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Abstract: In the main article, we propose semiparametric inference methods for estimating
the association parameter for the dependently truncated data. Here we provide
supplementary information for the results. The regularity conditions and proofs for the
asymptotic analyses are given in Appendix A.1 and Appendix A.2 respectively. Appendix
A.3 discusses variance estimation of the proposed estimators based on the asymptotic
linear expression derived in Appendix A.2. In Appendix A.4, the analytical variance
estimator under the Clayton model is derived and compared with the jackknife alternative
by simulations. In Appendix B we derive the relationship between the proposed estimating
function for the association parameter and that proposed by Chaieb, Rivest and Abdous
(2006). In Appendix C, explicit formulas of the proposed estimating functions for selected
examples of Archimedean copula models are given.
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Appendix

Appendix Al: Regularity Conditions

(A-I) A parameter space ® c R* for (a,c) iscompact;

(A-II) Deterministic functions @,(v) , @ .(v)=094,(v)/dv , ¢ (v)=3’¢,(v)/ov" ,
¢a(v), @' (v)=0¢,'(V)/da,0,(v), 6.(v)=08,(v)/ov,6.(v)=3%6,(v)/N>*,
éa(v) =d60,(v)/da, w,(v), and W, (v)=0w,(v)/dv are twice continuously
differentiable and bounded function of (&,v);

(A-III) There exists a function w,{-}: R — R such that

—-1/25.
)

B

sup [, . (x,y) = W, {c£(x,1)}|= 0, (n
X,y

(A-IV) There exists two positive numbers y, < x, such that
Fy(y,)>0, S,(yp)=1, Fy(x,)=1 and S,(x,)>0.

(A-V) The (2x2) matrix A=E[U, (X,Y)] is non-singular, which is given later.

.o

These regularity assumptions guarantee sufficient conditions for the use of the
functional delta method and empirical process theory (Van Der Vaart, 1998) in the proofs.
Application of the functional delta method requires somewhat stringent differentiability
assumption (A-II) together with the compactness of the parameter space (A-I). Condition
(A-III) demands that the weight function is approximately expressed as, or exactly equal to,
a smooth function of an empirical process. Note that (A-IV) is a condition for the

identifiability of (Fy (-),S,(-)), which has been routinely used in theoretical analysis of
truncation data. For example, the upper limit x, plays the same role as the notation T~

in Wang, Jewell and Tsai (1986). Non-singularity of (A-V) appears to be difficult to verify,

but it is a standard regularity assumption imposed for consistency of Z-estimators.



Appendix A2: Asymptotic Analysis
To simplify the notations, we define g,(v)=1/{1+8,(v)}, 7(0,y)=Pr(Y >yl X <Y)
and 7(x,0)=Pr(X <x|X<Y) . Also, let {D[0,)}> be a space consisting of
right-continuous function (f,(¢), f,(t))" with left-side limits, where f,(¢):[0,o0) — R

for k=1,2. The metric is defined as d(f, g)=max{sup|f (t)—g,(@®)|;k=12} for

0<i<eo
f,g€ {D[0,%)}*. Similarly, the space D{[0,e0)*} consists of right-continuous function
f(s,t) with left-side limits, where f(s,?): [0,00)> > R, equipped with the usual
sup-norm. Let ® c R* be the parameter space for (&,c), and (&,,c,)e ® is denoted

as the true parameter value. Hereafter, expectation symbols represent the conditional
expectation given X <Y .

All the estimating functions and estimators in this paper can be approximately
expressed as a Hadamard differentiable function of the empirical process

#(x,¥)=R(x,y)/n . The functional delta method is applied based on the weak

Y2(#(x,y)—7m(x,y)) to a Gaussian process W(x,y) on

convergence result of n
D{[0,%)*} with the covariance structure given by:
coviW (x;, ¥, W(xy, y,)} =7(x; A Xy, 3y vV y,) = (X, y)7(X,, ,)
for x, <y, and x,<Yy,.
The first step is to obtain the asymptotic linear expression for U L(a,c) and U (a,c).

By applying the functional delta method, the estimating function U L(a,c) can be

expressed as:

-1
(Z] ﬁw(a,c) = CD(ﬂ';CZ,C)%-lZCD;(ﬂA'(X ¥) —7&';(2’,C)+0[7 (n_llz) (A.1)
n i o



where e D{[0,00)*}, 2 , (x,y)=1(X, < x,Y, 2y),
d(r:a,c) = ” jjm*sw*wa{cyz(xv x5y Ay}
X[I((x=x)Ny-y)>0)-g {cx(xvx,yry)lda(x,y)dr(x,y"),

and

@’ (ha,c) = c” J.Lw*syw* h(xvx',yny’)

(W, fex(ev 2",y A YN =3 )y =y) >0} = g lemxv x’,y Ay
—w{cr(xvx,yAry)lg{er(xvx,yna y*)})dyz(x,y)dﬁ(x*’ v)
+ ZIJ-J.J‘X\/X*S)'A)'* wa{Cﬂ'(x\/ x*’ YA y*)}

X[H{(x=x)y=y)>0} =g fem(xvx’,y Ay)Hdh(x, y)da(x', y").

Similarly U _(&,c) can be expressed as

U.(a,c)=¥(m;a,c) +%Zn:‘l’,',(7%(th -ma,c)+o,(n"?), (A.2)
i
where
Y(r,a,c) = c]q¢; {em(u,u)}dr(w,0)+@,{cm(y,,y,)}
and

‘P,',(ﬂ(xhyi) —ma,c)=c’ Jq¢;'{c7r(u,u)}{l(Xi <uY, 2u)—7x(u,u)}ldr(u,0)

—c j (I(X, < u)— 7(u,0)}dd, (cm(u,u)) .
Both terms of CID;(ﬂ(XhY[) —-ma,c) and P, (”(X,-,Y,J —T;,c) have zero-means for any
value of (&, c). Using the following notations:

PN , A3
lP”(ﬂ'(X[’Yi) -ma,c)+¥Y(r,a,c) (A-3)

Ua,c(X,-,Y,-)=[



we obtain the asymptotic expression
-1
n\ ~
(2} Uul@.0)_ ZUW(X,, Y)+o,(n"). (A4)
U.(a,c)

Based on equation (A.4), now we prove the consistency of (&,¢) based on the

empirical ~ process  techniques. From (A.1) and (A.2), we  have

D U4 (X, .Y,)In=0,(n""?). This formula implies that (&C) is an approximate

i=1
Z-estimator (Van Der Vaart, 1998, p.46) for the criterion function (&,c)—>U, (x,y).
The consistency of (&,¢) follows by checking the two conditions: (i) The point (¢,,c,)
is the unique zero for E[U, (X,Y)]=0 in its neighborhood and (ii) the set of functions
3={U,.(,);(a,c)e B} is Glivenko-Cantelli (Van Der Vaart, 1998). For (i) we first need
to check ®(7;a,,c,)=0 and ¥ (7;,,c,)=0. The first equation follows from the fact

that the conditional expectation of A, given (X Yij) is g%{coﬂ(fl.j.,fij)} .

ij

The second equation can be directly shown from the identity:

Do Ao (¥0:¥0) Y =P {F (¥o)} = Icoﬂ(u W)@, { ey (u,u )}dﬂ'(u())
Yo (uvu)

Let U, (X,.Y)=0U,. (X,Y)/d(ac) and A=E[U, (X,Y)] . Then, the
non-singularity of A= E[U ae (X-Y)] is sufficient to show the uniqueness of the
zero-point of (&,,c,) in its neighborhood. To prove (ii), we note that sufficient
conditions for Glivenko-Cantelli are that (&,c) > U, (x,y) is continuous in (&,c) for

any fixed point (x,y) and that the function (a,c,x,y)> U, (x,y) is bounded (Van

Der Vaart, 1999). These requirements are satisfied under the continuity condition (A-II)



along with the compactness of the parameter space (A-I). Thus, the conditions for the
consistency of (&,¢) are justified.

Finally, based on the Taylor expansion of equation (A.4), one can show that

a-«, 1 &
\/;[A O}ZFZAIU%%(X,,,K)Jrop(l).

=6 =1
Thus, the statement of Theorem 2 holds by letting B=E[U, . (X.Y)U, . (X,Y)"].

For the marginal estimators, we derive the following asymptotic linear expression:

e s B {LX“‘]‘“(X"’W)HhY(t)T}A‘IUa LX) o, ),
0B (0} =0, (F, ) a0 Y| Ly [

no g

where

Hya,c(;z;r){jaaay/{a,c;;z(u,u)}dn(oo,u) j aacl//{a,c;ﬂ(u,u)}dﬂ(oo,u)} ,

T
H* oo (mf) = j 9 o, ¢, 70(u, u) Yd(u,0) j 9 yla, ¢, (u,u) YAz (u,0)
) da " dc
and L'ac(X,,Y;t) and L'2.(X,,Y;t) equal

& et MICX, <u,Y, 2w ~72(u,0)dteo, )+ [ 6 etuu (Y, 2u) ~(eo,1)),

—c? f¢;{cﬂ(u,u)}{I(Xi <u,Y, 2 u)— 7w(u,u)}dz(u,0) —cf(/ﬁ;{ciz'(u,u)}d{l(xi <u)—7(u,0))}

respectively. The terms in the summation are i.i.d. mean-zero stochastic processes and the

summation is a tight process. The notation o,(1) holds uniformly for 7e [0,c0). Then it

can be shown that

1/2 Sy(l‘)—SY(t) 1 VY e (X, Y50
- A D, AS
' |:FX (t)_FX (t):| nl/z ;|:VX0&),C()(Xi,Yi;t)i|+0p( ) ( )



where

T
Y . -1
VYa(),C()(Xi,YI-;t): L tZo,Ca(Xi?Yiet) +{ hY(t) +|:¢af {¢%S)/(t)}:|} A_IU%,CO(XI-,YI-)

¢, 1Sy ()} ¢, {Sy (1)} 0
and
VX%,C”(X”Yi;t):LX%;C()(Xi’Yi;I)_i_ /hX(t) + ¢a_ {¢%FX(I)} A—an . (Xl,Yl)
P {Fx (D)} 9., (Fx (D)} 0 v

are mean-zero i.i.d. stochastic processes and their summations are tight processes. Let
Vn(t)znllz(fy(t)—SY(t), I:"X (t)—F,(1))". Also, let G(t)=(G,(?), GY(I))Tbe a zero-mean
Gaussian  random  field, the covariance function being specified as
E[G,(5)G, (D= ElV. . (X.Y;s)V) (X.Y:n] , HG,($)G,O]=EV,), (X.Y;s)V. (X.Y;0)]
and E[G,()Gy(D]=E[V, . (X.Y:s)V, (X.Y;r)] for 0<s,t<co. Based on the central
limit theorem, the finite dimensional distribution of V (r) converges weakly to that of
G(t) and the tightness property of V (1), we can prove Theorem 3.

Appendix A3: Estimation of Variance under AC models

The asymptotic analysis in Appendix A.2 has proven that Jn (@—a,,¢—c,) has an
asymptotic variance A"'B(A™')" . Plug-in estimators can be used to obtain the estimators

of the asymptotic variance by Aa . Where

i - qu; a,c)/ o, c)} (A6

| ¥(#a,0) /e, )|

0P(7;a, 1 2(X,. 7,

E)((%C)C) - [Ay =8 (X, Y )}
1
_2

awa{cfz()?k,, Y,)}
kz 4 (e, c)

{cA(X,. V)
d(,c)

o - 2
— ZI{Ak,}Wa{Cﬂ'(Xkl’Ykl)} La
k.l



a‘P(ﬁ;a,c):l Z ac¢;{Cﬁ(Xj’Xj)}+a¢a{Cﬁ.(yL’yL)}
a(a,c) njorex, a(a,c) a(a,c)

N 1 A A
and B,,=—> U,.(X,;,Y)U,.(X,,Y))", where
n-;

A D, (B v, —A;0,0)
Upe (X ¥ =| ) 0 (A.6-b)
(T x,y,) ~ T 0,C)

CI);,(f[(X“Y[) -7a,c)
C ~ ~ ~ ~ ~
:n_zzl{Akl}{I(Xi <X Y 2Y,)-7(X,,, Yy)}
k.1
x (i, (e AR 1 T Ay = g eA(R g, TN =, (AR o, TV (e (R 1, T )Y)

2 - o~ ~ o~ ~
+;ZI{A,'1}W0({C7[(X,'1, Yi[)}[Ail _ga{Cﬂ.(Xil, Y,[)}]
1

2 L~ ~ .
_?ZI{AM}WD:{C”(XWYkl)}[Akz_ga{Cﬂ'(Xk/’Ykz)}]’
]

V(% y, —7:a,0)
2
c ” A A
=7Zl(yL S X)X XOHI(X, < X,.Y, 2 X ) - 2(X,, X))
k

_CZI(yL SX X, <X )= 2(X XM AcAX X )Y =P {cA(X, = X, )]

In the above expression, the asymptotic variances of the proposed likelihood estimator and
the estimator of Chaieb et al. (2006) can be obtained by setting
w,(v)= éa(v){1+1/ 6,v)}/v and w,(v)=1 respectively. Expressions (A.6-a) and
(A.6-b) are applicable to the whole AC families by setting an arbitrary generating function
¢,(v). Although the asymptotic variance estimators from (A.6-a) and (A.6-b) are explicit,
the formulae are somewhat complicated. In the next section, we explain how to apply
these formulae to the Clayton model.
Appendix A4: Estimation of Variance under Clayton Model

Expressions (A.6-a) and (A.6-b) become relatively easier to calculate for the Clayton AC



model of the form @, (1)=("*"-1)/(a—1). Applying g, =1+a)", g, (v)=0,

g (t)=—(—Dt™ and @, (t)=a(a—1)t"*", one obtains

0P (%, 0)

o

1 o, (AR, T, i R
= XA, e ) B U@ s S AT (AR, )

q);z(ﬁ(x,,y,.) -7a,c¢)

C ~ ~ n, ~ ~7 n, ~
:?ZI{AM}{I(X, <X,.Y.2Y,)-72X,, Y)W l{cZ(X, YA, -1/(1+a)]
k.1

2 ~ AT S 2 . AT S
+;ZI{AH W {eA(X,, YA, —1/(1+ a)]—?ZI{Ak, W {e(X,,, YA, —1/(1+a)],
! k,l
It turns out that the above formulae do not depend on ¢ when one chooses the weight

w,(v)=1 and w,(v)=c(l+a)/(vex) corresponding to the estimator of Chaieb, Rivest
and Abdous (2006) and the proposed likelihood estimator respectively. The above

expression can be used for approximating the asymptotic variance of & by
Var(n@) = A2 (n)B, (n) (A7)
where Aa (n) and éﬁ{ (n) are defined separately as follows:

1) Estimating equation for Chaieb, Rivest and Abdous (2006): w,(v) =1

A T l+a )2 ZZI{A”}

B(n)——Z( ZI{A} 1/(1+a)]——ZI{A,d} u 1/(1+a)]J .

2) The proposed likelihood equation: w, (v) = c(1+ &) /(ver)

1/(1+a) 1 Z I{A,}

. 1
A ) =——— Y 14, 2 Bl 7]
a’n Z AX, Y a(1+a)n2 = rX,.Y,)



éam)=12[—1+“21{Aﬂ}w{l<x <R, Y 20— 2R, 7))
k.l

n on’ ”(Xkl’zz)z

i

-
2(0+) A, —1/(1+a)] 2(1+a) (A, —1/(1+a)]
+— I{A’} = = - I{Ak }A.\,—.\,
Z, YA(X,.Y) ? ; "X, Y, ]

We have performed Monte Carlo simulations to assess the performance of the above
variance estimators and to compare them with the jackknife estimator. Data

{(X,;,Y))(j=1...,n)} were generated by the Clayton semi-survival AC model with

exponential marginal distributions subject to the truncating condition X, <Y,. For each

run, the estimator of the asymptotic variance &, :Af (n)é&(n) and the jackknife

Analytic
estimator

A2 A(=7 —(- A= —(
Gl = (=D (@7 —aya"" -ay,
J

where @/ is the estimator ignoring j th observation & =% &“”/n , are
J

calculated. The mean squared error (MSE) with respect to the sample variance of & is

compared based on 200 runs. Also, their empirical coverage probability for the confidence

limits &+1.966 //n and &il.%&mk/\/; is compared.

Analytic
Table 1 and 2 summarize the simulation results. Note that results from Table 1 use

the weight w,(v)=1 while those of Table 2 use w,(v)=c(l+a)/(ver) for variance

estimation in (A.7). From the results in both Table 1 and 2, the estimators (A.7) are fairly
close to the true variances. The mean squared error (MSE) of the estimators reduces as the
sample size gets large in all cases. The analytic estimator has smaller MSE than the
jackknife estimator in all cases, but the difference is not obvious. The coverage rates of the
95% confidence intervals using the two variance formulas are similar and both are close to

the nominal 95% level in all cases. In summary, the estimation of the asymptotic variance



using the analytic and jackknife estimator is appropriate under the Clayton model.
Appendix B: Equivalence of Different Estimating Functions

For a pair (X,,Z;,d,) and (Xj,Zj,éj),wedefine
B, ={I(X,<Z,)=1}N
N[{s,=06,=11U{d,=1,6,=0,Z,>Z,}U{5,=0,0,=1,Z, > Z,}]

as the event that the pair (i, j) is orderable and comparable (Martin and Betensky, 2005).

We aim to establish the following identity:

6, {c*0(x.y))
I= (ol A y) - @
<”>¢W - y)[ () R(x,y>—1+9a{c*ﬁ<x,y>}}

- ~ s B
__Z I{Bij}Wa,c*(XU,ZU)[l'f'ga{c v(X,ZU)}]

y

i<j R(XU’ZU)_l-'-0a{c*‘;()z[jazij)}

1
X| A, - ——— .
{ 1+0a{c*v(Xij,ZU.)}}
As a special case with C, = oo, the above identity yields equation (9a).
The following proof is for the general situation that permits external censoring. Let

9(x, Y =6,{c*¥(x,y)} and w(x,y)=w, .(x,y). Writing the integral via the finite sum,

we obtain
d 0(X..Z.
1= Y Sw(X, Z)|N,(dX, dZ )~ X:,2,)
i=1 jiX,<Z;<Z,.X <X, R(X’.,Zj)—1+9(Xl_’Zj)
. )(X,.Z, : S w(X,.Z)0(X,.Z,
=Y Sw(X,.Z)|1- 0(X:.2,) - W ;) (A ;)
i=1 R(X;’Z;)_1+0(X,-,Z,-) i=1 j:X,<Z,<Z,,X,<X,R(X,-,Zj)—l‘l‘e(Xi,Zj)
=1 +1,.

The first term [, can be written as

10



S(-A)w(X,.Z,)

iﬁiw(Xi,Zi){R(X,.,Zi)—l}=i 5
R(XI’ZI)_]‘+é(XI’ZI) i=l jiX;<Z; X ;<X; R(le’ lj) 1+9(ij’ tj)

i=1

The above equation follows by noting that the number of j satisfying Z. >Z,X <X

is R(X;,Z;)—1 and using the notation XU_ and ZU.It is easy to see that
L=y y O 202
i=l jiX,<Z,<Z;,X <X, R(X ) 1+9(XU,ZU).

SAwX,,Z)O(X,,

3 2t
i=l j:X,<Z,.X <X, R(XU,ZU)—1+9A(XU,Z.)'

By combining these terms, we have
~ 0,(1-

=S X .. Z.
Z Z W( y l./) R(Xl/, ,:i)

i=l jiX,<Z;.X <X,

A::f) _ éjAtj?({(tj’?tj) ‘
-1+6(X,.Z;)

Y 18, w(X  Z ) -1+A,+A,6(X,.Z,))
Y R(X,.Z, )—1+9(XU,Z“])
1

i<j
S 1(8,) W (X, ZOI+ 6, {c* V(X ,;,Z)H} A
& TUR(X,Z) -1+ 6, {c*0(X . Z,)} Ay A*0(X,,Z0))

Appendix C: Examples

For illustration, we derive explicit formulas for the Clayton and Frank models
C1: Clayton model (Clayton, 1978)
The Clayton copula is indexed by @, (1)=t"“" -1 (a>0) and, by equation (1),

1
Pr(X <x,Y >yl X <Y)=(/c)[max{F, (x)"“ " +S,(y)"“" -10}] «.

6, (v) = a . The semi-survival Clayton model follows that

, Where

Note that the above expression also accommodates the case of O<a <1
#,(0) <o (Nelsen, 1999, p.92). By equations (2) or (5), 6 (x,y)=a but its

11



interpretation is the reciprocal of the usual odds ratio. Hence, when 0< a <1, we have
6" (x,y)=a <1 which implies positive association between X and Y.

The proposed estimating function is given by

1 o
U= || ;{A(m)——R(x’y)_Ha}—o

(x,y)eQ

By solving U, (&) =0, & can be obtained without estimating ¢* or c. The second

estimating function U, (a&,c*)=0 reduces to the explicit formula

c*: (ljl—a+ z E(xj) 1—01_ R.(xj)_l -
n Jia; nﬁc(xj) nﬁc(xj)

Plugging @& in the above equation, we obtain ¢ *. The recursive algorithm yields the
following marginal estimators:

1

R e 5 =& \1-&
Ssn=[1- 3 {c R(Zj)} _{cze(z_)—l} |

J3z;<1,6;=1 I’ZSC(Z]-) nSc(Zj)

1

N\ 1-¢ ~ l-& ~ 3 1-& |\ 1—&
Fy(t)= (C—j -y {c R } —{c Rlx)=1 1} .
n X <x;<t I’ZSC (Xj) nSC (xj)

C2: Frank model (Genest, 1987)
The Frank copula is indexed by ¢, (1)=log{(l-a)/(1-a™)}, where 1>a>0
corresponds to the positive association and 1< a corresponds to the negative association.
It can be shown that 8,(v)=vlog(e)/(1-o"). The semi-survival model of the Frank
model can be written as

Pr(X <x,Y>ylX <Y)=(/c)log [1-(1—-a ") 1-a ) /(1-a™)].

12



Consider the transformation ¥ =-—c" log(a). The likelihood estimating function can be

expressed in terms of ¥, and the proposed estimating function of ¥ is given by

n 7‘,}\()67)})
U o< , Alx, y)— _ ,
L) (X{L,W’(x y){ (x,y) {em,)_1}{R(x,y)_l}+7ﬁ(x’y)}

where v?zy(x,y):1—7\9(x,y)emx’”/(1—676("’”). Let $ be the solution to

U, (y) =0. The association parameter ¢ can be estimated by

) eﬁﬁ(x,)/{nf(;(xj)) -1
@' =1+ -1) [] |—= :
e}’(R(X,)—l}/{”SC(X/)) -1

T3y <X

and hence ¢ =—7/log(&). Explicit formula for the marginal estimators are given by

) —C*(R(Z )-1}/ (nS(;(Z')} 1
Sy(t)zlog[yl 1+(a _1) H 7&1?( DnSe(z)} _1

Jiz;St,6;=1

A =EHR(x)=DnSc (x))} 1

ﬁx (H)=log_, [1+ (@ -1 H

is <
JiXqy<x;st

|: d*f*k(xj)/[nfc(x/)}_l ]

N—
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Table 1. Comparison of two (analytic vs. jackknife) variance estimators of

\/;@Q when (X,Y) are generated from the Clayton AC model.

Average (MSE) of

. ) 95% coverage
the variance estimators

a c n Var(\/;d'r)
Analytic Jackknife Analytic  Jackknife
5/3  0.67 150 6.050 5.849 (2.402) 6.047 (2.551) 0.970 0.970
250 5.822 5.642 (1.117) 5.754 (1.139) 0.950 0.955
0.50 150 5.986 5.864 (2.497) 6.064 (2.690) 0.930 0.935
250 5.763 5.624 (1.230) 5.736 (1.264) 0.940 0.940
0.33 150 5.980 6.063 (2.751) 6.271 (3.055) 0.950 0.955
250 5.779 5.750 (1.463) 5.864 (1.536) 0.960 0.960
3 067 150 20.957  20.389 (30.365) 21.226 (33.248)  0.925 0.925
250 19.339 20.119 (17.272)  20.598 (19.263)  0.945 0.945
0.50 150 20.459 20.762 (29.898) 21.621 (34.222)  0.955 0.960
250 20.545 20.268 (16.005) 20.753 (16.883)  0.955 0.955
0.33 150 20.239  20.626 (29.501) 21.459 (33.791)  0.930 0.940
250 20911 20.560 (19.164) 21.052(20.119)  0.925 0.925

NOTE: Var(\/;d'r) is obtained based on 10,000 Monte Carlo simulations. The MSE

of the analytic (jackknife) variance estimator is calculated based on 200 Monte Carlo

200

simulations by MSE:Z{&E—Var(\/E&T)}Z/zoo, where 67 denotes the estimates

r=1

of analytic (jackknife) variance estimates.
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Table 2. Comparison of two (analytic vs. jackknife) variance estimators of

na, wnen (X,Y) are generated from the Clayton model.
Jné, when (X.,Y) areg d from the Clayton AC model

Average (MSE) of

Ve ’ 95%
a c artind,) the variance estimators v coverage
Analytic Jackknife Analytic  Jackknife
5/3 0.67 150 5.236 4.499 (2.467) 5.374 (2.509) 0.920 0.950
250 5.026 4.419 (1.391) 4.992 (1.253) 0.965 0.970
0.50 150 5.231 4.433 (3.142) 5.356 (3.358) 0.925 0.950
250 4.892 4.435 (1.565) 5.008 (1.624) 0.925 0.930
0.33 150 5.174 4.603 (2.425) 5.505 (2.909) 0.945 0.975
250 4.969 4.573 (1.491) 5.1463 (1.624) 0.945 0.960
3 067 150 17905 16.486(26.487) 18.374(29.440)  0.945 0.955
250 16.634 16.581 (11.499) 17.715(14.121)  0.960 0.960
0.50 150 17.376 16.638 (23.376) 18.583 (28.912)  0.960 0.975
250  17.233  16.599 (11.402) 17.725 (12.719)  0.940 0.950
0.33 150 17.380 17.045 (26.364) 18.950 (33.545)  0.930 0.940
250  17.340 16.770 (13.885) 17.903 (15.351) 0.915 0.925

NOTE: Var(\/;d',) is obtained based on 10,000 Monte Carlo simulations. The MSE

of the analytic (jackknife) variance estimator is calculated based on 200 Monte Carlo

200

simulations by MSE:Z:{OA',2 —Var(\/;dr)}z/ZOO, where &7 denotes the estimates

r=1

of analytic (jackknife) variance estimates.
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