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Abstract: We examine the inference problem of a proportional trapping model intro-

duced by Good, Lewis, Gaskins and Howell (1979), and consider a similar removal

model in continuous time. The existence and uniqueness of the maximum likeli-

hood estimates of the parameters are studied. Corresponding variance estimates

are also given. Martingale theory is used to obtain the asymptotic properties, and

simulations are conducted to examine the performance of the estimation procedure.
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1. Introduction

In wildlife studies, capture-recapture and/or removal methods are often used

to estimate the unknown population size. Usually the capture procedure is to set

up m traps at the start of each period. It is assumed that the capture probability

of an individual in a trapping period remains constant (Moran (1951), Darroch

(1958), Good, Lewis, Gaskins and Howell (1979)) and may depend on covariates

(Huggins (1989), (1991), Yip, Huggins and Lin (1996), Yip, Zhou, Lin and Fang

(1999), Lin and Yip (1999)). For an excellent review on recapture and removal

studies, see Otis, Burnham, White and Anderson (1978) and Pollock (1991).

However, nearly none of the papers except Good et al. (1979) take into account

the number of traps available.

For many species, once an animal is trapped, it occupies the trap until the

trap is cleared. The trap can only catch one animal at a time. The capture

probability is therefore zero once all traps are occupied (see Good et al. (1979)).

Standard estimation procedures make the implicit assumption that there are

an infinite number of traps or, equivalently, that individuals who are trapped

are released immediately so as to make the traps available for further trapping

(Pollock (2000) and Seber (1982)). Such an assumption would be appropriate for

a bird banding exercise in which a net is set up and any bird that flies through

the net is caught. However, it is not appropriate for most mammal trapping

exercises since in practice, traps are only cleared at specified times. For example,
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a small mammal study was conducted at Dummy Bottom within Browns Park

National Wildlife Refuge along the Green River (see Falck (1996)). Falck used

a 14 × 14 trapping grid (196 traps) with 15m, spacing between traps. Traps

were baited in the evening with a rolled oats and peanuts butter mixture and

checked the following morning. Once an animal was trapped, the trap could not

catch other animals until it was cleared. Here the capture probability is clearly

dependent on the availability of traps. The standard models for capture intensity

generally do not adjust for the number of traps available at the time. The one

exception is the work of Good et al. (1979) who considered a model allowing

for a reduction of trapping capacity. They derived a complicated formula to

obtain an estimate of the population size. As this formula is ill-conditioned,

they developed other estimates. Here we use a counting process to provide a

continuous time formulation for the proportional trapping model to estimate the

population size, ν.

We introduce our model and the martingale estimating equations, then ob-

tain maximum likelihood estimates in Section 2. Asymptotic properties of esti-

mates are derived in Section 3, and simulations are done to assess the performance

of the estimating procedure in Section 4. An example is given in Section 5 to

illustrate our method. Proof of the existence and uniqueness of the maximum

likelihood estimates is given in the Appendix.

2. Formulation of the Proportional Trapping Model and Estimation

Method

In the present study we consider only the situation in which the capture

experiment is conducted in a single period: [0, τ ]. Suppose that, at the beginning

of the time interval, m traps are distributed in a region to investigate the size of

a closed population. The following conditions are assumed – similar to those in

Good et al. (1979).

(i) Each trap can catch at most one animal, and the capture time is recorded.

The caught animal remains in the trap till the end of the experiment, and

can be regarded as having been removed from the population.

(ii) The traps are distributed evenly in the region, so that an animal has equal

probability of being captured by each trap.

(iii)The animals behave homogeneously, i.e., the risks of capture are the same.

(iv) There is no interference from animals of another species.

If there are ν animals altogether, from which k animals are caught at times

0 < t1 < t2 < · · · < tk < τ , respectively, then by our assumptions, the hazard

rate for any animal to be caught at time t ∈ [0, τ ] is proportional to the number

of available traps. Let Ni(t) indicate if the ith animal has been caught up to
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time t and N(t) =
∑ν

i=1 Ni(t), which represents the total number of captures up

to time t. Then

Ni(t) = Ni(t) −
∫ t

0
λ{m − N(s−)}{1 − Ni(s−)}ds

is a F∗
t martingale. Here, 1 − Ni(s−) indicates if the ith animal is at risk just

before time s, λ is a constant baseline hazard, which can be interpreted as hazard

rate if there is only one trap and only one animal (see Good et al. (1979)), and

F∗
t = σ{Ni(s) : 0 ≤ s ≤ t, i = 1, . . . , ν}. Summing over i, we obtain an Ft

martingale, N (t) =
∑ν

i=1 Ni(t), i.e.,

N (t) = N(t) −
∫ t

0
λ{ν − N(s−)}{m − N(s−)}ds, (1)

where Ft = σ{N(s) : 0 ≤ s ≤ t}. The above formulation can be regarded as

a generalization of most other removal models. Consider the case in which the

number of traps, m, is much bigger than ν. Then λ(m−N(s−)) is approximately

a constant λ̃, and so our model becomes the usual one without considering the

availability of traps: see Becker (1984), Becker and Heyde (1990), Yip, Fong and

Wilson (1993) and Chao (1987).

If we denote by s1 = t1, si = ti − ti−1 (i = 2, . . . , k) and sk+1 = τ − tk, then

equating N (t) to its mean, namely zero, we obtain

k = λ
k

∑

i=1

(ν − i + 1)(m − i + 1)si. (2)

It is worth noting that N(t) is a birth process so that the si are independent and

exponentially distributed.

Actually (2) is a score function which can be derived from the likelihood

function given below. The intensity function for N(t) is λ{ν − N(t−)}{m −
N(t−)}, and the likelihood function for N(t) is given by (see Andersen, Borgan,

Gill and Keiding (1993))

L(λ, ν) =
∏

0≤t≤τ

[λ{m − N(t−)}{ν − N(t−)}]∆N(t)

× exp [ −
∫ τ

0
λ{ν − N(t−)}{m − N(t−)}dt].

The derivatives of log L(λ, ν) with respect to λ and ν are given by

∂ log L

∂λ
=

k

λ
−

∫ τ

0
{ν − N(s−)}{m − N(s−)}ds, (3)

∂ log L

∂ν
=

k
∑

i=1

1

ν − i + 1
−

∫ τ

0
λ{m − N(s−)}ds. (4)
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Note that (3) is equivalent to (2), but (4) is different from the ones suggested
in Darroch (1958) and Yip et al. (1993) where the availability of traps is ignored.
Furthermore, (3) and (4) can also be obtained by choosing the corresponding
optimal weights for the martingale

N ∗(t) =

∫ t

0
H(s)dN (s), (5)

where H(s) = {H1(s),H2(s)} is a predictable vector (weight function) with re-
spect to Fs. According to Godambe (1985), the optimal weight functions for λ
and ν can be determined as

H1(s) =
E { ∂dN (s)

∂λ
|Fs−}

E {dN (s)2|Fs−}
and H2(s) =

E {∂dN (s)
∂ν

|Fs−}

E {dN (s)2|Fs−}
,

which, in this case, are given by

H1(s) =
1

λ
and H2(s) =

1

ν − N(s−)
, (6)

respectively. Putting (6) back to (5), again we get (3) and (4), which are originally
derived from the likelihood function.

Also, it can be shown that ν̂, the MLE of the population size, is the solution
of the following equation

k

ν − C
=

k
∑

i=1

1

ν − i + 1
, (7)

where C =
∑k+1

i=1 (i − 1)(m − i + 1)si/
∑k+1

i=1 (m − i + 1)si. Note that we always
have 0 ≤ C ≤ k. The existence and uniqueness conditions for ν̂ are given in the
following theorem, the proof is given in the Appendix.

Theorem 1. If the number of animals caught k is 0 or 1, then (7) has no finite

solution; when k ≥ 2, the necessary and sufficient condition for the existence and

uniqueness of the solution of (7) is

k − 1

2
< C ≤

(

∑k
i=2

1
i

∑k
i=1

1
i

)

k. (8)

From Theorem 1 it can be seen that as in most other capture-removal models,
there is a positive probability that the MLE does not exist.

Once the estimate ν̂ is available, the estimate of λ is given by λ̂ = k/{
∑k+1

i=1

(ν̂ − i + 1)(m − i + 1)si}. The observed information matrix is

I = −









∂2 log L

∂λ2

∂2 log L

∂λ∂ν

∂2 log L

∂λ∂ν

∂2 log L

∂ν2









=









1
λ2

∫ τ

0
dN(s)

∫ τ

0
{m − N(s−)}ds

∫ τ

0
{m − N(s−)}ds

∫ τ

0

dN(s)

{ν − N(s−)}2









,
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and, since the predictable covariation process of (∂ log L/∂λ, ∂ log L/∂ν) at t = τ
takes the value

D =









1
λ

∫ τ

0
{ν − N(s−)}{m − N(s−)}ds

∫ τ

0
{m − N(s−)}ds

∫ τ

0
{m − N(s−)}ds

∫ τ

0
λ

m − N(s−)

ν − N(s−)
ds









,

a reasonable estimate of the covariance matrix of (λ̂, ν̂) is Î−1D̂Î−1, where Î and
D̂ are obtained by replacing λ and ν by λ̂ and ν̂ in I and D, respectively. As

a consequence, we get the estimate of the variance of ν̂, ŝ2
ν̂ . Since D and I are

asymptotically equivalent, Î−1D̂Î−1 can be replaced by Î−1 or D̂−1. In the next

section we examine the asymptotic properties of the estimator ν̂.

3. Asymptotic Properties

Let B(t) = E {N(t)} and V (t) = Var {N(t)}. Taking expectation in (1), we

get an integral equation

B(t) =

∫ t

0
λE [{ν − N(s−)}{m − N(s−)}]ds

=

∫ t

0
λ[νm − (ν + m)B(s) + E {N 2(s−)}]ds

=

∫ t

0
λ{νm − (ν + m)B(s) + V (s) + B2(s)}ds.

The corresponding differential equation is therefore

dB(t) = λ{ν − B(t)}{m − B(t)}dt + λV (t)dt. (9)

We study the asymptotic properties when ν → ∞. If m remains constant,

then all traps will soon be occupied when ν → ∞. Therefore a reasonable

assumption is that m → ∞ too. The counting process N(t) does not have the
form of i.i.d. summation, but the martingale limit theorems can still be used.

Note that if m and ν have the same order when ν → ∞, the intensity is actually
a quadratic function of ν, hence we need a time scale transformation which is

expressed in the following lemma.

Lemma 1. Let ν tend to ∞ and m/ν tend to a constant r > 0. Then N( t
ν
)/ν

converges in probability to a continuous, strictly increasing deterministic function

A(t) =































r ·
exp{λ(1 − r)t} − 1

exp{λ(1 − r)t} − r
if r < 1;

λt

1 + λt
if r = 1;

r ·
exp{λ(r − 1)t} − 1

r · exp{λ(r − 1)t} − 1
if r > 1.
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And the martingale M(t) = ν− 1

2 [N( t
ν
) −

∫ t
0

λ
ν
{ν − N(u

ν
−)}{m − N(u

ν
−)}du]

converges weakly to a Gaussian process with mean 0 and predictable variation

process A(t).

Proof. It can be proved that limν→∞ B( t
ν
)/ν exists. Denote it by A(t). It

is well known that the predictable variation process of N (t) is just the com-

pensator of N(t), i.e., the process N 2(t) −
∫ t
0 λ{ν − N(s−)}{m − N(s−)}ds is

a Ftmartingale. Therefore by using the fact that E [{N(t) − x}2] is minimized

when x = E{N(t)} = B(t), we have

V (t) = E [{N(t) − B(t)}2] ≤ E

[

{N(t) −
∫ t

0
λ(ν − N(s−))(m − N(s−))ds}2

]

= E [N 2(t)] = E

[
∫ t

0
λ{ν − N(s−)}{m − N(s−)}ds

]

= B(t) ≤ ν.

For any fixed t ∈ [0, τ ], by applying Chebyshev’s Inequality to N( t
ν
)/ν, it con-

verges in probability to limν→∞ B( t
ν
)/ν = A(t). From (9) we have

dB( t
ν
)

ν
= λ

{

1 −
B( t

ν
)

ν

}{

m

ν
−

B( t
ν
)

ν

}

dt + λ
V ( t

ν
)

ν2
dt.

Let ν → ∞ to obtain a differential equation dA(t) = λ{1 − A(t)}{r − A(t)}dt

with initial condition A(0) = 0. The solution is expressed in Lemma 1.

The predictable variation process of M(t) is

〈M〉(t) = ν−1
∫ t

0

λ

ν
{ν − N(

u

ν
−)}{m − N(

u

ν
−)}du

=

∫ t

0
λ{1 −

N(u
ν
−)

ν
}{

m

ν
−

N(u
ν
−)

ν
}du,

which converges in probability to
∫ t
0 λ{1−A(u)}{r −A(u)}du = A(t). The weak

convergence of M(t) is then a direct consequence of Theorem II.5.1 of Andersen

et al. (1993).

Theorem 2. Suppose ν tends to ∞ and m/ν tends to r < 1. Let λ̂ and ν̂ denote

the maximum likelihood estimates of λ and ν, respectively. Then ζ̂ = {ν
1

2 (λ̂ −

λ), ν− 1

2 (ν̂ − ν)} converges in distribution to a bivariate normal distribution with

mean zero and covariance matrix Ω−1, where

Ω =







r

λ2

1

λ
log

1

1 − r
1

λ
log

1

1 − r

r

1 − r






.
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Proof. Let U = (ν− 1

2 (∂ log L/∂λ), ν
1

2 (∂ log L/∂ν)). Then, by Taylor’s series

expansion,

U = Jν ζ̂ + op(1), where Jν =









ν−1
∫ τ

0

dN(t)

λ2

∫ τ

0
{m − N(t−)}dt

∫ τ

0
{m − N(t−)}dt ν

∫ τ

0

dN(t)

{ν − N(t−)}2









.

Using Lemma 1, direct calculation (see Andersen et al. (1993)) shows that Jν
P
→ Ω

as ν → ∞, and since U
d
→ N2(0,Ω), it follows that ζ̂

d
→ N2(0,Ω−1).

From the theorem we see that if ν and m are large (with m < ν), then

replacing r with m/ν̂ in Ω, the asymptotic variance of ν̂ can also be estimated

by s̃2
ν̂ = {m(ν̂ − m)ν̂}/{m2 − ν̂(ν̂ − m){log(1 − m

ν̂
)}2}.

When r ≥ 1, it is found that the variance of ν− 1

2 (ν̂ − ν) tends to 0. The

intuitive explanation for this is that if the baseline hazard λ remains constant

and there are not less traps than animals, then the proportion of animals caught

will tend to 1.

It seems that the condition m/ν → r is too strong, but it is not. When m

and ν are large, there could be three situations: ν is much larger than m; m

is much larger than ν; or m and ν are comparable. In the first case, since the

number of caught animals cannot exceed m, the capture proportion will be too

low to provide enough information for estimating ν. In the second case, almost

all animals will be caught very soon, the MLE is certainly consistent (see the

previous paragragh). In the third case we need the asymptotic properties given

in Theorem 2.

4. Simulations

Different combinations of population size ν, number of traps m, and baseline

hazard rate λ are chosen for the simulation study. The choice of τ is always fixed

to be 1, since its influence can be reflected in the choice of λ. The combinations

are: for ν = 100, we take m = 80, 100, 120 and λ = 0.05, 0.10; for ν = 500, we

take m = 300, 400, 500, 600 and λ = 0.003, 0.01, 0.02. The overall probabilities

of being captured are from 40% to 97.5%. For each combination of ν, m and λ,

10,000 replications were simulated to estimate the mean and standard error of

the population size estimator ν̂, the mean of the standard error estimator ŝ ν̂, and

the coverage percentage of the 95% confidence interval (ν̂ − 1.96ŝν̂ , ν̂ + 1.96ŝν̂).

The simulation results are summarized in Table 1.

These results show that the proposed inference procedures perform well when

m and ν are large and the overall capture proportion is not too low (above 60%).

The bias for ν̂ (and for ŝν̂) is usually not large, and it diminishes quickly as the
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capture proportion increases. The coefficient of variation for ν̂ is fairly small, and

the confidence interval has proper coverage probability. For small values of m and

ν the performance is still satisfactory for a high capture proportion, whereas the

estimate would be very unstable for low capture proportion. There are very few

unsuccessful simulations, which means that the probability of the corresponding

model failure (see Section 2) is fairly small. Bias is positive when m is smaller

than ν, or if the overall capture proportion is low. The standard error estimate

s̃ν̂, obtained from the asymptotic result (not presented here), is close to ŝ ν̂ when

m and ν are large, but is apparently an underestimate otherwise.

Table 1. Simulation results for various combination of ν, m and λ.

True Values Simulation Results

Trials ν m λ Pot Pτ ñ ν̂ ŝν̂ Pc

1 100 80 0.05 89.58 71.66 9997 108.16 (160.81) 161.92 (12676.5) 88.89

2 100 80 0.10 96.96 77.57 9998 104.84 (27.36) 19.92 (94.89) 90.22

3 100 100 0.05 83.33 83.33 10000 108.40 (13.20) 10.39 (5.66) 90.26

4 100 100 0.10 90.91 90.91 10000 100.07 (5.65) 5.60 (2.20) 90.85

5 100 120 0.05 75.97 91.16 10000 99.66 (5.18) 5.32 (1.89) 91.21

6 100 120 0.10 81.22 97.46 9988 99.54 (2.01) 2.62 (0.62) 93.64

7 500 300 0.003 67.27 40.36 9892 711.76 (2484.09) 5694.10 (185287.25) 86.31

8 500 300 0.01 94.11 56.46 10000 520.91 (112.14) 103.05 (90.70) 91.08

9 500 300 0.02 99.26 59.56 10000 521.24 (99.28) 88.89 (71.81) 92.76

10 500 400 0.003 63.63 50.90 10000 535.97 (399.31) 274.13 (11940.38) 89.61

11 500 400 0.01 89.58 71.66 10000 504.76 (43.22) 42.61 (14.14) 93.54

12 500 400 0.02 96.96 77.57 10000 503.40 (31.64) 30.85 (8.84) 94.37

13 500 500 0.003 60.00 60.00 10000 512.10 (85.77) 80.70 (49.22) 91.52

14 500 500 0.01 83.33 83.33 10000 500.87 (21.39) 21.32 (4.50) 94.22

15 500 500 0.02 90.91 90.91 10000 500.24 (11.95) 11.85 (1.97) 94.24

16 500 600 0.003 54.44 67.73 10000 503.77 (53.34) 51.64 (20.08) 92.56

17 500 600 0.01 75.97 91.16 10000 499.84 (11.47) 11.50 (1.79) 94.12

18 500 600 0.02 81.22 97.46 10000 499.59 (4.48) 4.59 (0.58) 94.29

Notes: 1. Pτ : capture probability;
2. Pot: averaged proportion of occupied traps;
3. Pc: 95% coverage probability;
4. Simulated standard errors in parentheses;
5. ñ: no. of successes from 10,000 simulations.

If the number of traps is neglected, an inappropriate model gives the count-

ing process N(t) the intensity λ̃{ν − N(t−)}, with λ̃ being the corresponding

baseline hazard, and the maximum likelihood estimate for ν again as the solu-

tion of (7), but with constant C replaced by C̃ = 1
τ

∑k+1
i=1 (i − 1)si. Simulation

shows that the estimator from the inappropriate model is strongly biased nega-

tively. For example, for Trials 2–4 in Table 1, if the inappropriate model is used,
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the corresponding means of the estimate ν̂ are 78.76 (1.11), 84.58 (2.63) and

92.81 (1.60) respectively. The simulated standard errors are misleading small.

Estimates from the proportional trapping model give the values 104.84 (27.36),

108.40 (13.2) and 100.07 (5.65). Table 2 shows that when the number of traps

increases and ν remains at 100, the underestimation via the inappropriate model

is less severe. The overall capture probabilities for each of the trials in Table 2

is around 85%.

Table 2. The effect of different number of traps (m) in using the inappro-

priate model for ν = 100.

True Values Simulation Results

Trials m λ ñ ν̃

1 100 0.057 8077 86.16 (2.36)

2 200 0.0135 10000 91.80 (5.06)

3 400 0.0055 10000 95.46 (6.87)

4 600 0.0035 10000 96.94 (7.44)

5 1000 0.002 10000 98.04 (8.31)

Notes: 1. Standard errors in parentheses;

2. ñ: no. of successes from 10,000 simulations.

5. A Mammal Capture Study

Since the model of Good et al. (1979) and the proposed one deal with different

types of data, it is impossible to use their examples for comparison. We use a data

set from a small mammal capture-recapture study (Falck (1996)) to illustrate our

method. Captured animals were given unique marks and released at a capture

location. The study was designed by using Pollock’s robust design (Pollock,

Nichols, Brownie and Hines (1990)) with primary and secondary sessions. We use

the capture data at the 5th secondary session in the 3rd primary session, in which

there were altogether 62 animals caught. The captured animals are regarded as

having been removed, since they had to stay in the traps until the end of this

secondary session (i.e., one day). In order to apply the proposed method we make

the discrete data continuous by generating the unknown capture times based on

the proposed model with parameter values ν = 75 and λ = 0.0009. The capture

times of the individuals are given in Table 3. Since the experiment was carried

out from the evening to early morning of the next day, τ is taken to be 12 hours.

The estimated population size is 77.26, with a standard error 11.12. If we

use the model which ignores the information on the number of traps, then the

maximum likehood estimate is 70.53, with a standard error 6.45. Remembering

that estimates from this model are usually negatively biased, one might guess

that the true value should be greater than 70.53, and close to 77.26. The 95%
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confidence intervals for population size ν, constructed by using asymptotic nor-
mality, are (55.46, 99.06) and (57.89, 83.17), respectively, according to the two
models.

Table 3. Simulated capture times for the removal data from Falck (1996)
using ν = 75 and λ = 0.0009.

No. Time No. Time No. Time No. Time No. Time

1 0.04 14 1.15 27 3.15 40 4.89 53 7.84

2 0.07 15 1.76 28 3.25 41 5.14 54 7.95

3 0.13 16 1.80 29 3.26 42 5.48 55 8.44

4 0.24 17 1.83 30 3.63 43 5.50 56 8.59

5 0.35 18 1.87 31 3.84 44 5.73 57 8.64

6 0.37 19 1.88 32 3.91 45 5.75 58 9.11

7 0.48 20 1.88 33 4.03 46 5.84 59 9.72

8 0.50 21 2.14 34 4.05 47 6.28 60 10.91

9 0.68 22 2.32 35 4.39 48 6.56 61 11.12

10 0.79 23 2.60 36 4.40 49 6.73 62 11.37

11 0.83 24 2.85 37 4.54 50 6.87 – –

12 0.85 25 2.86 38 4.73 51 6.99 – –

13 0.89 26 2.86 39 4.83 52 7.02 – –

In this example, about 1/3 (62/196) of the traps were occupied. This means
that at the end of the secondary session, for any animal still at risk, the hazard
rate of being caught is about 2/3 of that at the start of the session. The reduc-
tion of traps available is significant, which reinforces the necessity of using the
proposed proportional trapping model.
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Appendix: Proof of Theorem 1

Lemma 2. Let f(x) = k
x−C

−
∑k

i=1
1

x−i+1 , for x ∈ [k,∞). If f(x1) = 0 for

some x1 ∈ [k,∞), then f
′

(x1) > 0.

Proof. If f(x1) = 0, then 1
x1−C

= 1
k

∑k
i=1

1
x1−i+1 . Since g1(x) = x2 is a convex

function, by Jensen’s Inequality we have

1

k

k
∑

i=1

1

(x1 − i + 1)2
>

(1

k

k
∑

i=1

1

x1 − i + 1

)2
=

1

(x1 − C)2
,
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i.e., f
′

(x1) > 0.

Proof of Theorem 1. Since f(x) defined above is a continuous function, if

f(x0) > 0 for some x0 ≥ k, then f(x) > 0 for all x ≥ x0, otherwise the smallest

x1 with f(x1) = 0 would satisfy f
′

(x1) ≤ 0, which contradicts Lemma 2. From

this we know that if x1 is a solution of (7), then f
′

(x1) > 0 and f(x) is positive

for all x > x1, so (7) can have at most one solution. If f(k) > 0, which is

equivalent to C > (
∑k

i=2
1
i
/
∑k

i=1
1
i
)k, then for all x ∈ [k,∞), f(x) > 0, and

equation (7) has no solution. Notice that f(x) = h(x)/{(x−C)
∏k

i=1(x− i+1)},

where h(x) = k
∏k

i=1(x−i+1)−(x−C)
∑k

i=1 [
∏k

j=1,j 6=i(x−j+1)] is a polynomial

function of degree (k − 1), with the coefficient of xk−1 being −k
∑k

i=1(i − 1) −
∑k

j=1[−
∑k

i=1(i−1)+(j−1)−C] = kC−{k(k−1)}/2. Therefore, if C < (k−1)/2

then for large enough x, h(x), and hence f(x), is less than 0. Since f(k) < 0,

from Lemma 2 we know that f(x) is always negative, so the solution does not

exist. When C = (k − 1)/2, the coefficient of xk−1 is 0, and it can be shown that

the coefficient of xk−2 is

k
∑

1≤i<j≤k

(i − 1)(j − 1) −
k

∑

i=1

∑

1≤j<l≤k,j 6=i,l 6=i

(j − 1)(l − 1) − C
k

∑

i=1

k
∑

j=1,j 6=i

(j − 1),

which is equal to −k(k + 1)(k − 1)/12, and is negative. From Lemma 2 again

we have f(x) < 0 for all x ≥ k, which means the solution of (7) does not exist.

Finally, when condition (8) is met, we have f(k) ≤ 0, and for large enough x,

f(x) > 0, so there is a unique solution. Apply these conclusions to the cases

k = 0, 1 and k ≥ 2 to obtain Theorem 1.
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