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Abstract: The paper considers empirical distribution functions of stationary causal

processes. Weak convergence of normalized empirical distribution functions to

Gaussian processes is established and sample path properties are discussed. The

Chibisov-O’Reilly Theorem is generalized to dependent random variables. The

proposed dependence structure is related to the sensitivity measure, a quantity

appearing in the prediction theory of stochastic processes.
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1. Introduction

Let εk, k ∈ Z, be independent and identically distributed (i.i.d.) random

variables and define

Xn = J(. . . , εn−1, εn), (1)

where J is a measurable function such that Xn is a proper random variable.

The framework (1) is general enough to include many interesting and important

examples. Prominent ones are linear processes and nonlinear time series aris-

ing from iterated random functions. Given the sample Xi, 1 ≤ i ≤ n, we are

interested in the empirical distribution function

Fn(x) =
1

n

n
∑

i=1

1Xi≤x. (2)

When the Xi are i.i.d., the weak convergence of Fn and its sample path prop-

erties have been extensively studied (Shorack and Wellner (1986)). Various gen-

eralizations have been made to dependent random variables. It is a challeng-

ing problem to develop a weak convergence theory for the associated empir-

ical processes without the independence assumption. One way out is to im-

pose strong mixing conditions to ensure asymptotic independence; see Billingsley

(1968), Gastwirth and Rubin (1975), Withers (1975), Mehra and Rao (1975),

Doukhan, Massart and Rio (1995), Andrews and Pollard (1994), Shao and Yu

(1996) and Rio (2000), among others. Other special processes that have been
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studied include linear processes and Gaussian processes; see Dehling and Taqqu

(1989), Csörgő and Mielniczuk (1996), Ho and Hsing (1996) and Wu (2003). A

collection of recent results is edited by Dehling, Mikosch and Sørensen (2002).

We now introduce some notation. Let the triple (Ω,F , P) be the underlying

probability space. Let Fε(x|ξn) = P(Xn+1 ≤ x|ξn) be the conditional distribution

function of Xn+1 given the sigma algebra generated by ξn = (. . . , εn−1, εn); let

F (x) = P(X1 ≤ x) and Rn(s) =
√

n[Fn(s) − F (s)]. Assume throughout the pa-

per that the conditional density fε(x|ξn) = (∂/∂x)Fε(x|ξn) exists almost surely.

Define the weighted measure wλ(du) = (1 + |u|)λ(du). For a random variable

Z write Z ∈ Lq, q > 0, if ‖Z‖q := [E(|Z|q)]1/q < ∞. Write the L2 norm as

‖Z‖ = ‖Z‖2. Define projections PkZ = E(Z|ξk) − E(Z|ξk−1), k ∈ Z. Denote by

Cq (resp. Cγ , Cµ, etc) generic positive constants which only depend on q (resp. γ,

µ, etc). Their values may vary from line to line.

The rest of paper is structured as follows. Section 2 concerns sample path

properties and weak convergence of Rn. In particular, in Section 2.1, the

Chibisov-O’Reilly Theorem, which concerns the weak convergence of weighted

empirical processes, is generalized to dependent random variables. Section 2.2

considers the weighted modulus of continuity of Rn. Applications to linear pro-

cesses and nonlinear time series are made in Section 3. Section 4 presents some

useful inequalities that may be of independent interest. The inequalities are

applied in Section 5, where proofs of the main results are given.

2. Main results

It is certainly necessary to impose appropriate dependence structures on the

process (Xi). We start by proposing a particular dependence condition which is

quite different from the classical strong mixing assumptions. Let m be a measure

on the 1-dimensional Borel space (R,B). For θ ∈ R, let Tn(θ) =
∑n

i=1 h(θ, ξi) −
nE[h(θ, ξ1)], where h is a measurable function such that ‖h(θ, ξ1)‖ < ∞ for almost

all θ (m). Denote by hj(θ, ξ0) = E[h(θ, ξj)|ξ0] the j-step-ahead predicted mean,

j ≥ 0. Let (ε′i) be an i.i.d. copy of (εi), ξ∗k = (. . . , ε−1, ε
′
0, ε1, . . . , εk), k ≥ 0, and

define

σ(h,m) =
∞

∑

j=0

[

∫

R

‖hj(θ, ξ0) − hj(θ, ξ∗0)‖2m(dθ)
]

1

2

. (3)

Let f ′
ε(θ|ξk) = (∂/∂θ)fε(θ|ξk). In the case that h(θ, ξk) = Fε(θ|ξk) [resp. fε(θ|ξk)

or f ′
ε(θ|ξk)], we write σ(Fε,m) [resp. σ(fε,m) or σ(f ′

ε,m)] for σ(h,m).

Our dependence conditions are expressed as σ(Fε,m) < ∞, σ(fε,m) <

∞ and σ(f ′
ε,m) < ∞, where m(dt) = (1 + |t|)δdt, δ ∈ R. These condi-

tions are interestingly connected with the prediction theory of stochastic pro-

cesses (Remark 1 and Section 2.3). The quantity σ(h,m) can be interpreted
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as a cumulative weighted prediction measure. It is worthwhile to note that

‖hj(θ, ξ0) − hj(θ, ξ∗0)‖ has the same order of magnitude as ‖P0h(θ, ξj)‖. To

see this, let g(. . . , e−1, e0) = h(θ, (. . . , e−1, e0)). So g(ξ∗j ) = h(θ, ξ∗j ), gj(ξ
∗
0) =

E[g(ξ∗j )|ξ∗0 ] = hj(θ, ξ∗0), E[g(ξj)|ξ−1] = E[g(ξ∗j )|ξ0], and

‖P0g(ξj)‖ = ‖E[gj(ξ0) − gj(ξ
∗
0)|ξ0]‖ ≤ ‖gj(ξ0) − gj(ξ

∗
0)‖

≤ ‖gj(ξ0) − gj+1(ξ−1)‖ + ‖gj+1(ξ−1) − gj(ξ
∗
0)‖ = 2‖P0g(ξj)‖. (4)

Note also that ‖P0g(ξj)‖ ≤ ‖g(ξj) − g(ξ∗j )‖. Therefore we have

1

2
σ(h,m) ≤ σ̃(h,m) :=

∞
∑

j=0

[

∫

R

‖P0h(θ, ξj)‖2m(dθ)
]

1

2 ≤ σ(h,m)

≤ 2

∞
∑

j=0

[

∫

R

‖h(θ, ξj) − h(θ, ξ∗j )‖2m(dθ)
]

1

2

=: 2σ̂(h,m). (5)

All results in the paper with the condition σ(h,m) < ∞ can be re-stated in terms

of σ̃(h,m) < ∞, or the stronger version σ̂(h,m) < ∞.

2.1. Weak convergence

The classical Donsker theorem asserts that, if Xk are i.i.d., then {Rn(s), s ∈
R} converges in distribution to an F -Brownian bridge process. The Donsker

theorem has many applications in statistics. To understand the behavior at the

two extremes s = ±∞, we need to consider the weighted version {Rn(s)W (s), s ∈
R}, where W (s) → ∞ as s → ±∞. Clearly, if W is bounded, then by the

Continuous Mapping Theorem, the weak convergence of the weighted empirical

processes follows from that of Rn. By allowing W (s) → ∞ as s → ±∞, one

can have the weak convergence of functionals of empirical processes, t(Fn), for

a wider class of functionals. The Chibisov-O’Reilly Theorem concerns weighted

empirical processes of i.i.d. random variables; see Shorack and Wellner (1986,

Sec. 11.5). The case of dependent random variables has been far less studied.

For strongly mixing processes see Mehra and Rao (1975), Shao and Yu (1996)

and Csörgő and Yu (1996).

Theorem 1. Let γ′ ≥ 0, q > 2, and γ = γ′q/2. Assume E[|X1|γ+log(1+|X1|)] <

∞ and
∫

R

E[f
q
2
ε (u|ξ0)]wγ−1+ q

2
(du) < ∞. (6)

In addition assume that there exists 0 ≤ µ ≤ 1 and ν > 0 such that

σ(Fε, wγ′−µ) + σ(fε, wγ′+µ) + σ(f ′
ε, w−ν) < ∞. (7)
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Then (i) E[sups∈R |Rn(s)|2(1 + |s|)γ′

] = O(1), and (ii) the process {Rn(s)(1 +

|s|)γ′/2, s ∈ R} converges weakly to a tight Gaussian process. In particular, if

X1 ∈ Lγ+q/2−1 and

sup
u

fε(u|ξ0) ≤ C (8)

holds almost surely for some constant C < ∞, then (6) holds.

An important issue in applying Theorem 1 is to verify (7), which is basically

a short-range dependence condition (cf. Remark 1). For many important models

including linear processes and Markov chains, (7) is easily verifiable (Section 3).

If (Xn) is a Markov chain, then σ(h,m) is related to the sensitivity measure

(Fan and Yao (2003, p. 466)) appearing in nonlinear prediction theory (Section

2.3). If (Xn) is a linear process, then (7) reduces to the classical definition of the

short-range dependence of linear processes.

Remark 1. If h(θ, ξk) = fε(θ|ξk), then hk(θ, ξ0) = E[fε(θ|ξk)|ξ0] = fk+1(θ|ξ0),

the conditional density of Xk+1 at θ given ξ0. Note that ξ∗0 = (ξ−1, ε
′
0) is a coupled

version of ξ0 with ε0 replaced by ε′0. So hk(θ, ξ0) − hk(θ, ξ∗0) = fk+1(θ|ξ0) −
fk+1(θ|ξ∗0) measures the change in the (k + 1)-step-ahead predictive distribution

if ξ0 is changed to its coupled version ξ∗0 . In other words, hk(θ, ξ0) − hk(θ, ξ∗0)

can be viewed as the contribution of ε0 in predicting Xk+1. So, in this sense,

the condition σ(h,m) < ∞ means that the cumulative contribution of ε0 in

predicting future values Xk, k ≥ 1, is finite. It is then not unnatural to interpret

σ(h,m) as a cumulative weighted prediction measure. This interpretation seems

in line with the connotation of short-range dependence.

We now compare Theorem 1 with the Chibisov-O’Reilly Theorem that con-

cerns the weak convergence of weighted empirical processes for i.i.d. random vari-

ables. Note that (γ+q/2−1) ↓ γ′ as q ↓ 2. The moment condition X1 ∈ Lγ+q/2−1

in Theorem 1 is almost necessary in the sense that it cannot be replaced by the

weaker

E{|X1|γ
′

log−1(2 + |X1|)[log log(10 + |X1|)]−λ} < ∞ (9)

for some λ > 0. To see this let Xk be i.i.d. symmetric random variables with

continuous, strictly increasing distribution function F ; let F# be the quantile

function and m(u) = [1+ |F#(u)|]−γ′/2. Then we have the distributional equality

{Rn(s)(1 + |s|)γ′

2 , s ∈ R} =D

{Rn(F#(u))

m(u)
, u ∈ (0, 1)

}

.

Assume that F (s)(1 + |s|)γ′

is increasing on (−∞, G) for some G < 0. Then

m(u)/
√

u is decreasing on (0, F (G)). By the Chibisov-O’Reilly Theorem,



EMPIRICAL PROCESSES OF STATIONARY SEQUENCES 317

{Rn(F#(u))/m(u), u ∈ (0, 1)} is tight if and only if limt↓0 m(t)/
√

t log log(t−1) =

∞, namely

lim
u→−∞

F (u)(1 + |u|)γ′

log log |u| = 0. (10)

Condition (10) controls the heaviness of the tail of X1. Let F (u) = |u|−γ′

(log log |u|)−1 for u ≤ −10. Then (9) holds while (10) is violated. It is unclear

whether stronger versions of (9), such as E(|X1|γ
′

) < ∞ or E[|X1|γ
′

log−1(2 +

|X1|)] < ∞, are sufficient.

2.2. Modulus of continuity

Theorem 2 concerns the weighted modulus of continuity of Rn(·). Sample

path properties of empirical distribution functions of i.i.d. random variables have

also been extensively explored; see for example Csörgő et al. (1986), Shorack

and Wellner (1986), and Einmahl and Mason (1988), among others. It is far less

studied for the dependent case.

Theorem 2. Let γ′ > 0, 2 < q < 4, and γ = γ′q/2; let δn < 1/2 be a sequence of

positive numbers such that (log n)2q/(q−2) = O(nδn). Assume (8), X1 ∈ Lγ, and

σ(fε, wγ′) + σ(f ′
ε, wγ′) < ∞. (11)

Then there exists a constant 0 < C < ∞, independent of n and δn, such that for

all n ≥ 1,

E

[

sup
t∈R

(1 + |t|)γ′

sup
|s|≤δn

|Rn(t + s) − Rn(t)|2
]

≤ Cδ
1− 2

q
n . (12)

2.3. Sensitivity measures and dependence

Our basic dependence condition is that σ(h,m) < ∞. Here we present

its connection with prediction sensitivity measures (Fan and Yao (2003, p.466))

special structure. Assume that (Xn) is a Markov chain expressed in the form of

an iterated random function (Elton (1990) and Diaconis and Freedman (1999)):

Xn = M(Xn−1, εn), (13)

where εk, k ∈ Z, are i.i.d. random variables and M(·, ·) is a bivariate measurable

function. For k ≥ 1 let fk(·|x) be the conditional (transition) density of Xk given

X0 = x. Then fε(θ|ξk) = f1(θ|Xk) is the conditional density of Xk+1 at θ given

Xk, and, for k ≥ 0, E[fε(θ|ξk)|ξ0] = fk+1(θ|X0). Fan and Yao (2003) argue that

Dk(x, δ) :=

∫

R

[fk(θ|x + δ) − fk(θ|x)]2dθ (14)
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is a natural way to measure the deviation of the conditional distribution of Xk

given X0 = x. In words, Dk quantifies the sensitivity to initial values and it

measures the error in the k-step-ahead predictive distribution due to a drift in

the initial value. Under certain regularity conditions,

lim
δ→0

Dk(x, δ)

δ2
=

∫

R

[∂fk(θ|x)

∂x

]2
dθ =: Ik(x).

Here Ik is called prediction sensitivity measure. It is a useful quantity in the

prediction theory of nonlinear dynamical systems. Estimation of Ik is discussed

in Fan and Yao (2003, p. 468). Proposition 1 shows the relation between σ(h,m)

and Ik. Since it can be proved in the same way as (i) of Theorem 3, we omit the

details of its proof.

Proposition 1. Let k ≥ 0. For the process (13), we have

∫

R

‖hk(θ, ξ0) − hk(θ, ξ∗0)‖2m(dθ) ≤ 4‖τk(X0,X
∗
0 )‖2,

where

τk(a, b) =

∫ b

a
[Ihk

(x,m)]
1

2 dx and Ihk
(x,m) =

∫

R

[∂hk(θ, x)

∂x

]2
m(dθ).

Consequently, σ(h,m) < ∞ holds if
∑∞

k=1 ‖τk(X0,X
∗
0 )‖ < ∞.

In the special case h(θ, ξk) = fε(θ|ξk) = f1(θ|Xk), hk(θ, ξ0) = E[h(θ, ξk)|ξ0]

= fk+1(θ|X0) and Ihk
(x,m) reduces to Fan and Yao’s sensitivity measure Ik+1(x)

provided m(dθ) = dθ is Lebesgue measure. So it is natural to view Ihk
(x,m) as a

weighted sensitivity measure. Since the k-step-ahead conditional density fk(θ|x),

may have an intractable and complicated form, it is generally not very easy to

apply Proposition 1. This is especially so in nonlinear time series where it is often

quite difficult to derive explicit forms of fk(θ|x). To circumvent such a difficulty,

our Theorem 3 provides sufficient conditions which only involve 1-step-ahead

conditional densities.

For processes that are not necessarily in the form (13), we assume that there

exists an σ(ξn)-measurable random variable Yn such that

P(Xn+1 ≤ x|ξn) = P(Xn+1 ≤ x|Yn) := F (x|Yn). (15)

Then there exists a similar bound as the one given in Proposition 1. Write

Yn = I(ξn), Y ∗
n = I(ξ∗n) and h(θ, ξn) = h(θ, Yn). For Markov chains, (15) is

satisfied with Yn = Xn. Let Xn =
∑∞

i=0 aiεn−i be a linear process. Then (15) is

also satisfied with Yn =
∑∞

i=1 aiεn+1−i. Let f(θ|y) be the conditional density of
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Xn+1 given Yn = y and f ′(θ|y) = (∂/∂θ)f(θ|y). Then σ(h,m) is also related to

a weighted distance between Yn and Y ∗
n . Define

ρh,m(a, b) =

∫ b

a
H

1

2

h,m(y)dy, where Hh,m(y) =

∫

R

∣

∣

∣

∂

∂y
h(θ, y)

∣

∣

∣

2
m(dθ). (16)

Theorem 3. (i) Let Ξh,m =
∑∞

n=0 ‖ρh,m(Yn, Y ∗
n )‖. Then σ(h,m) ≤ 2Ξh,m and

∫

R

‖hn(θ, ξ0) − hn(θ, ξ∗0)‖2m(dθ) ≤ 4‖ρh,m(Yn, Y ∗
n )‖2. (17)

(ii) Assume there exist C > 0 and q ∈ R such that Hh,m(y) ≤ C(1 + |y|)q−2

holds for all y ∈ R. Then ‖ρh,m(Yn, Y ∗
n )‖ = O[‖Yn − Y ∗

n ‖
min(1,q/2)
q ] if q > 0, and

‖ρh,m(Yn, Y ∗
n )‖ = O[‖min(1, |Yn − Y ∗

n |)‖] if q < 0.

Let h(θ, Yn) = f(θ|Yn). Then Hh,m(y) can be interpreted as a measure

of ”local dependence” of Xn+1 on Yn at y. As does Dk(x, δ) in (14), Hh,m(y)

measures the distance between the conditional densities of [Xn+1|Yn = y] and

[Xn+1|Yn = y + δ]. In many situations ‖Yn − Y ∗
n ‖q is easy to work with since it

is directly related to the data generating mechanisms.

3. Applications

3.1. Iterated random functions

Consider the process (13). The existence of stationary distributions has

been widely studied and there are many versions of sufficient conditions; see

Diaconis and Freedman (1999), Meyn and Tweedie (1993), Jarner and Tweedie

(2001), Wu and Shao (2004), among others. Here we adopt the conditions given

by Diaconis and Freedman (1999). The recursion (13) has a unique stationary

distribution if there exist α > 0 and x0 such that

Lε0
+|M(x0, ε0)|∈Lα and E[log(Lε0

)]<0, where Lε = sup
x 6=x′

|M(x, ε)−M(x′, ε)|
|x − x′| .

(18)

Condition (18) also implies the geometric-moment contraction (GMC(β), see

Wu and Shao (2004)) property: there exist β > 0, r ∈ (0, 1), and C < ∞ such

that

E[|J(. . . , ε−1, ε0, ε1, . . . , εn)−J(. . . , ε′−1, ε
′
0, ε1, . . . , εn)|β ] ≤ Crn (19)

holds for all n ∈ N, where (ε′k) is an i.i.d. copy of (εk). Hsing and Wu (2004)

argued that (19) is a convenient condition for limit theorems.

Doukhan (2003) gave a brief review of weak convergence of Rn under various

dependence structures including strong mixing conditions. Meyn and Tweedie
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(1993) discussed alpha and beta-mixing properties of Markov chains. Doukhan

and Louhichi (1999) introduced an interesting weak dependence condition based

on the decay rate of the covariances between the past and the future values

of the process, and obtained weak convergence of Rn. Wu and Shao (2004,

pp.431-432) applied Doukhan and Louhichi’s results and proved that, under

(19), Rn converges weakly to a tight Gaussian process if, for some κ > 5/2,

supx |F (x + δ) − F (x)| = O[log−κ(|δ|−1)] as δ → 0. The latter condition holds if

Xk has a bounded density. Note that results based on Doukhan and Louhichi’s

dependence coefficients do not require that F has a density. In comparison,

our Theorem 1 concerns weighted empirical processes under the assumption

that conditional densities exist. They can be applied in different situations.

In Section 3.1.1, we consider weak convergence of weighted empirical processes

for autoregressive conditionally heteroskedastic (ARCH, Engle (1982))sequences.

Berkes and Horváth (2001) discussed strong approximation for empirical pro-

cesses of generalized ARCH sequences.

3.1.1. ARCH models

Consider the model

Xn = εn

√

a2 + b2X2
n−1, (20)

where a and b are real parameters for which ab 6= 0 and εi are i.i.d. innovations

with density fε. Let M(x, ε) = ε
√

a2 + b2x2. Then Lε = supx |∂M(x, ε)/∂x| ≤
|bε|. Assume that there exists β > 0 such that r0 := E(|bε0|β) < 1. Then (18)

holds with α = β and ‖M(x, εn) − M(x′, εn)‖β
β ≤ r0|x − x′|β. Iterations of the

latter inequality imply (19) with r = r0. For more details see Wu and Shao

(2004).

Corollary 1. Assume E(|bε0|β) < 1, β > 0. Let φ ∈ (0, β) and ν > 0 satisfy
∫

R

|fε(u)|2w1+φ(du) +

∫

R

|f ′
ε(u)|2w3+φ(du) +

∫

R

|f ′′
ε (u)|2w2−ν(du) < ∞. (21)

Then {Rn(s)(1 + |s|)φ/2, s ∈ R} converges weakly to a tight Gaussian process.

Proof. Let t = ty =
√

a2 + b2y2. Then F (θ|y) = Fε(θ/t), f(θ|y) = fε(θ/t)/t,

and f ′(θ|y) = f ′
ε(θ/t)/t2. By (24) of Lemma 1 and (21), we have supx fε(x) < ∞

and (8). Choose q > 2 such that τ = φq/2 + q/2 − 1 < β. Then X1 ∈ Lτ .

By Theorem 1, it remains to verify (7). Let µ = 1. Recall (16) for Hh,m(y).

By considering the cases φ ≥ 1 and φ < 1 separately, we have, by (21) and the

inequality |ut| ≤ 1 + |ut| ≤ (1 + |u|)(1 + |t|), that
∫

R

∣

∣

∣

∂Fε(θ/t)

∂t

∣

∣

∣

2
wφ−1(dθ) = t−1

∫

R

f2
ε (u)u2(1 + |ut|)φ−1du ≤ Ctφ−2
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holds for some constant C ∈ (0,∞). Since |dt/dy| ≤ |b|,
∫

R
|∂F (θ|y)/∂y|2wφ−1

(dθ) ≤ C(1+|y|)φ−2. Similar but lengthy calculations show that
∫

R
|∂f(θ|y)/∂y|2

wφ+1(dθ) ≤ C(1 + |y|)φ−2 and
∫

R
|∂f ′(θ|y)/∂y|2w−2−ν(dθ) ≤ C(1 + |y|)−5−ν . By

(19), ‖Yn −Y ∗
n ‖φ = O(rn) for some r ∈ (0, 1). By Theorem 3, simple calculations

show that (7) holds.

Corollary 1 allows heavy-tailed ARCH processes. Tsay (2005) argued that in
certain applications it is more appropriate to assume that εk has heavy tails. Let
εk have a standard Student-t distribution with degrees of freedom ν, with density
fε(u) = (1 + u2/ν)−(1+ν)/2cν , where cν = Γ((ν + 1)/2)/[Γ(ν/2)

√
νπ]. Then (21)

holds if φ < 2ν. Note that εk ∈ Lφ if φ < ν, and consequently Xk ∈ Lφ if
E(|bε0|φ) < 1.

3.2. Linear processes

Let Xt =
∑∞

i=0 aiεt−i, where the εk are i.i.d. random variables with mean
0 and finite and positive variance, and the coefficients ai satisfy

∑∞
i=0 a2

i < ∞.
Assume without loss of generality that a0 = 1. Let Fε and fε = F ′

ε be the
distribution and density functions of εk. Then the conditional density of Xn+1

given ξn is fε(x − Yn), where Yn = Xn+1 − εn+1 (cf. (15)).

Corollary 2. Let γ ≥ 0. Assume εk ∈ L2+γ , supu fε(u) < ∞, and

∞
∑

n=1

|an| < ∞, (22)

∫

R

|f ′
ε(u)|2wγ(du) +

∫

R

|f ′′
ε (u)|2w−γ(du) < ∞. (23)

Then {Rn(s)(1 + |s|)γ/2, s ∈ R} converges weakly to a tight Gaussian process.

Proof. Let q = 2 + γ. Since ε1 ∈ Lq, we have Y1 ∈ Lq and ‖Yn − Y ∗
n ‖q =

‖an+1(ε0−ε′0)‖q = O(|an+1|). Note that f(x|y) = fε(x−y). Since
∫

R
fε(θ)wγ(dθ)

= E[(1 + |ε1|)γ ] < ∞ and supu fε(u) < ∞, we have
∫

R
fε(u)2wγ(du) < ∞. Since

1 + |v + y| ≤ (1 + |v|)(1 + |y|),
∫

R

[|fε(θ − y)|2 + |f ′
ε(θ − y)|2]wγ(dθ) ≤ (1 + |y|)γ

∫

R

[|fε(θ)|2 + |f ′
ε(θ)|2]wγ(dθ)

≤ C(1 + |y|)γ .

On the other hand,
∫

R

|f ′′
ε (θ − y)|2(1 + |θ|)−γdθ ≤

∫

R

|f ′′
ε (θ − y)|2(1 + |θ − y|)−γ(1 + |y|)γdθ

= (1 + |y|)γ
∫

R

|f ′′
ε (u)|2w−γ(du).

By Theorems 1 and 3, the corollary follows.
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Condition (22), together with ε1 ∈ L2, implies that the covariances of (Xt)

are absolutely summable, a well-known condition for a linear process being short-

range dependent. If (22) is violated, then we say that the linear process (Xn)

is long-range dependent. In this case properties of Fn have been discussed by

Ho and Hsing (1996) and Wu (2003).

Remark 2. Strong mixing properties of linear processes have been discussed

by Withers (1981) and Pham and Tran (1985), among others. It seems that for

linear processes strong mixing conditions do not lead to results with best possible

conditions. Let εi ∈ L2 have a density and An =
∑∞

i=n a2
i . Withers (1981)

showed that (Xi) is strongly mixing if
∑∞

n=1 max(A
1/3
n ,

√

An| log An|) < ∞. In

the case that an = n−δ, the latter condition requires δ > 2. In comparison, our

condition (22) only requires that δ > 1. More stringent conditions are required

for β-mixing.

Remark 3. Let φ(t) = E exp(
√
−1uε0); let fk (resp. φk) be the density (resp.

characteristic) function of
∑k

i=0 aiε−i. Doukhan (2003) mentioned the following

result (see also Doukhan and Surgailis (1998)): Rn converges weakly if for some

0 < α ≤ 1 and s,C, δ > 0 such that sδ > 2α, εk ∈ Ls,
∑∞

i=0 |ai|α < ∞
and |φ(t)| ≤ C/(1 + |u|δ). (Doukhan noted that the proof of the latter result

is unpublished.) These results allow heavy-tailed εk. Our Corollary 2 deals

with weighted empirical processes, so there are different ranges of applications.

Consider the special case of Corollary 2 in which γ = 0. A careful check of

the proofs of Theorems 1 and 3 suggests that Corollary 2 still holds if f ′
ε in

(23) is replaced by fk for some fixed k (see also Wu (2003)). Note that, by

Parseval’s identity, if γ = 0, then 2π
∫

R
|f ′′

k (u)|2du =
∫

R
|tφk(t)|2dt, which is

finite if |φk(t)| ≤ C/(1 + t2). The latter condition holds if |φ(t)| ≤ C/(1 + |u|δ)
and #{i : ai 6= 0} = ∞.

Remark 4. Let g be a Lipschitz continuous function such that, for some r < 1,

|g(x) − g(x′)| ≤ r|x − x′| holds for all x, x′ ∈ R. Consider the nonlinear model

Xn+1 = g(Xn) + εn+1, where εn satisfy conditions in Corollary 2. Then Xn is

GMC(q) and consequently Yn = g(Xn) is also GMC(q), q = 2 + γ. It is easily

seen that the argument in Corollary 2 also applies to this model and that the

same conclusion holds. Special cases include the threshold autoregressive model

(Tong (1990)) Xn+1 = amax(Xn, 0)+ bmin(Xn, 0)+ εn+1 with max(|a|, |b|) < 1,

and the exponential autoregressive model (Haggan and Ozaki (1981)) Xn+1 =

[a + b exp(−cX2
n)]Xn + εn+1, where |a| + |b| < 1 and c > 0.

4. Inequalities

The inequalities presented in this section are of independent interest and
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may have wider applicability. They are used in the proofs of the results in other

sections.

Lemma 1. Let H be absolutely continuous. (i) If µ ≤ 1 and γ ∈ R, then

sup
x≥M

[H2(x)(1 + |x|)γ ] ≤ Cγ,µ

∫ ∞

M
H2(u)wγ−µ(du) + Cγ,µ

∫ ∞

M
[H ′(u)]2wγ+µ(du)

(24)

holds for all M ≥ 0, where Cγ,µ is a positive constant. The above inequality also

holds if M = −∞ and supx≥M is replaced by supx∈R. (ii) If γ > 0, µ = 1, and

H(0) = 0, then

sup
x∈R

[H2(x)(1+ |x|)−γ ] ≤ 1

γ

∫

R

[H ′(u)]2w−γ+1(du), (25)

∫

R

H2(u)w−γ−1(du) ≤ 4

γ2

∫

R

[H ′(u)]2w−γ+1(du). (26)

(iii) If γ > 0 and H(±∞) = 0, then supx∈R[H2(x)(1 + |x|)γ ] ≤ γ−1
∫

R
[H ′(u)]2

wγ+1(du) and
∫

R
H2(u)wγ−1(du) ≤ 4γ−2

∫

R
[H ′(u)]2wγ+1(du).

Proof. (i) By Lemma 4 in Wu (2003), for t ∈ R and δ > 0 we have

sup
t≤s≤t+δ

H2(s) ≤ 2

δ

∫ t+δ

t
H2(u)du + 2δ

∫ t+δ

t
[H ′(u)]2du. (27)

We first consider the case µ < 1. Let α = 1/(1 − µ). In (27) let t = tn = nα and

δn = (n + 1)α − nα, n ∈ N, and In = [tn, tn+1]. Since limn→∞ δn/(αnα−1) = 1,

sup
x∈In

[H2(x)(1 + x)γ ] ≤ 2 sup
x∈In

(1 + x)γ
[

δ−1
n

∫

In

H2(u)du + δn

∫

In

[H ′(u)]2du
]

≤ C

∫

In

H2(u)wγ−µ(du) + C

∫

In

[H ′(u)]2wγ+µ(du). (28)

It is easily seen by (27) that (28) also holds for n = 0 by choosing a suitable C.

By summing (28) over n = 0, 1, . . ., we obtain (24) with M = 0. The case M > 0

can be similarly dealt with by letting tn = nα + M .

If µ = 1, we let tn = 2n, δn = tn+1 − tn = tn and In = [tn, tn+1], n = 0, 1, . . ..

The argument above yields the desired inequality.

(ii) Let s ≥ 0. Since H(s) =
∫ s
0 H ′(u)du, by the Cauchy-Schwarz Inequality,

H2(s) ≤
∫ s

0
|H ′(u)|2(1 + u)1−γdu ×

∫ s

0
(1 + u)γ−1du

≤
∫

R

[H ′(u)]2w−γ+1(du) × (1 + s)γ − 1

γ
.
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So (25) follows. Applying Theorem 1.14 in Opic and Kufner (1990, p. 13) with

p = q = 2, the Hardy-type inequality (26) easily follows. The proof of (iii) is

similar to that of (ii).

Lemma 2. Let m be a measure on R, A ⊂ R be a measurable set, and Tn(θ) =
∑n

i=1 h(θ, ξi), where h is a measurable function. Then

√

∫

A
‖Tn(θ) − E[Tn(θ)]‖2m(dθ) ≤

√
n

∞
∑

j=0

√

∫

A
‖P0h(θ, ξj)‖2m(dθ). (29)

Proof. For j = 0, 1, . . . let Tn,j(θ)=
∑n

i=1 E[h(θ, ξi)|ξi−j ] and λ2
j =

∫

A‖P0h(θ, ξj)‖2

m(dθ), λj ≥ 0. By the orthogonality of E[h(θ, ξi)|ξi−j] − E[h(θ, ξi)|ξi−j−1], i =

1, 2, . . . , n,
∫

A
‖Tn,j(θ)−Tn,j−1(θ)‖2m(dθ)=n

∫

A
‖E[h(θ, ξ1)|ξ1−j ] − E[h(θ, ξ1)|ξ−j]‖2m(dθ)

=n

∫

A
‖P1−jh(θ, ξ1)‖2m(dθ) = nλ2

j .

Note that Tn(θ) = Tn,0(θ). Let ∆ =
∑∞

j=0 λj. By the Cauchy-Schwarz Inequality,

∫

A
E|Tn(θ)−E[Tn(θ)]|2m(dθ)=

∫

A
E

{ ∞
∑

j=0

[Tn,j(θ) − Tn,j+1(θ)]

}2

m(dθ)

≤∆

∫

A
E

{ ∞
∑

j=0

[Tn,j(θ)−Tn,j+1(θ)]2

λj

}

m(dθ)=n∆2,

and (29) follows.

Lemma 3. Let Di be Lq (q > 1) martingale differences and Cq = 18q3/2(q −
1)−1/2. Then

‖D1 + · · · + Dn‖r
q ≤ Cr

q

n
∑

i=1

‖Di‖r
q, where r = min(q, 2). (30)

Proof. Let M =
∑n

i=1 D2
i . By Burkholder’s inequality, ‖∑n

i=1 Di‖q ≤Cq‖M‖q/2.

Then (30) easily follows by considering the cases q > 2 and q ≤ 2 separately.

Lemma 4. (Wu (2005)) Let q > 1 and Zi, 1 ≤ i ≤ 2d, be random variables in

Lq, where d is a positive integer. Let Sn = Z1 + · · · + Zn and S∗
n = maxi≤n |Si|.

Then

‖S∗
2d‖q ≤

d
∑

r=0

[ 2d−r
∑

m=1

‖S2rm − S2r(m−1)‖q
q

]
1

q

. (31)
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5. Proofs of Theorems 1 and 2

To illustrate the idea behind our approach, let F̃n(x) = n−1
∑n

i=1 Fε(x|ξi−1)

be the conditional empirical distribution function and write

Fn(x) − F (x) = [Fn(x) − F̃n(x)] + [F̃n(x) − F (x)]. (32)

The decomposition (32) has two important and useful properties. First, n[Fn(x)−
F̃n(x)] is a martingale with stationary, ergodic and bounded martingale differ-

ences. Second, F̃n − F is differentiable with derivative f̃n(x) − f(x), where

f̃n(x) = (∂/∂x)F̃n(x) = n−1
∑n

i=1 fε(x|ξi). The property of differentiability is

useful in establishing tightness. The idea was applied in Wu and Mielniczuk

(2002).

Following (32), let Gn(s) = n1/2[Fn(x) − F̃n(x)] and Qn(s) = n1/2[F̃n(x) −
F (x)]. Then Rn(s) = Gn(s) + Qn(s). Sections 5.1 and 5.2 deal with Gn and Qn,

respectively. Theorems 1 and 2 are proved in Sections 5.3 and 5.4.

5.1. Analysis of Gn

The main result is this section is Lemma 7 which concerns the weak conver-

gence of Gn.

Lemma 5. Let q > 2 and α = max(1, q/4) − q/2. Then there is a constant Cq

such that

‖Gn(y)−Gn(x)‖q
q ≤ Cqn

α[F (y)−F (x)]+Cq(y − x)
q
2
−1

∫ y

x
E[f

q
2
ε (u|ξ0)]du (33)

holds for all n ∈ N and all x < y, and

‖Gn(x)‖q
q ≤ Cq min[F (x), 1 − F (x)]. (34)

Proof. Let q′ = q/2 and p′ = q′/(q′ − 1); let di(s) = 1Xi≤s −E(1Xi≤s|ξi−1), di =

di(y) − di(x), Di = d2
i − E(d2

i |ξi−1), Kn =
∑n

i=1 Di, and Ln =
∑n

i=1 E(d2
i |ξi−1).

Then both (Di) and (di) are martingale differences. By Burkholder’s inequality

(Chow and Teicher (1988)),

‖Gn(y) − Gn(x)‖q
q = n− q

2 E(|d1 + · · · + dn|q)

≤ Cq

n
q
2

E[(d2
1 + · · · + d2

n)
q
2 ] ≤ Cq

n
q
2

(‖Kn‖q′

q′ + ‖Ln‖q′

q′). (35)

By Lemma 3,

‖Kn‖q′

q′

nmax(1, q′

2
)
≤ Cq‖D1‖q′

q′ ≤ Cq2
q′−1[‖d2

1‖q′

q′ + ‖E(d2
1|ξ0)‖q′

q′ ] ≤ Cq2
q′‖d2

1‖q′

q′ , (36)
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where we have applied Jensen’s inequality in ‖E(d2
1|ξ0)‖q′

q′ ≤ ‖d2
1‖

q′

q′ . Notice that

|d1| ≤ 1,

‖d2
1‖q′

q′ ≤ ‖d1‖q′

q′ ≤ 2q′−1[‖1x≤Xi≤y‖q′

q′ + ‖E(1x≤Xi≤y|ξ0)‖q′

q′ ] ≤ 2q′ [F (y) − F (x)].

(37)

Since E(d2
1|ξ0) ≤ E(1x≤Xi≤y|ξ0) and 1/p′ + 1/q′ = 1, we have by Hölder’s In-

equality that

‖Ln‖q′

q′ ≤ nq′‖E(d2
1|ξ0)‖q′

q′ ≤ nq′
E

{[

∫ y

x
fε(u|ξ0)du

]q′}

≤ nq′
E

[

(y − x)q
′/p′

∫ y

x
f q′

ε (u|ξ0)du
]

. (38)

Combining (35), (36), (37) and (38), we have (33).

To show (34), in (35) we let di = di(x) = 1Xi≤x − E(1Xi≤x|ξi−1). Then

E(|d1 + · · · + dn|q) ≤ Cqn
q
2 ‖d1‖q

q ≤ Cqn
q
2 ‖d1‖2 ≤ Cqn

q
2 F (x)[1 − F (x)]

completes the proof.

Lemma 6. Let q > 2 and α = max(1, q/4) − q/2. Then there exists a constant

Cq < ∞ such that, for all b > 0, a ∈ R and n, d ∈ N,

E

[

sup
0≤s<b

|Gn(a + s) − Gn(a)|q
]

≤ Cqd
qnα[F (a+b)−F (a)] + Cqb

q
2
−1[1+n

q
2 2d(1− q

2
)]

∫ a+b

a
E[f

q
2
ε (u|ξ0)]du. (39)

In particular, for d = 1 + ⌊(log n)/[(1 − 2/q) log 2]⌋, we have

E

[

sup
0≤s<b

|Gn(a + s) − Gn(a)|q
]

≤ Cq(log n)qnα[F (a + b) − F (a)]

+Cqb
q
2
−1

∫ a+b

a
E[f

q
2
ε (u|ξ0)]du. (40)

Proof. Let h = b2−d, Sj = Gn(a+jh)−Gn(a) and Zj = Sj−Sj−1. By Lemma 5,

2d−r
∑

m=1

‖S2rm − S2r(m−1)‖q
q ≤

2d−r
∑

m=1

Cqn
α[F (a + 2rmh) − F (a + 2r(m − 1)h)]

+

2d−r
∑

m=1

Cq(2
rh)

q
2
−1

∫ a+2rmh

a+2r(m−1)h
E[f

q
2
ε (u|ξ0)]du

= Cqn
α[F (a + b) − F (a)] + Cq(2

rh)
q
2
−1V,
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where V =
∫ a+b
a E[f

q/2
ε (u|ξ0)]du. By Lemma 4,

‖S∗
2d‖q ≤

d
∑

r=0

{Cqn
α[F (a + b) − F (a)]}

1

q +

d
∑

r=0

{Cq(2
rh)

q
2
−1V }

1

q

≤ d{Cqn
α[F (a + b) − F (a)]}

1

q + {Cq(2
d+1h)

q
2
−1V }

1

q . (41)

Let Bj =
√

n[F̃n(a+ jh)− F̃n(a+(j−1)h)]. Recall F̃n(x) = n−1
∑n

i=1 Fε(x|ξi−1)

and f̃n(x) = F̃ ′
n(x). Since q′ = q/2 > 1, ‖f̃n(x)‖q′ ≤ ‖fε(x|ξ0)‖q′ . Note that

0 ≤ F̃ε ≤ 1, so by Hölder’s Inequality,

E

[

max
j≤2d

Bq
j

]

≤
2d
∑

j=1

E(Bq
j ) =

2d
∑

j=1

nq′‖F̃n(a + jh) − F̃n(a + (j − 1)h)‖q
q

≤
2d
∑

j=1

nq′‖F̃n(a + jh) − F̃n(a + (j − 1)h)‖q′

q′

≤
2d
∑

j=1

nq′hq′−1

∫ a+jh

a+(j−1)h
E[|f̃n(x)|q′ ]du ≤ nq′hq′−1V. (42)

Observe that

Gn(a + h⌊ s

h
⌋) − max

j≤2d
Bj ≤ Gn(a + s) ≤ Gn(a + h⌊ s

h
+ 1⌋) + max

j≤2d
Bj .

Hence (39) follows from (41), (42) and, since Sj = Gn(a + jh) − Gn(a),

sup
0≤s<b

|Gn(a + s) − Gn(a)| ≤ sup
0≤s<b

|Gn(a + h⌊ s

h
+ 1⌋) − Gn(a)|

+ sup
0≤s<b

|Gn(a + h⌊ s

h
⌋) − Gn(a)| + 2max

j≤2d
Bj

≤ 2S∗
2d + 2max

j≤2d
Bj

by noticing that h = 2−db. For d = 1 + ⌊(log n)/[(1 − 2/q) log 2]⌋, we have

nq/22d(1−q/2) ≤ 1, hence (40) is an easy consequence of (39).

Lemma 7. Let γ ≥ 0 and q > 2. Assume E[|X1|γ + log(1 + |X1|)] < ∞, and

(6). Then (i) E[sups∈R |Gn(s)|q(1+ |s|)γ ] = O(1), and (ii) the process {Gn(s)(1+

|s|)γ/q, s ∈ R} is tight.

Remark 5. In Lemma 7, the term log(1 + |X1|) is not needed if γ > 0.

Proof. (i) Without loss of generality we show that E[sups≥0 |Gn(s)|q(1+ |s|)γ ] =

O(1), since the case of s < 0 follows similarly. Let αn = (log n)qnmax(1,q/4)−q/2.
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By (6) and (40) of Lemma 6, with a = b = 2k,

∞
∑

k=1

2kγ
E

[

sup
2k≤s<2k+1

|Gn(s) − Gn(2k)|q
]

≤ Cq

∞
∑

k=1

2kγαn[F (2k+1)−F (2k)] + Cq

∞
∑

k=1

2kγ(2k)
q
2
−1

∫ 2k+1

2k

E[f
q
2
ε (u|ξ0)]du

≤ Cγ,qαn

∫ ∞

2
f(u)(1 + u)γdu + Cγ,q

∫ ∞

2
(1 + u)γu

q
2
−1

E[f
q
2
ε (u|ξ0)]du

≤ Cγ,qαn + Cγ,q = O(1). (43)

Observe that the function ℓ(x) =
∑∞

k=1 2kγ12k≤x, x > 0, is bounded by Cγ [xγ +

log(1 + x)], where Cγ is a constant. Then by (34) of Lemma 5, we have

∞
∑

k=1

2kγ‖Gn(2k)‖q
q ≤

∞
∑

k=1

2kγCE(12k≤X1
) ≤ CE[|X1|γ + log(1+|X1|)] < ∞. (44)

Simple calculations show that (i) follows from (43), (44) and (40), with a = 0

and b = 2.

(ii) It is easily seen that the argument in (i) entails

lim
r→∞

lim sup
n→∞

E

[

sup
|s|>r

|Gn(s)|q(1 + |s|)γ
]

= 0. (45)

Let δ ∈ (0, 1). For s, t ∈ [−r, r] with 0 ≤ s − t ≤ δ, we have

|Gn(s)(1 + |s|)
γ
q − Gn(t)(1 + |t|)

γ
q |

≤ |(1 + |s|)
γ
q [Gn(s) − Gn(t)]| + |Gn(t)[(1 + |s|)

γ
q − (1 + |t|)

γ
q ]|

≤ (1 + r)
γ
q |Gn(s) − Gn(t)| + Cr,γ,qδ sup

u∈[−r,r]
|Gn(u)|. (46)

By (i), ‖ supu∈R |Gn(u)|‖ = O(1). Let Ik = Ik(δ) = [kδ, (k + 1)δ]. By Lemma 6,

⌊ r
δ
⌋+1

∑

k=−⌊ r
δ
⌋−1

P

[

sup
s∈Ik

|Gn(s) − Gn(kδ)| > ǫ
]

≤ ǫ−q

⌊ r
δ
⌋+1

∑

k=−⌊ r
δ
⌋−1

{

CqαnP(X1 ∈ Ik) + Cqδ
q
2
−1

∫

Ik

E[f
q
2
ε (u|ξ0)]du

}

≤ ǫ−qCqαn + ǫ−qCqδ
q
2
−1

∫

R

E[f
q
2
ε (u|ξ0)]du.
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By (6),
∫

R
E[f

q/2
ε (u|ξ0)]du < ∞. Hence

lim sup
n→∞

P

[

sup
s,t∈[−r,r], 0≤s−t≤δ

|Gn(s) − Gn(t)| > 2ǫ
]

≤ ǫ−qCqδ
q
2
−1,

which implies the tightness of {Gn(s), |s| ≤ r} for fixed r. So (45) and (46)

entail (ii).

5.2. Analysis of Qn

It is relatively easier to handle Qn since it is a differentiable function. The

Hardy-type inequalities (cf Lemma 1) are applicable.

Lemma 8. Let γ′ ≥ 0 and assume (7). Then (i) E[sups∈R |Qn(s)|2(1 + |s|)γ′

] =

O(1), and (ii) the process {Qn(s)(1 + |s|)γ′/2, s ∈ R} is tight.

Proof. Let r ≥ 0 and recall 0 ≤ µ ≤ 1. (i) By Lemma 1,

Λr := sup
|s|≥r

[Q2
n(s)(1 + |s|)γ′

] ≤ C

∫

|s|≥r
Q2

n(s)wγ′−µ(ds)+C

∫

|s|≥r
[Q′

n(s)]2wγ′+µ(ds)

holds for some constant C = Cγ′,µ. By Lemma 1,

‖Λ
1

2
r ‖√
C

≤
∞
∑

j=0

√

∫

|s|≥r
‖P0Fε(θ|ξj)‖2wγ′−µ(dθ) +

∞
∑

j=0

√

∫

|s|≥r
‖P0fε(θ|ξj)‖2wγ′+µ(dθ). (47)

So (i) follows by letting r = 0 in (47).

(ii) The argument in (ii) of Lemma 7 in applicable. Let 0 < δ < 1. Then

Ψn,r(δ) := sup
s,t∈[−r,r], 0≤s−t≤δ

|Qn(s)(1 + |s|)γ′

2 − Qn(t)(1 + |t|)γ′

2 |

≤ sup
s,t∈[−r,r], 0≤s−t≤δ

|(1 + |s|)γ′

2 [Qn(s) − Qn(t)]|

+ sup
s,t∈[−r,r], 0≤s−t≤δ

|Qn(t)[(1 + |s|)γ′

2 − (1 + |t|)γ′

2 ]|

≤ Cr,γ′δ sup
u∈[−r,r]

|Q′
n(u)| + Cr,γ′δ sup

u∈[−r,r]
|Qn(u)|.

By (27), Lemma 2, and (7), there exists a constant C = C(r, γ′, µ, ν) such that

E

[

sup
|s|≤r

|Q′
n(s)|2

]

≤ C

∫ r

−r
‖Q′

n(s)‖2wγ′+µ(ds) + C

∫ r

−r
‖Q′′

n(s)‖2w−ν(ds)

≤ Cγ′σ2(fε, wγ′+µ) + Cγ′σ2(f ′
ε, w−ν) = O(1).
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By (i), there exists C1 < ∞ such that for all n ∈ N, E[Ψ2
n,r(δ)] ≤ δ2C1. Notice

that the upper bound in (47) goes to 0 as r → ∞. Hence (ii) obtains.

5.3. Proof of Theorem 1.

We need to verify finite-dimensional convergence and tightness. Let j ≥ 0.
Observe that (∂/∂θ)P0Fε(θ|ξj) = P0fε(θ|ξj) and ‖P0Fε(θ|ξj)‖ = ‖P01Xj+1≤θ‖.
By Lemma 1(i)

sup
θ∈R

‖P0Fε(θ|ξj)‖≤C

√

∫

R

‖P0Fε(θ, ξj)‖2w−µ(dθ)+C

√

∫

R

‖P0fε(θ, ξj)‖2wµ(dθ)

which, by (7) and (5), implies
∑∞

i=0 ‖P01Xi≤θ‖ < ∞. Hence by Theorem 1(i) in
Hannan (1973), Rn(θ) is asymptotically normal. The finite-dimensional conver-
gence easily follows. Since Rn(s) = Gn(s) + Qn(s), the tightness and (i) follow
from Lemmas 7 and 8.

Since E[fε(u|ξ0)] = f(u), (8) and the moment condition X1 ∈ Lγ+q/2−1

imply (6).

5.4. Proof of Theorem 2.

Let Θn(a, δ) = sup0≤s<δ |Gn(a + s) − Gn(a)| and α = max(1, q/4) − q/2.

Note that (log n)qnα = O(δ
q/2−1
n ). By (40) of Lemma 6, we have, uniformly in

a, that

E

[

Θq
n(a, δn)

]

≤ Cq(log n)qnα[F (a + δn) − F (a)] + Cqδ
q
2
−1

n τ
q
2
−1

∫ a+δn

a
f(u)du

≤ Cδ
q
2
−1

n [F (a + δn) − F (a)].

Here the constant C only depends on τ , γ, q and E(|X1|γ). Hence
∑

k∈Z

(1 + |kδn|)γE

[

Θq
n(kδn, δn)

]

≤
∑

k∈Z

(1 + |kδn|)γCδ
q
2
−1

n [F (kδn + δn) − F (kδn)]

≤ Cδ
q
2
−1

n E[(1 + |X1|)γ ].

Let Ik(δ) = [kδ, (1+k)δ] and cδ = sup|u−t|≤δ[(1+ |t|)/(1+ |u|)]. Then cδ ≤ 2 since
δ < 1/2. By the inequality |Gn(a)−Gn(c)| ≤ |Gn(a)−Gn(b)|+ |Gn(b)−Gn(c)|,

sup
t∈Ik(δn), 0≤s<δn

|Gn(t + s) − Gn(t)| ≤ 2 sup
0≤u<2δn

|Gn(kδn + u) − Gn(kδn)|.

Therefore,

E

[

sup
t∈R

(1 + |t|)γΘq
n(t, δn)

]

≤
∑

k∈Z

E

[

sup
t∈Ik(δn)

(1 + |t|)γΘq
n(t, δn)

]

≤ 2qcγ
δn

∑

k∈Z

(1 + |kδn|)γE

[

Θq
n(kδn, 2δn)

]

≤ Cδ
q
2
−1

n .
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Note that Rn(s) = Gn(s)+Qn(s). Then (12) follows if it holds with Rn replaced

by Gn and Qn, respectively. The former is an easy consequence of the preceding

inequality and Jensen’s Inequality. To show that (12) holds with Rn replaced by

Qn, recall γ′ = 2γ/q. By (24) of Lemma 1 and Lemma 2,

E

[

sup
x∈R

(1 + |x|)γ′ |Q′
n(x)|2

]

≤ C

∫

R

‖Q′
n(x)‖2wγ′(dx) + C

∫

R

‖Q′′
n(x)‖2wγ′(dx)

≤ Cσ2(fε, wγ′) + Cσ2(f ′
ε, wγ′) < ∞,

which completes the proof in view of the fact that

(1 + |t|)γ′

sup
|s|≤δn

|Qn(t + s) − Qn(t)|2 ≤ δ2
n(1 + |t|)γ′

sup
|s|≤δn

|Q′
n(t + s)|2

≤ cγ′

δn
δ2
n sup

u:|u−t|≤δn

[(1 + |u|)γ′ |Q′
n(u)|2].

Remark 6. It is worthwhile to note that the modulus of continuity of Gn has

the order δ
1−2/q
n , while that of Qn has the higher order δn.

6. Proof of Theorem 3.

(i) If (17) holds, then σ(h,m) ≤ 2Ξh,m. To prove (17), let Zn(θ) = hn(θ, ξ0)−
hn(θ, ξ∗0), h(θ, Yn) = h(θ, ξn), and Vn(θ) = h(θ, Y ∗

n )−h(θ, Yn) =
∫ Y ∗

n

Yn

∂
∂y h(θ, y)dy.

Let λ(y) = [Hh,m(y)]1/2 and U =
∫ Y ∗

n

Yn
λ(y)dy. By the Cauchy-Schwarz Inequality,

∫

R

V 2
n (θ)m(dθ) ≤

∫

R

[

∫ Y ∗

n

Yn

1

λ(y)

∣

∣

∣

∂

∂y
h(θ, y)

∣

∣

∣

2
dy ×

∫ Y ∗

n

Yn

λ(y)dy
]

m(dθ) = U2.

Note that E[h(θ, Yn)|ξ−1] = E[h(θ, Y ∗
n )|ξ0]. By (4), ‖Zn(θ)‖ ≤ 2‖P0h(θ, Yn)‖ ≤

2‖Vn(θ)‖. So we have (17). (ii) Let δ = q/2 − 1 and W =
∫ Y ∗

n

Yn
wδ(dy). If q < 0,

then
∫

R
wδ(dy) = −4/q and |W | ≤ min(|Yn − Y ∗

n |,−4/q). If δ > 0, by Hölder’s

Inequality,

‖W‖ ≤ ‖[(1 + |Yn|)δ + (1 + |Y ∗
n |)δ](Yn − Y ∗

n )‖
≤ ‖(1 + |Yn|)δ + (1 + |Y ∗

n |)δ‖δ
q‖Yn − Y ∗

n ‖q = O(‖Yn − Y ∗
n ‖q).

For the case −1 < δ ≤ 0, we need to prove the inequality |
∫ u
v wδ(dy)| ≤ 2−δ |u −

v|1+δ/(1 + δ). For the latter, it suffices to consider cases (a) u ≥ v ≥ 0, and (b)

u ≥ 0 ≥ v. For (a),

∫ u

v
wδ(dy) =

(1 + u)1+δ − (1 + v)1+δ

1 + δ
≤ (u − v)1+δ

1 + δ
.
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For (b), let t = (u − v)/2. Then

∫ u

v
wδ(dy) =

(1 + u)1+δ − 1 + (1 + |v|)1+δ − 1

1 + δ
≤ 2(1 + t)1+δ − 2

1 + δ
≤ 2t1+δ

1 + δ
.

Therefore ‖W‖ = O(‖|Yn − Y ∗
n |δ+1‖) = O(‖Yn − Y ∗

n ‖
q/2
q ).
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