , and so on, we obtain an OA-based Latin hypercube (Tang (1993)). In addition to achieving maximum stratification in one dimensions, OA-based Latin hypercubes have attractive space-filling properties when projected onto t or lower dimensions.

## 2.2. A motivating example

We discuss an example taken from Qian et al. (2006). The example deals with designing a heat exchanger for a representative electronic cooling application. The response of interest is the heat transfer rate in the heat exchanger. Five



Figure 1. Bivariate projections among  $x_1$ ,  $x_2$ ,  $x_3$  of a 64-run OA-based Latin hypercube  $D_l$ .

design variables  $x_1, x_2, x_3, x_4, x_5$ , including mass flow rate of entry air and temperature of entry air, can potentially affect the thermal process. These variables are assumed to take values in the unit hypercube  $[0, 1]^5$ . Two types of computer experiments – an HE based on finite element simulations (FLUENT (1998)) and an LE based on finite difference simulations (Incropera and DeWitt (1996) and Seepersad, Dempsey, Allen, Mistree and McDowell (2004)) – are used to analyze the impact of these factors on the heat transfer rate. The HE and LE have different levels of accuracy and computational times: each HE run requires two to three orders of magnitude more computing time than the corresponding LE run; the HE runs are generally more accurate than the LE runs by 10% to 15%. To construct  $D_h$  and  $D_l$ , Qian et al. (2006) used the following two-step procedure:

Step 1: Take  $D_l$  to be an OA-based Latin hypercube with  $n_1$  runs;

Step 2: A subset  $D_h$  with  $n_2$  runs is selected from  $D_l$  using the maximin distance criterion (Johnson, Moore and Ylvisaker (1990)).



Figure 2. Bivariate projections among  $x_1$ ,  $x_2$ ,  $x_3$  of the 16-run design  $D_h$  selected from  $D_l$  in Figure 1 using the maximin distance criterion.

In this example,  $n_1$  and  $n_2$  are 64 and 16, respectively. An OA(64, 5, 8, 2) from Neil Sloane's webpage (http://www.research/att.com/~njas) is used to construct an OA-based Latin hypercube. This is  $D_l$  in step 1. Figure 1 depicts the bivariate projections of  $D_l$  and, for brevity, only those among the variables  $x_1, x_2, x_3$  are presented. Computing a 16-run design  $D_h$  in step 2 is carried out by using a simulated annealing algorithm (Belisle (1992)) with 2,000 iterations. Figure 2 presents the bivariate projections of  $D_h$  among  $x_1, x_2, x_3$ , showing that  $D_h$  is far from being space-filling in two dimensions.

Table 1 gives a special version of OA(64, 5, 8, 2), constructed using a general method in Section 3. We now use this orthogonal array to obtain an OA-based Latin hypercube, which serves as our new  $D_l$ . The bivariate projections of this design are similar to those in Figure 1.

Now let  $D_h$  be obtained by selecting the 16 points from  $D_l$  that correspond to runs 1-4, 9-12, 17-20, and 25-28 of the array in Table 1. The bivariate projections are given in Figure 3. We see that this design  $D_h$  has an underlying orthogonal array structure. In fact, the matrix given by collecting runs 1-4, 9-12, 17-20,

## PETER Z. G. QIAN, BOXIN TANG AND C. F. JEFF WU

Table 1. An OA(64, 5, 8, 2) that contains a nesting OA(16, 5, 4, 2). More precisely, the matrix consisting of runs 1-4, 9-12, 17-20, and 25-28 becomes an OA(16, 5, 4, 2) if the eight levels are collapsed into four levels according to the scheme:  $(1, 2) \rightarrow 1, (3, 4) \rightarrow 2, (5, 6) \rightarrow 3, (7, 8) \rightarrow 4$ .

| 1  | 1 | 1 | 1 | 1 | 1              | 33 | 8 | 1 | 8              | 8 | 8 |
|----|---|---|---|---|----------------|----|---|---|----------------|---|---|
| 2  | 1 | 3 | 3 | 5 | $\overline{7}$ | 34 | 8 | 3 | 6              | 4 | 2 |
| 3  | 1 | 5 | 5 | 8 | 4              | 35 | 8 | 5 | 4              | 1 | 5 |
| 4  | 1 | 7 | 7 | 4 | 6              | 36 | 8 | 7 | 2              | 5 | 3 |
| 5  | 1 | 8 | 8 | 7 | 2              | 37 | 8 | 8 | 1              | 2 | 7 |
| 6  | 1 | 6 | 6 | 3 | 8              | 38 | 8 | 6 | 3              | 6 | 1 |
| 7  | 1 | 4 | 4 | 2 | 3              | 39 | 8 | 4 | 5              | 7 | 6 |
| 8  | 1 | 2 | 2 | 6 | 5              | 40 | 8 | 2 | 7              | 3 | 4 |
| 9  | 3 | 1 | 3 | 3 | 3              | 41 | 6 | 1 | 6              | 6 | 6 |
| 10 | 3 | 3 | 1 | 7 | 5              | 42 | 6 | 3 | 8              | 2 | 4 |
| 11 | 3 | 5 | 7 | 6 | 2              | 43 | 6 | 5 | 2              | 3 | 7 |
| 12 | 3 | 7 | 5 | 2 | 8              | 44 | 6 | 7 | 4              | 7 | 1 |
| 13 | 3 | 8 | 6 | 5 | 4              | 45 | 6 | 8 | 3              | 4 | 5 |
| 14 | 3 | 6 | 8 | 1 | 6              | 46 | 6 | 6 | 1              | 8 | 3 |
| 15 | 3 | 4 | 2 | 4 | 1              | 47 | 6 | 4 | $\overline{7}$ | 5 | 8 |
| 16 | 3 | 2 | 4 | 8 | 7              | 48 | 6 | 2 | 5              | 1 | 2 |
| 17 | 5 | 1 | 5 | 5 | 5              | 49 | 4 | 1 | 4              | 4 | 4 |
| 18 | 5 | 3 | 7 | 1 | 3              | 50 | 4 | 3 | 2              | 8 | 6 |
| 19 | 5 | 5 | 1 | 4 | 8              | 51 | 4 | 5 | 8              | 5 | 1 |
| 20 | 5 | 7 | 3 | 8 | 2              | 52 | 4 | 7 | 6              | 1 | 7 |
| 21 | 5 | 8 | 4 | 3 | 6              | 53 | 4 | 8 | 5              | 6 | 3 |
| 22 | 5 | 6 | 2 | 7 | 4              | 54 | 4 | 6 | 7              | 2 | 5 |
| 23 | 5 | 4 | 8 | 6 | 7              | 55 | 4 | 4 | 1              | 3 | 2 |
| 24 | 5 | 2 | 6 | 2 | 1              | 56 | 4 | 2 | 3              | 7 | 8 |
| 25 | 7 | 1 | 7 | 7 | 7              | 57 | 2 | 1 | 2              | 2 | 2 |
| 26 | 7 | 3 | 5 | 3 | 1              | 58 | 2 | 3 | 4              | 6 | 8 |
| 27 | 7 | 5 | 3 | 2 | 6              | 59 | 2 | 5 | 6              | 7 | 3 |
| 28 | 7 | 7 | 1 | 6 | 4              | 60 | 2 | 7 | 8              | 3 | 5 |
| 29 | 7 | 8 | 2 | 1 | 8              | 61 | 2 | 8 | 7              | 8 | 1 |
| 30 | 7 | 6 | 4 | 5 | 2              | 62 | 2 | 6 | 5              | 4 | 7 |
| 31 | 7 | 4 | 6 | 8 | 5              | 63 | 2 | 4 | 3              | 1 | 4 |
| 32 | 7 | 2 | 8 | 4 | 3              | 64 | 2 | 2 | 1              | 5 | 6 |
|    |   |   |   |   |                |    |   |   |                |   |   |

and 25-28 of the OA(64, 5, 8, 2) in Table 1 becomes an OA(16, 5, 4, 2) if the eight levels are collapsed into four levels according to the following scheme:

 $(1,2) \to 1; (3,4) \to 2; (5,6) \to 3; (7,8) \to 4.$ 

The OA(64, 5, 8, 2) in Table 1 is a special case of the general results to come in Section 3.



Figure 3. The bivariate projections among  $x_1$ ,  $x_2$ ,  $x_3$  of  $D_h$  obtained from the Latin hypercube  $D_l$  constructed using the orthogonal array in Table 1.

## 3. General Results

## 3.1. Galois fields and Rao-Hamming construction

We give a brief account of Galois fields and the Rao-Hamming construction for orthogonal arrays. Interested readers can refer to Hedayat, Sloane and Stufken (1999) for more detailed discussion. A field F is a nonempty set equipped with two binary operations + and \* on F such that the following properties hold:

- 1. a + b = b + a for all  $a, b \in F$ ;
- 2. (a+b) + c = a + (b+c) for all  $a, b, c \in F$ ;
- 3. there exists a unique element  $0 \in F$  such that a + 0 = a all  $a \in F$ ;
- 4. for any  $a \in F$ , there exists a unique element  $-a \in F$  such that a + (-a) = 0;
- 5. a \* b = b \* a for all  $a, b \in F$ ;
- 6. (a \* b) \* c = a \* (b \* c) for all  $a, b, c \in F$ ;
- 7. there exists a unique element  $1 \in F$  such that a \* 1 = a all  $a \in F$ ;

- 8. for any  $a \in F, a \neq 0$ , there exists a unique element  $a^{-1} \in F$  such that  $a * a^{-1} = 1$ ;
- 9. a \* (b + c) = a \* b + a \* c for  $a, b, c \in F$ .

All rational numbers form a field with respect to the usual addition and multiplication; so do all real numbers. A field with a finite number of elements is called a finite field or Galois field, and we use GF(s) to denote a Galois field with s elements. Let p be a prime number. Then the set of residues  $\{0, 1, \ldots, p-1\}$ modulo p forms a Galois field GF(p) of order p under addition and multiplication modulo p. Let  $g(x) = b_0 + b_1 x + \cdots + b_u x^u$ , where  $b_j \in GF(p)$  and  $b_u = 1$  be an irreducible polynomial of degree u. Then the set of all polynomials of degree u-1 or lower  $\{a_0+a_1x+\cdots+a_{u-1}x^{u-1}|a_i\in GF(p)\}$  is a Galois field  $GF(p^u)$ of order  $p^u$  under addition and multiplication of polynomials modulo g(x). For any polynomial f(x) with coefficients from GF(p), there exist unique polynomials q(x) and r(x) such that f(x) = q(x)g(x) + r(x) where the degree of r(x) is smaller than u. This r(x) is the residue of f(x) modulo g(x), which is usually written as  $f(x) = r(x) \pmod{q(x)}$ . For every prime p and every integer  $u \ge 1$ , there exists a  $GF(p^{u})$ . In fact, all Galois fields have this form. Another important result is that the multiplicative group  $GF(p^u) \setminus \{0\}$  is cyclic, allowing easy calculations under multiplication.

Let  $s = p^u$ . The Rao-Hamming construction gives an OA(n, m, s, 2) where  $n = s^k$  and  $m = (s^k - 1)/(s - 1)$  for any integer  $k \ge 2$ . This is done as follows. Let  $z_j$  be a column vector of length k with the *j*th component equal to one and all the others equal to zero for  $j = 1, \ldots, k$ . We then obtain a  $k \times m$  matrix Z with  $m = (s^k - 1)/(s - 1)$  by collecting all the column vectors given by

$$z = c_1 z_1 + \dots + c_k z_k$$
, where  $c_i \in GF(s)$ 

and the first nonzero entry in  $(c_1, \ldots, c_k)$  is one. Taking all linear combinations of the row vectors of Z with coefficients from GF(s), we obtain an OA(n, m, s, 2)with  $n = s^k$  and  $m = (s^k - 1)/(s - 1)$ .

#### 3.2 Construction of nested orthogonal arrays

Let  $s_1 = p^{u_1}$  and  $s_2 = p^{u_2}$  be two powers of the same prime p where  $u_1 > u_2 \ge 1$ . If a polynomial with coefficients from GF(p) has degree  $u_2-1$  or lower, it belongs to both  $GF(s_1)$  and  $GF(s_2)$ . So  $GF(s_2)$  is a subset of  $GF(s_1)$ , although it is not necessarily true that  $GF(s_2)$  is a subfield of  $GF(s_1)$ . For  $GF(s_1)$  to have a subfield of order  $s_2$ , we must have that  $u_2$  divides  $u_1$ .

All polynomials considered in this paper have their coefficients from GF(p)and we make no further mention of this. We use A to denote the  $OA(n_1, m_1, s_1, 2)$ , where  $n_1 = s_1^k$  and  $m_1 = (s_1^k - 1)/(s_1 - 1)$ , given by the Rao-Hamming construction as discussed in Section 3.1. Recall that the rows of this array A are all the

linear combinations of the row vectors of Z with coefficients from  $GF(s_1)$ , where Z consists of all column vectors  $z = c_1 z_1 + \cdots + c_k z_k$ , where  $c_j \in GF(s_1)$  and the first nonzero entry in  $(c_1, \ldots, c_k)$  is one. Now consider a subarray  $A_1$  of A, obtained by taking all linear combinations of the row vectors of  $Z_1$  with coefficients from  $GF(s_1)$ , where  $Z_1$  is a submatrix of Z given by collecting all the column vectors  $z = c_1 z_1 + \cdots + c_k z_k$ , with  $c_j \in GF(s_2) \subset GF(s_1)$  and the first nonzero entry in  $(c_1, \ldots, c_k)$  is one. Clearly,  $A_1$  is an  $OA(n_1, m_2, s_1, 2)$  where  $n_1 = s_1^k$  and  $m_2 = (s_2^k - 1)/(s_2 - 1)$ . It should be stressed that all the calculations in the construction of  $A_1$ , as well as that of A, are performed in  $GF(s_1)$ , notwithstanding that the subset  $GF(s_2)$  of  $GF(s_1)$  is used for selecting the columns of  $A_1$ .

Let us focus on  $A_1$ . Let  $g_1(x)$  be the chosen irreducible polynomial that defines  $GF(s_1)$ . Now consider how the entries of  $A_1$  are obtained during the construction of  $A_1$ . Calculations for an entry of  $A_1$  in  $GF(s_1)$  can be carried out in two stages. In the first stage, we only conduct polynomial calculations without being modulo  $g_1(x)$  and let the resulting polynomial be f(x). In the second stage, the residue of f(x) modulo  $g_1(x)$  is found and it is this residue that becomes the entry of  $A_1$ . For convenience in presentation, we use  $f_{g_1}(x)$  to denote the residue of f(x) modulo  $g_1(x)$ . Using this notation, all entries of  $A_1$ have the form of  $f_{g_1}(x)$ .

Now consider the submatrix  $A_2$  of  $A_1$  given by those linear combinations of the row vectors of  $Z_1$  with coefficients from  $GF(s_2)$ , a subset of  $GF(s_1)$ . The matrix  $A_2$  may not be an orthogonal array in itself, but becomes an  $OA(n_2, m_2, s_2, 2)$ if its  $s_1$  levels are suitably collapsed into  $s_2$  levels, where  $n_2 = s_2^k$  and  $m_2 = (s_2^k - 1)/(s_2 - 1)$ . Level collapsing is done modulo  $g_2(x)$ , the irreducible polynomial that defines  $GF(s_2)$ . We are ready to present the results.

**Theorem 1.** Consider  $A_1$  and  $A_2$  as constructed above. Then we have that

- (i) the matrix  $A_1$  is an  $OA(n_1, m_2, s_1, 2)$ , and
- (ii) provided that 2u<sub>2</sub> ≤ u<sub>1</sub>+1, the submatrix A<sub>2</sub> of A<sub>1</sub> becomes an OA(n<sub>2</sub>, m<sub>2</sub>, s<sub>2</sub>, 2) when the s<sub>1</sub> levels are collapsed into s<sub>2</sub> levels according to the scheme: f<sub>g1</sub>(x) → (f<sub>g1</sub>)<sub>g2</sub>(x).

**Proof.** Only part (ii) of Theorem 1 requires a proof. Let  $f_{g_1}(x)$  be an entry of  $A_2$ , where f(x) denotes the polynomial for this entry before being modulo  $g_1(x)$ . Then the matrix  $A_2^*$  obtained by replacing every entry  $f_{g_1}(x)$  of  $A_2$  by  $f_{g_2}(x)$  is an  $OA(n_2, m_2, s_2, 2)$ , as  $A_2^*$  is simply the Rao-Hamming construction based on  $GF(s_2)$ . Part (ii) of Theorem 1 is established if we can show that

$$(f_{g_1})_{g_2}(x) = f_{g_2}(x) \tag{3.1}$$

for every f(x) that may result from calculating the entries of  $A_2$ . Note that f(x) would be the entry of  $A_2$  if calculations modulo  $g_1(x)$  were not performed. Since

the degree of polynomial f(x) is at most  $2(u_2 - 1)$ , which is less than or equal to  $u_1 - 1$ , we must have that  $f_{g_1}(x) = f(x)$ . Thus (3.1) holds.

Equation (3.1) does not hold in general. So the condition  $2u_2 \leq u_1 + 1$  is needed to ensure the validity of part (ii) of Theorem 1. The level collapsing scheme in Theorem 1 may look a bit abstract but the idea is simple. Once  $A_2$ and  $A_1$  have been constructed, the  $s_1$  levels are all the polynomials of degree  $u_1 - 1$  or lower, and the irreducible polynomial  $g_1(x)$  plays no further role in level collapsing. A polynomial of degree  $u_1 - 1$  or lower, as one of the  $s_1$  levels, is simply mapped to its residue modulo  $g_2(x)$ .

**Example 1.** Let p = 2,  $u_1 = 3$ ,  $u_2 = 2$ ,  $s_1 = p^{u_1} = 8$  and  $s_2 = p^{u_2} = 4$ . The condition  $2u_2 \leq u_1 + 1$  is satisfied. We use  $g_1(x) = x^3 + x + 1$  and  $g_2(x) = x^2 + x + 1$ , both irreducible, to define GF(8) and GF(4). We obtain  $A_1$  and  $A_2$  using the construction method described earlier for k = 2. From Theorem 1,  $A_1$  is an OA(64, 5, 8, 2), and  $A_2$  becomes an OA(16, 5, 4, 2) when the eight levels,  $0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1$  are collapsed into four levels 0, 1, x, x + 1 according to  $(0, x^2 + x + 1) \rightarrow 0$ ,  $(1, x^2 + x) \rightarrow 1$ ,  $(x, x^2 + 1) \rightarrow x$ ,  $(x + 1, x^2) \rightarrow x + 1$ . For example,  $x^2$  is mapped to x + 1 because the residue of  $x^2$  modulo  $g_2(x) = x^2 + x + 1$  is x + 1.

## 3.3. Construction of nested space-filling designs

The pair of nested orthogonal arrays  $A_2 \subset A_1$  does not automatically generate nested space-filling designs if the  $s_1$  levels are arbitrarily labeled. In constructing OA-based Latin hypercube using  $A_1$ , the  $s_1$  levels of  $A_1$ , originally represented by the polynomials of degree  $u_1 - 1$  or lower, have to be first labeled as  $1, \ldots, s_1$ . Although any such labeling of the  $s_1$  levels will give an OA-based Latin hypercube which is space-filling in two dimensions, the subset of points corresponding to  $A_2$  may not have good space-filling properties. Care should be taken in labeling the levels to ensure that this subset of points also achieves stratification in two dimensions.

The key idea here is that the  $s_1$  levels of  $A_1$  must be labeled in such a way that the group of levels that are mapped to the same level should form a consecutive subset of  $\{1, \ldots, s_1\}$ . We now give a precise description of how the levels should be labeled. The level collapsing scheme in Theorem 1 through  $g_2(x)$ divides the  $s_1$  levels into  $s_2$  groups, each of size  $e = s_1/s_2$ . Two levels  $f_1(x)$  and  $f_2(x)$  belong to the same group if  $f_1(x) - f_2(x) = 0 \pmod{g_2(x)}$ . These  $s_2$  groups can be arbitrarily, or randomly if one wishes, labeled as groups  $1, \ldots, s_2$ . Then the *e* levels within the *i*th group can be arbitrarily, or randomly if one wishes, labeled as  $(i - 1)e + 1, \ldots, (i - 1)e + e$  for  $i = 1, \ldots, s_2$ .

**Example 2.** In Example 1, the four groups of levels are  $(0, x^2 + x + 1)$ ,  $(1, x^2 + x)$ ,  $(x, x^2 + 1)$ , and  $(x + 1, x^2)$ . One choice of level labeling according to the just described method is to label  $(0, x^2 + x + 1)$  as levels 1 and 2,  $(1, x^2 + x)$  as levels 3 and 4,  $(x, x^2 + 1)$  as levels 5 and 6, and  $(x + 1, x^2)$  as levels 7 and 8. The OA(64, 5, 8, 2) in Table 1 is obtained in precisely this way. This particular choice of level labeling does not lose any generality. If one wishes to randomize, one could randomly permute the four groups of levels and then randomize the two levels within each group to obtain a permutation of the eight levels  $1, \ldots, 8$ ; the levels in this permutation could then be sequentially relabeled as levels  $1, \ldots, 8$ . For example, randomly permuting the four groups of levels within each group might give (3, 4), (1, 2), (5, 6), (7, 8) and further randomizing the two levels within each group might as 1, 2, 3, 4, 5, 6, 7, 8.

Suppose that the levels of  $A_1$  in Theorem 1 have been appropriately labeled as  $1, \ldots, s_1$  in accordance with the above method. Naturally, the entries of  $A_2$ also come from this set of levels. We now use  $A_1$  to obtain an OA-based Latin hypercube design as discussed in Section 2.1 and let  $D_l$  denote the set of points. Let  $D_h$  be the subset of points of  $D_l$  that correspond to  $A_2$ . Then  $D_h$  and  $D_l$ provide two space-filling designs with  $D_h$  nested within  $D_l$ . We make this precise in the following theorem.

**Theorem 2.** Let  $D_h \subset D_l$  be as constructed above. Then we have that

- (i) in addition to achieving maximum stratification in one dimensions, design  $D_l$  achieves stratification on  $s_1 \times s_1$  grids in two dimensions, and
- (ii)  $D_h$  achieves stratification on  $s_2 \times s_2$  grids in two dimensions.

## 4. Discussion and Further Results

The nested space-filling designs  $D_h \subset D_l$  constructed in Section 3 achieve more than just what the three principles require. Both  $D_h$  and  $D_l$  achieve stratification in two dimensions, but design  $D_l$  does that on finer grids and therefore provides a better coverage of the design space in two dimensions. This is fairly natural as  $D_l$  has more design points and thus more can be expected from it in terms of filling the design space.

The above discussion leads to an alternative approach. One might wish to consider nested designs  $D_h \subset D_l$  with the property that, while both  $D_h$  and  $D_l$ still achieve stratification in two dimensions,  $D_l$  also achieves stratification in three dimensions. This approach is especially attractive when one feels that the response variable depends on the input variables in such a complex fashion that three-way interactions could play a significant role in predicting the response. Construction of such nested space-filling designs is considerably simpler. Let A be an  $OA(n_1, m, s, 3)$ , an orthogonal array of strength three with its s levels denoted by  $1, \ldots, s$ . Consider the submatrix B of A obtained by selecting those rows of A with the entries in the first column being level 1. We now obtain two matrices  $A_1$  and  $A_2$  with  $A_1$  given by deleting the first column of A and  $A_2$  being the submatrix of  $A_1$  with its rows corresponding to B. Then we have that  $A_1$  is an  $OA(n_1, m - 1, s, 3)$  and  $A_2$  is an  $OA(n_2, m - 1, s, 2)$ , where  $n_2 = n_1/s$ . Let us use  $A_1$  to construct an OA-based Latin hypercube. Denote the resulting design by  $D_l$  and the subset of points corresponding to  $A_2$  by  $D_h$ . Then  $D_h$  and  $D_l$  give a pair of nested designs with varying degrees of space-filling properties.

**Lemma 1.** Let  $D_h \subset D_l$  be as constructed above. We have that

- (i) design  $D_l$  achieves stratification on  $s \times s \times s$  grids in three dimensions, and
- (ii) design  $D_h$  achieves stratification on  $s \times s$  grids in two dimensions.

Two useful results for orthogonal arrays of strength three are that an  $OA(s^3, s+1, s, 3)$  can be constructed if s is an odd prime power and an  $OA(s^3, s+2, s, 3)$  can be constructed if s is an even prime power. These results are due to Bush (1952), and are also available from Section 3.2 in Hedayat, Sloane and Stufken (1999).

**Example 3.** Let  $s = 2^2 = 4$ . We can construct an OA(64, 6, 4, 3) using the second result just mentioned. From this array, we obtain  $A_1$  and  $A_2$  where  $A_1$  is an OA(64, 5, 4, 3) and  $A_2$ , nested within  $A_1$ , is an OA(16, 5, 4, 2). Let  $D_l$  be a Latin hypercube based on  $A_1$  and  $D_h$  be the subset of points corresponding to  $A_2$ . Then design  $D_h$  achieves stratification on  $4 \times 4$  grids in two dimensions whereas  $D_l$  achieves stratification on  $4 \times 4 \times 4$  grids in three dimensions. It is interesting to compare this pair of nested space-filling designs with that discussed in Section 2.2, although the two  $D_h$ 's are similar, the two  $D_l$ 's are quite different. The  $D_l$  in this example achieves stratification in three dimensions while the  $D_l$  in Section 2.2 achieves stratification in two dimensions, but on finer  $8 \times 8$  grids.

The idea of using orthogonal arrays of strength three naturally generalizes. If an orthogonal array of strength t is used, we can construct  $D_l$  and  $D_h$  such that  $D_l$  achieves stratification in t dimensions and  $D_h$  achieves stratification in t-1 dimensions.

The two methods for constructing nested space-filling designs both produce a much larger  $n_1$  than  $n_2$ , a desirable feature as the LE is much cheaper than the HE. In situations where the costs of running the LE and HE are not so drastically different, as in the case of the motivating example in Section 2.2, one can follow a simple strategy which we briefly describe. Let  $A_2$  be an  $OA(n_2, m, s, t)$  and  $A_1$  be an  $OA(n_1, m, s, t)$  obtained by juxtaposing  $A_2$  several times. If  $D_l$  is an OA-based Latin hypercube constructed from  $A_1$  and  $D_h$  the subset of points corresponding to  $A_2$ , then  $D_h$  and  $D_l$  provide a pair of nested designs that

both achieve stratification on  $s^t$  grids in t dimensions. One can also consider independently randomizing the levels of each  $A_2$  within  $A_1$  - this has no effect on the space-filling properties of  $D_h$  and  $D_l$  in t dimensions, but can possibly improve their space-filling properties in higher dimensions. This method, though simple, is very flexible and deserves consideration in practical applications.

We conclude the paper with a brief discussion on the modeling and analysis of computer experiments with two levels of accuracy. Gaussian process models are popular for computer experiments and can be used for the data from both the LE and the HE. Integration of the two sets of results from analyzing LE and HE data is not straightforward but the basic idea is simple. Since the HE is more accurate than the LE, the objective is to build a prediction model that is capable of producing results close to the HE data. We can achieve this by first fitting a Gaussian process model to the LE data and then adjusting the fitted model using the HE data so that the resulting model can better predict the HE data. For details on this analysis method, we refer to Kennedy and O'Hagan (2001), Reese et al. (2004), Qian et al. (2006) and Qian and Wu (2008).

#### Acknowledgement

The authors would like to thank an associate editor and two referees for helpful comments. The research of Peter Qian is supported by NSF grant DMS-0705206 and that of Jeff Wu is supported by NSF grant DMI 0620259. Boxin Tang's research is supported by the Natural Sciences and Engineering Research Council of Canada.

#### References

- Belisle, C. J. P. (1992). Convergence theorems for a class of simulated annealing algorithms on  $\mathbb{R}^d$ . J. Appl. Probab. **29**, 885-895.
- Bush, K. A. (1952). Orthogonal arrays of index unity. Ann. Math. Statist. 23, 426-434.
- Fang, K. T., Li, R. Z. and Sudjianto, A. (2005). Design and Modeling for Computer Experiments. Chapman & Hall/CRC, New York.
- Fang, K. T., Lin, D. K., Winker, P. and Zhang, Y. (2000). Uniform design: theory and application. *Technometrics* 42, 237-248.
- FLUENT (1998). Fluent Inc., Release 5.5.14 (3d, segregated, laminar).
- Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications. Springer, New York.
- Incropera, F. P. and DeWitt, D. P. (1996). Fundamentals of Heat and Mass Transfer. 3rd Edition. Wiley, New York.
- Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance designs. J. Statist. Plann. Inference 26, 131-148.
- Kennedy, M. C. and O'Hagan, A. (2001). Bayesian calibration of computer models. J. Roy. Statist. Soc. Ser. B 63, 425-464.

- McKay, D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. *Technometrics* 21, 239-245.
- Owen, A. (1992). Orthogonal arrays for computer experiments, integration and visualization. Statist. Sinica 2, 439-452.
- Qian, Z., Seepersad, C. C., Joseph, V. R., Allen, J. K. and Wu, C. F. J. (2006). Building surrogate models based on detailed and approximate simulations. ASME J. Mechanical Design 128, 668-677.
- Qian, Z. and Wu, C. F. J. (2008). Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. *Technometrics* 50, 192-204.
- Reese, C. S., Wilson, A. G, Hamada, M., Martz, H. F. and Ryan, K. J. (2004). Intergated analysis of computer and physical experiments. *Technometrics* 46, 153-164.
- Santner, T. J., Williams, B. J. and Notz, W. I. (2003). The Design and Analysis of Computer Experiments. Springer, New York.
- Seepersad, C. C., Dempsey, B. M., Allen, J. K., Mistree, F. and McDowell, D. L. (2004). Design of multifunctional honeycomb materials. AIAA J. 42, 1025-1033.
- Tang, B. (1993). Orthogonal array-based Latin hypercubes. J. Amer. Statist. Assoc. 88, 1392-1397.
- Wu, C. F. J. and Hamada, M. (2000). Experiments: Planning, Analysis and Parameter Design Optimization. Wiley, New York.

Department of Statistics, University of Wisconsin, Madison, WI 53706, U.S.A. E-mail: zhiguang@stat.wisc.edu

Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

E-mail: boxint@stat.sfu.ca

School of Industrial and Systems Engineering, Georgia Tech., Atlanta, GA 30332, U.S.A. E-mail: jeffwu@isye.gatech.edu

(Received December 2006; accepted August 2007)