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Abstract: We propose two methods based on the functional principal component

analysis (FPCA) to estimate smooth derivatives for a sample of observed curves

with a multidimensional domain. We apply the eigendecomposition to a) the dual

covariance matrix of the derivatives; b) the dual covariance matrix of the observed

curves, and take derivatives of their eigenfunctions. To handle noisy and discrete

observations, we rely on local polynomial regression. We show that if the curves

are contained in a finite-dimensional function space, the second method performs

better asymptotically. We apply our methodology in simulations and an empirical

study of option implied state price density surfaces. Using call data for the DAX

30 stock index between 2002 and 2011, we identify three components that are

interpreted as volatility, skewness and tail factors, and we find evidence of term

structure variation.

Key words and phrases: Derivatives, dual method, functional principal component

analysis, multivariate functions, option prices, state price densities.

1. Introduction

Over the last two decades functional data analysis has became a popular

tool to handle data entities that are random functions. Usually, discrete and

noisy versions of them are observed. Oftentimes, these entities are multivariate

functions. Examples include brain activity recordings generated during fMRI

or EEG experiments (van Bömmel et al. (2014), Majer et al. (2015)). In a

variety of applications though, the object of interest is not directly observable

but can be recovered from the observed data by means of derivatives. Typical

examples of financial applications are functionals retrieved from the observed

prices, such as the implied state price density (Grith, Härdle and Schienle (2012)),

pricing kernel (Grith, Härdle and Park (2013)) or market price of risk (Härdle and

Lopez-Cabrera (2012)). Motivated by such, we address the problem of estimating

derivatives of multivariate functions from existing discrete and noisy data.
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Functions that are objects on an infinite-dimensional vector space require

specific methods that allow a reasonable approximation of their variability with

a small number of components. FPCA is a convenient tool in this because it

allows one to explain complicated data structures with only a few orthogonal

principal components that fulfill the optimal basis property in terms of L2 ac-

curacy. These components are given by the Karhunen-Loève theorem, see for

instance Bosq (2000). In addition, the corresponding principal loadings to this

basis system can be used to study the variability of the observed phenomena.

An important contribution in the treatment of the finite-dimensional PCA was

by Dauxois, Pousse and Romain (1982), followed by subsequent studies that fos-

tered the applicability of the method to samples of observed noisy curves. Besse

and Ramsay (1986), among others, derived theoretical results for observations

that are affected by additive errors. Some of the most important contributions

for the extension of the PCA to functional data belong to Cardot, Ferraty and

Sarda (1999), Cardot, Mas and Sarda (2007), Ferraty and Vieu (2006), Mas

(2002) and Mas (2008). Simple one-dimensional spatial curves are well under-

stood from both numerical and theoretical perspectives and FPCA is then easy

to implement. Multivariate objects with more complicated spatial and tempo-

ral correlation structures, or not directly observable functions of these objects,

such as derivatives, often lack a sound theoretical framework. The computational

issues are considerable in higher-dimensional domain.

To our best knowledge, FPCA for derivatives has been tackled by Hall,

Müller and Yao (2009) and Liu and Müller (2009). The first study handles

one-dimensional directional derivatives and gradients. The second paper anal-

yses a particular setup in one-dimensional domain where the observations are

sparse. The method is applicable to non-sparse data but can be computation-

ally inefficient when dealing with large amounts of observations per curve. For

the study of observed curves, there are a series of empirical studies for the two-

dimensional domain case, see Cont and da Fonseca (2002) for an application close

to our empirical study. Further proposals to implement FPCA in more than two

dimensions to analyze functions, rather than their derivatives, have been done

particularly in the area of brain imaging, see for instance, Zipunnikov et al. (2011)

who implement multilevel FPCA (Staicu, Crainiceanu and Carroll (2010), Di et

al. (2009)) to analyze brain images of different groups of individuals. A thorough

derivation of statistical properties of the estimators is missing in these works.

In this article, we aim to contribute to the literature on FPCA for the study

of derivatives of multivariate functions. We present two approaches to estimating
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the derivatives. They are not tailored to handle sparse data sets, compared to

other methods that aim to estimate the mean or covariance function of a sample

of curves, see for instance Cai and Yuan (2011) and Zhang and Wang (2016). Our

approaches are feasible when the spatial dimension increases only under suitable

smoothness assumptions of the underlying curves. Otherwise, the estimators that

we propose suffer from the curse of dimensionality.

The paper is organized as follows: the theoretical framework, estimation

procedure and statistical properties are derived in Section 2. Our empirical

study in Section 3 is guided by the estimation and the dynamics analysis of the

option-implied state price densities. It includes a simulation study and a data

example.

2. Methodology

2.1. Two approaches to model derivatives using FPCA

Let X be a centered smooth random function in L2([0, 1]g), where g denotes

the spatial dimension, with finite second moment
∫
[0,1]g E

{
X(t)2

}
dt <∞ for t =

(t1, . . . , tg)
>. The underlying dependence structure can be characterized by the

covariance function σ(t, v)
def
= E {X(t)X(v)} and the corresponding covariance

operator Γ

(Γϑ)(t) =

∫
[0,1]g

σ(t, v)ϑ(v)dv.

Mercer’s lemma guarantees the existence of a set of eigenvalues λ1 ≥ λ2 ≥
· · · and a corresponding system of orthonormal eigenfunctions γ1, γ2, . . . called

functional principal components such that

σ(t, v) =

∞∑
r=1

λrγr(t)γr(v), (2.1)

where the eigenvalues and eigenfunctions satisfy (Γγr)(t) = λrγr(t). Moreover,∑∞
r=1 λr =

∫
[0,1]g σ(t, t)dt. The Karhunen-Loève decomposition applied to the

random function X gives

X(t) =

∞∑
r=1

δrγr(t), (2.2)

where the loadings δr are random variables defined as δr =
∫
[0,1]g X(t)γr(t)dt that

satisfy E
(
δ2r
)

= λr, as well as E (δrδs) = 0 for r 6= s. Throughout the paper, we

use this notation for the derivatives of a function X
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X(d)(t)
def
=

∂|d|

∂td
X(t) =

∂d1

∂td11
· · · ∂

dg

∂t
dg
g

X(t1, . . . , tg), (2.3)

for d = (d1, . . . , dg)
> and dj ∈ N the partial derivative in the spatial direction

j = 1, . . . , g. We take |d| =
∑g

j=1 |dj | and require that X is at least |d|+ 1 times

continuously differentiable.

Building on (2.1) and (2.2), we propose two approaches to model deriva-

tives. The first one is stated in terms of the Karhunen-Loève decomposition

applied to X(d) and uses the FPCA of the covariance function σ(d)(t, v)
def
=

E
{
X(d)(t)X(d)(v)

}
, assumed to be continuous for all t, v ∈ [0, 1]g. With λ

(d)
1 ≥

λ
(d)
2 ≥ · · · denoting the eigenvalues of the corresponding covariance operator,

functional principal components ϕ
(d)
r , r = 1, 2, . . . are solutions to the eigenequa-

tion ∫
[0,1]g

σ(d)(t, v)ϕ(d)
r (v)dv = λ(d)r ϕ(d)

r (t). (2.4)

Similarly to (2.2), the decomposition of X(d) in terms of principal components

ϕ
(d)
r (t) is given by

X(d)(t) =

∞∑
r=1

δ(d)r ϕ(d)
r (t), (2.5)

for δ
(d)
r =

∫
[0,1]g X

(d)(t)ϕ
(d)
r (t)dt.

By abuse of notation, ϕ
(d)
r denotes the r-th eigenfunction of the covariance

operator of σ(d) and not the d-th derivative of ϕr. For |d| = 0 we introduce the

equivalent notations γr(t) ≡ ϕ(0)
r (t), σ(t, v) ≡ σ(0)(t, v), λr ≡ λ(0)r and δr ≡ δ(0)r .

A different way to obtain a decomposition of X(d) is to differentiate the left

and right hand sides of (2.2), which leads to

X(d)(t) =

∞∑
r=1

δrγ
(d)
r (t), (2.6)

where the d-th derivative of the r-th eigenfunction is the solution to∫
[0,1]g

∂|d|

∂vd
{σ(t, v)γr(v)} dv = λrγ

(d)
r (t). (2.7)

In general, for |d| > 0 it holds that ϕ
(d)
r (t) 6= γ

(d)
r (t), but both basis systems

span the same function space. In particular, there always exists a projection

a with arp = 〈γ(d)r , ϕ
(d)
p 〉 =

∫
[0,1]g γ

(d)
r (t)ϕ

(d)
p (t)dt such that

∑∞
r=1 arpϕ

(d)
r (t) =

γ
(d)
p (t), for all pairs r, p = 1, 2, . . . . However, if we consider a truncation of

(2.2) after a finite number of components this is no longer true in general. An
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advantage of using ϕ
(d)
r instead of γ

(d)
r is that the Karhunen-Loève decomposition

uses orthonormal bases that fulfill the best basis property, such that for any fixed

L ∈ N and every other orthonormal basis system ϕ′

∞∑
r=L+1

λ(d)r = E

∥∥∥∥∥X(d) −
L∑
r=1

〈
X(d), ϕ(d)

r

〉
ϕ(d)
r

∥∥∥∥∥ ≤ E

∥∥∥∥∥X(d) −
L∑
r=1

〈
X(d), ϕ′r

〉
ϕ′r

∥∥∥∥∥ .
(2.8)

This guarantees that, by using ϕ
(d)
r , r = 1, . . . , L, we always achieve the best

L-dimensional subset selection in terms of the L2 error function. We show that

estimating the basis functions with such a property comes at the cost of slower

rate of convergence. In addition, if the true underlying structure of X lies in a L-

dimensional function space, which is equivalent to a factor model, the advantage

of deriving the best L-orthogonal basis vanishes because span{γ(d)1 , . . . , γ
(d)
L } =

span{ϕ(d)
1 , . . . , ϕ

(d)
L }.

2.2. Sample inference

In practice, the true eigenfunctions are unknown. Let X1, . . . , XN ∈ L2([0, 1]g)

be a sample of i.i.d. realizations of the smooth random function X. For some

m assume that Xi is a.s. m-times continuously differentiable in each direction

j = 1, . . . , g. Let ν = (ν1, . . . , νg)
>, νj ∈ N, |ν| < m. The two cases of interest

are ν = (0, . . . , 0)> and ν = d.

The empirical approximation of the covariance function based on a sample

of N curves is given by

σ̃(ν)(t, v) =
1

N

N∑
i=1

X
(ν)
i (t)X

(ν)
i (v) (2.9)

and of the covariance operator by

(Γ̃(ν)ϕ̃(ν)
r )(t) =

∫
[0,1]g

σ̃(ν)(t, v)ϕ̃(ν)
r (v)dv = λ̃(ν)r ϕ̃(ν)

r (t), (2.10)

where eigenfunction ϕ̃
(ν)
r corresponds to the r-th eigenvalue λ̃

(ν)
r of Γ̃(ν). Then we

get X
(ν)
i (t) =

∑N
r=1 δ̃

(ν)
ri ϕ̃

(ν)
r (t), where δ̃

(ν)
ri =

∫
[0,1]g X

(ν)
i (t)ϕ̃

(ν)
r (t)dt. Note that

for ν = (0, . . . , 0)> we have γ̃r ≡ ϕ̃
(0)
r (t), and λ̃r ≡ λ̃

(0)
r , δ̃ri ≡ δ̃

(0)
ri . Following

(2.6), X
(ν)
i (t) =

∑N
r=1 δ̃riγ̃

(ν)
r (t).

Theoretical properties of ϕ̃
(ν)
r are well studied. Under some regularity condi-

tions we obtain ||ϕ(ν)
r − ϕ̃(ν)

r || = Op(N−1/2) and |λ(ν)r − λ̃(ν)r | = Op(N−1/2), see for

instance Dauxois, Pousse and Romain (1982) or Hall and Hosseini-Nasab (2006).
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2.3. The model

In most applications, the curves are only observed at discrete points and

data is noisy. To model these aspects, we assume that each curve in the sample

is observed at a random grid ti = (ti1, . . . , tiTi)
>, tik ∈ [0, 1]g, k = 1, . . . , Ti, i =

1, . . . , N having a common bounded and continuously differentiable density f

with support supp(f) = [0, 1]g and the integrand u ∈ supp(f) with inf
u
f(u) > 0.

Then

Yi(tik) = Xi(tik) + εik =

∞∑
r=1

δriγr(tik) + εik, (2.11)

where εik are i.i.d. random variables with E [εik] = 0, Var (εik) = σ2iε and let εik
be independent of Xi. We take Yi = (Yi(ti1), . . . , Yi(tiTi))

> to be the vector of

observations of Xi.

2.4. Estimation procedure

2.4.1. Dual method

Under (2.11), the empirical principal components have to be recovered from

the discrete, noisy data. An efficient estimation procedure when the number of

observations per individual curves Ti is larger than the sample size N relies on the

duality relation between the row and column space. The method was first used

in a functional context by Kneip and Utikal (2001) to estimate density functions

and later adapted by Benko, Härdle and Kneip (2009) to general functions. The

underlying idea is that integrals of smooth functions can be estimated more

accurately than specific functional values.

Let M (ν) be the dual matrix of σ̃(ν)(t, v) from (2.9) consisting of entries

M
(ν)
ij =

∫
[0,1]g

X
(ν)
i (t)X

(ν)
j (t)dt. (2.12)

Let l
(ν)
r , r = 1, . . . , N be the eigenvalues of matrix M (ν) and p

(ν)
r = (p

(ν)
1r , . . . ,

p
(ν)
Nr)
> the corresponding eigenvectors. For ν = d, the eigendecomposition of M (d)

is relevant for the empirical version of equation (2.5), leading to

ϕ̃(d)
r (t) =

1√
l
(d)
r

N∑
i=1

p
(d)
ir X

(d)
i (t) , λ̃(d)r =

l
(d)
r

N
and δ̃

(d)
ri =

√
l
(d)
r p

(d)
ir . (2.13)

Important for an empirical version of equation (2.6) are the eigenvalues and

eigenvectors of M (0) denoted by lr ≡ l(0)r , pr ≡ p(0)r . Then
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γ̃(d)r (t) =
1√
lr

N∑
i=1

pirX
(d)
i (t) , λ̃r =

lr
N

and δ̃ri =
√
lrpir. (2.14)

2.4.2. Estimation of M (0) and M (d)

There are challenges when estimating M (0) and M (d): we observe discrete

noisy curves in (2.11) and each curve is observed at irregular points. To handle

such difficulties smoothing methods are commonly used. We implement local

polynomial regressions as better suited to estimate integrals like (2.12) than other

kernel methods, e.g., Nadaraya-Watson or Gasser-Müller estimators, because the

bias and variance are of the same order of magnitude near the boundary as well

as in the interior, see Fan and Gijbels (1992).

For any vectors a, b ∈ Rg and c ∈ Ng, we take |a| def
=
∑g

j=1 |aj |, a−1
def
=

(a−11 , . . . , a−1g )>, ab
def
= ab11 × · · · × a

bg
g , a ◦ b def

= (a1b1, . . . , agbg)
> and c!

def
= c1! ×

· · · × cg!.
For arbitrary i = 1, . . . , N , consider the multivariate local polynomial esti-

mator β̂i(t) ∈ Rρ defined by a lexicographical arrangement, see Masry (1996),

that solves

min
βi(t)

Ti∑
l=1

Yi(til)− ∑
0≤|k|≤ρ

βi,k(t)(til − t)k


2

KB(til − t). (2.15)

KB is a non-negative, symmetric and bounded multivariate kernel function, B

a g × g bandwidth matrix. For simplicity, we assume that B has main diagonal

entries b = (b1, . . . , bg)
> and zeros elsewhere. ρ satisfying |ν| < ρ ≤ m is the

order of the local polynomial expansion used in (2.15). In our application, for

the two dimensional case, if ν = (0, 0)> then ρ = 1 and if ν = (2, 0)> then ρ = 3.

As noted by Fan et al. (1997) the solution for the minimization problem in

(2.15) can be represented using a weight function W Ti
ν , see the online Supple-

mentary Material S3, such that the local polynomial estimator of X
(ν)
i is given

by

X̂
(ν)
i,b (t) = ν!β̂i,ν(t) = ν!

Ti∑
l=1

W Ti
ν

(
(til − t) ◦ b−1

)
Yi(til). (2.16)

We estimate off-diagonal terms M
(ν)
ij , j 6= i, by

∫
[0,1]g X̂

(ν)
i,b (t)X̂

(ν)
j,b (t)dt given

(2.16) and, due to the presence of squared error terms, a diagonal correction is

additionally applied for i = j. This leads to
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M̂
(ν)
ij =



ν!2
Ti∑
k=1

Tj∑
l=1

wν(tik, tjl, b)Yj(tjl)Yi(tik) if i 6= j,

ν!2

{
Ti∑
k=1

Ti∑
l=1

wν(tik, til, b)Yi(til)Yi(tik)

−σ̂2iε
Ti∑
k=1

wν(tik, tik, b)

}
if i = j,

(2.17)

where wν(tik, tjl, b) :=
∫
[0,1]g W

Ti
ν

(
(tik − s) ◦ b−1

)
W

Tj
ν

(
(tjl − s) ◦ b−1

)
ds. The

estimator for M (0) is given by setting ν = (0, . . . , 0)> and the estimator for M (d)

by ν = d.

Rates of convergence for these estimators are given by Proposition 1 that

relies on Assumptions 1 - 6 as given in the Supplementary Material S1. Apart

from regularity conditions, essential requirements are that, for some integer m,

sample functions are m times continuously differentiable. Furthermore, it is

assumed that consistent estimators of the error variances are used that satisfy

|σ2iε − σ̂2iε| = OP (T−1/2).

Proposition 1. Suppose Assumptions 1 - 6 hold and that m ≥ max(|ν|+2, 2|ν|),
and that the local polynomial regression is of order ρ with |ν| < ρ ≤ m. If

T := mini(Ti) → ∞ with max(b)ρ+1b−ν → 0, log(T )/(Tb1 × · · · × bg) → 0 and

Tb1 × · · · × bgb4ν →∞, then, for all i, j ∈ {1, . . . , N},

|M (ν)
ij − M̂

(ν)
ij | = OP

(
max(b)ρ+1b−ν +

(
1

T 2b1 × · · · × bgb4ν
+

1

T

)1/2
)
.

Notation bν = bν11 ×· · ·×b
νg
1 was introduced earlier. A proof of the proposition

is given in the Supplementary Material S2. By Proposition 1, estimating M (d)

gives an asymptotic higher bias and also a higher variance than estimating M (0).

This effect is more pronounced for larger g, but one can get parametric rates

within each method if using local polynomial regression with large polynomial

order ρ is feasible.

Remark 1. We can infer from Proposition 1 that if

m > ρ ≥ g

2
− 1 + 3

g∑
l=1

νl, bj = CjT
−α for 0 < Cj <∞, (2.18)

for j = 1, . . . , g, 1/{2(ρ + 1 −
∑g

l=1 νl)} ≤ α ≤ 1/(g + 4
∑g

l=1 νl), then |M (ν)
ij −

M̂
(ν)
ij | = OP (1/

√
T ).
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Here the orders of polynomial expansion and the bandwidths for estimating

M (ν) differ for ν = (0, . . . , 0)> and ν = d. In particular, the estimator of M (d)

requires higher smoothness assumptions via m > ρ, and a higher bandwidth to

achieve the same parametric convergence rate as the estimator for M (0).

Remark 2. If the dimension g is larger than 1, then it is nontrivial to calculate

integrals of the form
∫
[0,1]g X̂

(ν)
i,b (t)X̂

(ν)
j,b (t)dt numerically. In our Matlab imple-

mentation, such integrals are determined via Monte Carlo integration. We draw

random samples ul, l = 1, . . . , T ∗, T ∗ ≥ T = mini(Ti), uniform on [0, 1]g, and use∫
[0,1]g X̂

(ν)
i,b (t)X̂

(ν)
j,b (t)dt ≈ (1/T ∗)

∑T ∗

l=1 X̂
(ν)
i,b (ul)X̂

(ν)
j,b (ul). Since ul is independent

of all observations (Yi(tik), tik), and since all X̂
(ν)
i,b (t) are continuous functions,

we have

E

{
1

T ∗

T ∗∑
l=1

X̂
(ν)
i,b (ul)X̂

(ν)
j,b (ul)

∣∣∣∣ X̂(ν)
i,b , X̂

(ν)
j,b

}
=

∫
[0,1]g

X̂
(ν)
i,b (t)X̂

(ν)
j,b (t)dt

Var

(
1

T ∗

T ∗∑
l=1

X̂
(ν)
i,b (ul)X̂

(ν)
j,b (ul)

∣∣∣∣ X̂(ν)
i,b , X̂

(ν)
j,b

)
=

1

T ∗

[∫
[0,1]g

X̂
(ν)
i,b (t)2X̂

(ν)
j,b (t)2dt

−

{∫
[0,1]g

X̂
(ν)
i,b (t)X̂

(ν)
j,b (t)dt

}2
 .

When computing M̂
(ν)
ij according to (2.17) this of course means replacing

wν(tik, tjl, b) by (1/T ∗)
∑T ∗

l=1W
Ti
ν

(
(tik − ul) ◦ b−1

)
W

Tj
ν

(
(tjl − ul) ◦ b−1

)
. Since

T ∗ ≥ T = mini(Ti), this implies that this approximation has asymptotically no

effect on the rate of convergence derived in Proposition 1, since the additional

error is of order T−1/2 regardless of dimension g.

In Proposition 1 it is required that |σ2iε − σ̂2iε| = Op(T−1/2), which ensures

parametric rates of convergence for M̂ (ν) under the conditions of Remark 1. By

Assumption 3, in the univariate case, a simple class of estimators for σ2iε that

achieve the desired convergence rate are given by successive differences, see von

Neumann et al. (1941) and Rice (1984). However, as pointed out in Munk et

al. (2005), difference estimators are no longer consistent for g ≥ 4. A possible

solution is to generalize the kernel-based variance estimator proposed by Hall

and Marron (1990) to the multidimensional case

σ̂2iε =
1

vi

Ti∑
l=1

{
Yi(til)−

Ti∑
k=1

wilkY (tik)

}2

, (2.19)

where wilk = Ks,B′(til− tik)/
∑Ti

k=1Ks,B′(til− tik), vi = Ti−2
∑

l wilk +
∑

l,k w
2
ilk
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and Ks,B′ is a g-dimensional product kernel of order s with bandwidth matrix

B′. Munk et al. (2005) show that if 4s > g and if the elements of the diagonal

matrix B′ are of order O(T−2/(4s+g)) then the estimator σ̂2iε in (2.19) achieves

parametric rates of convergence.

In the special case that the curves are observed at a common uniform ran-

dom grid with T = Ti = Tj , i, j = 1, . . . , N , a simple estimator for M (0) is

constructed by approximating (2.12) directly through Monte-Carlo integral (see

the Supplementary Material S4). This estimator is given by

M̃
(0)
ij =



1

T

T∑
l=1

Yi(tl)Yj(tl) if i 6= j,

1

T

T∑
k=1

Yi(tl)
2 − σ̂2iε if i = j.

(2.20)

When working with more than one spatial dimension, data is often recorded

using an equidistant grid with T points in each direction. For our approach, this

strategy does not improve the convergence rate of M̃ (0). If it is possible to influ-

ence how data is recorded, we recommend using a common uniform random grid

that keeps computing time and the storage space of data at a minimum and still

gives parametric convergence rates for the estimator of M
(0)
ij . This constitutes a

very special situation and, in particular, for estimating M (d) smoothing is always

necessary.

The estimation of the eigensystem through the dual method involves the

estimation of the N × N matrix M (ν). The consistency of M̂
(ν)
ij is shown in

Proposition 1 to depend only on T ≤ mini(Ti) and not on the sample size N . Fur-

thermore, in Remark 1 we derive the bandwidth rule under which M̂
(ν)
ij achieves

1/
√
T rate. We use this convergence rate for M̂

(ν)
ij to establish asymptotic results

for the empirical eigenvalues and loadings, as well as pointwise convergence for

the empirical eigenfunctions, the derivatives of eigenfunctions and our proposed

estimators for the derivatives of the individual curves.

2.4.3. Estimation of the basis functions

In order to estimate ϕ̃
(d)
r under (2.11) we first determine eigenvalues l̂

(d)
r and

eigenvectors p̂
(d)
r of M̂ (d). Following (2.13) a corresponding estimator is given by

ϕ̂
(d)
r,T (t) =

1√
l̂
(d)
r

N∑
i=1

p̂
(d)
ir X̂

(d)
i,h (t), (2.21)
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where, similar to (2.16), X̂
(d)
i,h denotes the local polynomial kernel estimator of

X
(d)
i with polynomial order p and bandwidth vector h = (h1, . . . , hg)

>. Analo-

gously, based on eigenvalues l̂r ≡ l̂(0)r and eigenvectors p̂r ≡ p̂(0)r of M̂ (0), estima-

tors γ̂
(d)
r,T of γ̃

(d)
r are obtained using (2.14).

In (2.21), h is not equal to b, the bandwidth used to smooth the entries

of M̂ (0) or M̂ (d). We show below that the optimal order for the bandwidth

vector h differs asymptotically from that of b derived in the previous section. An

advantage of using local polynomial estimators, compared for example to spline

or wavelet estimators, is that the bias and variance can be derived analytically.

For the univariate case these results can be found in Fan and Gijbels (1996),

and for the multivariate case in Masry (1996) and Gu, Li and Yang (2015). We

summarize them as

Bias
(
X̂

(d)
i,h (t)|Yi, ti

)
= Op(max(h)p+1h−d),

Var
(
X̂

(d)
i,h (t)

∣∣Yi, ti) = Op
(

1

Th1 × · · · × hgh2d

)
.

(2.22)

These results provide a basis for inference of eigenfunctions. We consider

fixed components with nonzero eigenvalues λ
(ν)
r > 0. Under Assumptions 1 - 8,

the results of Hall and Hosseini-Nasab (2006) imply that λ
(ν)
r −λ̃(ν)r = Op(N−1/2),

and hence l
(ν)
r = Nλr · {1 + OP (N−1/2)}. Using (2.22), it follows that for

max(h)p+1h−d → 0,
{

max(h)p+1Th−d
}−1 → 0 as T → ∞, and for p chosen

such that p− |d| is odd, one has that

E

 1√
l
(ν)
r

N∑
i=1

p
(ν)
ir

{
X

(d)
i (t)− X̂(d)

i,h (t)
} ∣∣∣∣Yi, ti


=

1√
l
(ν)
r

N∑
j=1

p
(ν)
jr Bias

(
X̂

(d)
j,h (t)

∣∣Yi, ti)+ Op

(
max(h)p+1h−d

)
= Op(max(h)p+1h−d),

Var

 1√
l
(ν)
r

N∑
i=1

p
(ν)
ir X̂

(d)
i,h (t)

∣∣∣∣Yi, ti


=
1

l
(ν)
r

N∑
j=1

(
p
(ν)
jr

)2
Var

(
X̂

(d)
j,h (t)

∣∣Yi, ti)+ Op

(
1

NTh1 × · · · × hgh2d

)
= Op

(
1

NTh1 × · · · × hgh2d

)
.
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We show that, under certain assumptions, the asymptotic mean squared

error of ϕ̂
(d)
r,T and γ̂

(d)
r,T is dominated by these terms, while the effects of replacing

p
(d)
r by p̂

(d)
r and pr by p̂r are asymptotically of smaller order of magnitude.

Since eigenfunctions are only unique up to sign, all results concerning a

comparison of eigenfunctions implicitly assume that signs have been chosen ap-

propriately.

Proposition 2. Suppose that the requirements of Proposition 1, (2.18) and As-

sumptions 7 - 8 are satisfied. If max(h)p+1h−d → 0,
{

max(h)p+1Th−d
}−1 → 0,

and NTh1 . . . hgh
2d →∞ as T,N →∞, then

a) |ϕ̃(d)
r (t)− ϕ̂(d)

r,T (t)| = Op
(
max(h)p+1h−d + (NTh1 × · · · × hgh2d)−1/2

)
,

b) |γ̃(d)r (t)− γ̂(d)r,T (t)| = Op
(
max(h)p+1h−d + (NTh1 × · · · × hgh2d)−1/2

)
.

A proof of Proposition 2 is provided in the Supplementary Material S5.

Under our assumptions the results of Dauxois, Pousse and Romain (1982) or Hall

and Hosseini-Nasab (2006) imply that the difference between ϕ
(ν)
r and ϕ̃

(ν)
r is of

order Op(N−1/2). The proposition implies that the additional error, generated

by estimating eigenfunctions from discrete noisy data, depends on N and T . If

T is sufficiently large compared to N , then resulting global optimal bandwidths

are given by hr,opt = Op
(
(NT )−1/(g+2p+2)

)
. Even if the optimal bandwidth for

both approaches and each basis function is of the same order of magnitude, the

values of the actual bandwidths may differ. A simple rule of thumb for the choice

of bandwidths in practice is given in Section S7.2.

2.4.4. Estimation of the eigenvalues and loadings

We keep notations ν = d to refer to the decomposition used in equation

(2.5) and ν = (0, . . . , 0)> to (2.6). Empirical estimators of the eigenvalues and

loadings are given by λ̂
(ν)
r,T = l̂

(ν)
r /N and δ̂

(ν)
ir,T =

√
l̂
(ν)
r p̂

(ν)
ir . Since λ

(ν)
r − λ̃(ν)r =

Op(N−1/2), equation (S5) (in the Supplementary Material S5) implies λ
(ν)
r −

λ̂
(ν)
r,T = Op(N−1/2 + T−1/2N−1/2 + T−1) = Op(N−1/2), when N/T → 0. In

equation (S6.18) we show that δ̃
(ν)
ir − δ̂

(ν)
ir,T = Op(T−1/2 +N1/2T−1).

2.5. Consistency results for the derivatives of individual curves

In this section, the focus lies on approximating X
(d)
i by a fixed number

of components. By (2.8) the mean squared error difference between X
(d)
i and

X
(d)
i,L,ϕ(t) :=

∑L
r=1 δ

(d)
ir ϕ

(d)
r (t) is equal to

∑∞
r=L+1 λ

(d)
r . In most applications, the

eigenvalues decrease rapidly, and the approximation error becomes small if L is
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sufficiently large. Recall that under model (2.11), the eigenvalues and eigenfunc-

tions have to be estimated from discrete, noisy observations. Then there will

always exist a dimension L such that the influence of additional functional com-

ponents is small and cannot be distinguished from the pure random components

generated by noise.

Following Kneip and Utikal (2001), the analysis is simplified when relying

on the additional semiparametric assumption that there exists a finite dimension

L, such that a factor model with L components holds Xi(t) =
∑L

r=1 δirγr(t)

and 0 = λL+1 = λL+2 = · · · . From a theoretical point of view this is a restrictive

requirement, but in practice there will exist some L such that the estimated

eigenvalue λ̂L+1,T does not differ significantly from 0. Model selection criteria

based on a factor model may thus provide an appropriate dimension to determine

well-fitting approximations whose error is mainly due to random noise. Such

criteria will be proposed in Section 2.5.1.

When considering derivatives, a factor model with L components leads to

X(d)(t) =

Ld∑
r=1

δ(d)r ϕ(d)
r (t) =

L∑
r=1

δrγ
(d)
r (t), where Ld ≤ L. (2.23)

In general it cannot be excluded that derivatives γ
(d)
r (t), r = 1, . . . , L are collinear,

and thus (2.8) leads to Ld ≤ L. As observed by Kneip and Utikal (2001), a factor

model with L ≤ N components implies that, with probability 1, the empirical

eigenfunctions constitute a different basis of the same L-dimensional linear space.

In our context, we have a.s. span{ϕ̃(d)
1 , . . . , ϕ̃

(d)
Ld
} = span{ϕ(d)

1 , . . . , ϕ
(d)
Ld
}, and

hence we get X(d)(t) =
∑Ld

r=1 δ
(d)
r ϕ

(d)
r (t) =

∑Ld
r=1 δ̃

(d)
r ϕ̃

(d)
r (t).

Based on our methodology, we use the estimators

X̂
(d)
i,Ld,ϕ

(t)
def
=

Ld∑
r=1

δ̂
(d)
ir,T ϕ̂

(d)
r,T (t), X̂

(d)
i,L,γ(t)

def
=

L∑
r=1

δ̂ir,T γ̂
(d)
r,T (t) (2.24)

for approximations X
(d)
i,Ld,ϕ

(t) :=
∑Ld

r=1 δ
(d)
ir ϕ

(d)
r (t), X

(d)
i,L,γ(t) :=

∑L
r=1 δirγ

(d)
r (t) of

the individual derivatives. In a factor model, Ld and L have a clear interpretation.

In the general case, we employ the same notation to emphasize that different

criteria are used to select the number of components following the two approaches

to represent derivatives.

Proposition 3. Under the requirements of Proposition 2 let N,T→∞, NT−1→0.

a) If additionally a factor model X(t) =
∑L

r=1 δrϕr(t) =
∑L

r=1 δrγr(t) holds for

a fixed dimension L, such that X(d)(t) =
∑Ld

r=1 δ
(d)
r ϕ

(d)
r (t) =

∑L
r=1 δrγ

(d)
r (t),
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Ld ≤ L, then

|X(d)
i (t)−X̂(d)

i,Ld,ϕ
(t)| = Op(T−1/2+max(h)p+1h−d+(NTh1×· · ·×hgh2d)−1/2)

|X(d)
i (t)−X̂(d)

i,L,γ(t)| = Op(T−1/2+max(h)p+1h−d+(NTh1×· · ·×hgh2d)−1/2).

b) In the general case, for X
(d)
i,Ld,ϕ

(t) =
∑Ld

r=1 δ
(d)
ir ϕ

(d)
r (t) and X

(d)
i,L,γ(t) =

∑L
r=1 δir

γ
(d)
r (t)

|X(d)
i,Ld,ϕ

(t)−X̂(d)
i,Ld,ϕ

(t)|=Op(N−1/2+max(h)p+1h−d+(NTh1×· · ·×hgh2d)−1/2)

|X(d)
i,L,γ(t)−X̂(d)

i,L,γ(t)|=Op(N−1/2+max(h)p+1h−d+(NTh1×· · ·×hgh2d)−1/2)

Furthermore, |X(d)
i (t) − X(d)

i,Ld,ϕ
(t)| →P 0 and |X(d)

i (t) − X(d)
i,L,γ(t)| →P 0 as

Ld, L→∞.

A proof of Proposition 3 is given in the Supplementary Material S6.1. Com-

pared with the convergence rates of the local polynomial estimators for the in-

dividual curves, see (2.22), for a factor model, the error of the proposed FPCA-

based estimators reduces not only in T but also in N . Equations (2.13) and (2.14)

can be interpreted as weighted averages over N curves for a finite number of com-

ponents. The intuition behind this is that only those components are truncated

that are related to the error term and thus a more accurate representation is

possible. If N increases at a certain rate, it is possible to get close to parametric

rates. Such rates are not possible when smoothing the curves individually.

For the estimation of X̂
(d)
i,Ld,ϕ

stronger assumptions on the smoothness of the

curves are necessary to guarantee that the elements of M̂ (d) and M̂ (0) achieve

the same rates of convergence, as illustrated in Remark 1. For raising g and |d|
it is required that the true curves are very smooth, which might be unrealistic

in many applications. In contrast, the estimation of M (0) still gives parametric

rates if less smooth curves are assumed. In addition, if the sample size is small,

using a high degree polynomial needed to estimate M (d) might lead to unreliable

results. To learn more about these issues, we check the performance of both

approaches in a simulation study in Section 3.1 using different sample sizes.

2.5.1. Estimation of the number of components

Model selection criteria can be applied to select a suitable dimension for the

FPCA approximations. For orthogonal basis expansion there exists a wide range

of criteria that can be adapted to our case. The easiest way to determine the

number of components is by choosing the model accuracy by an amount of vari-

ance explained by the eigenvalues. In (S5) we show that under the assumptions of
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Proposition 2 λ̃
(ν)
r − λ̂(ν)r,T = Op(N−1/2T−1/2 +T−1) and λ

(ν)
r − λ̃(d)r = Op(N−1/2).

The assumptions in Corollary 1 from Bai and Ng (2002) can be adapted to our

case and give several criteria for finding L or Ld by generalizing Mallows (1973)

Cp criteria for panel data settings. These criteria imply minimizing the sum of

squared residuals when k factors are estimated and penalizing the overfitting.

One such formulation suggests choosing the number of factors using the criteria

PC(ν)(k∗)= min
k∈N,k≤Lmax

((
N∑

r=k+1

λ̂
(ν)
r,T

)
+k

(
N∑

r=Lmax

λ̂
(ν)
r,T

){
log(C2

NT )

C2
NT

})
,

(2.25)

for the constant CNT = min(
√
N,
√
T ) and a prespecified Lmax < min(N,T ).

Bai and Ng (2002) propose information criteria that do not depend on the choice

of Lmax. We consider the modified version

IC(ν)(k∗) = min
k∈N,k≤L

(
log

(
1

N

N∑
r=k+1

λ̂
(ν)
r,T

)
+ k

{
log(C2

NT )

C2
NT

})
. (2.26)

For ν = (0, . . . , 0)>, k∗ approximates L which is an upper bound for Ld, while

for ν = d, k∗ estimates Ld.

Another possibility for the choice of number of components is to compute

the variance explained by each nonorthogonal basis by

Var
(
δ̂
(d)
r,T γ̂

(d)
r,T

)
=
〈
γ̂
(d)
r,T , γ̂

(d)
r,T

〉
λ̂r, (2.27)

and sort the variances in decreasing order. Then one could use either (2.25) or

(2.26) to select the number of components. A thorough treatment of this criterion

is left for future research.

3. Application to SPDs Implied From Option Prices

In this section, we analyze the state price densities (SPDs) implied by the

stock index option prices. As state-dependent contingent claims, options contain

information about the risk factors driving the underlying asset price process and

provide information about expectations and risk patterns on the market. Mathe-

matically, SPDs are densities of some equivalent martingale measures for the dis-

counted asset price and their existence is guaranteed in the absence of arbitrage.

In the mathematical-finance terminology they are known as risk neutral densities

(RNDs). A restrictive model, with log-normal marginals for the asset price, is

the Black-Scholes model. This model results in log-normal SPDs of the under-

lying asset, which are equivalent to a constant implied volatility surface across
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strikes and maturities. This feature is inconsistent with the empirically docu-

mented volatility smile or skew and the term structure, see Rubinstein (1985).

Therefore, richer specifications for the option surface dynamics have to be used.

Many earlier works adopt a static viewpoint; they estimate curves separately at

different moments in time, see the reviews by Bahra (1997), Jackwerth (1999)

and Bliss and Panigirtzoglou (2002). In order to exploit the information content

from all available data, it is reasonable to consider them as collection of curves.

The relation between the SPDs and the European call prices has been demon-

strated by Breeden and Litzenberger (1987) and Banz (1978) for a continuum of

strike prices spanning the possible range of future realizations of the underlying

asset. For a fixed maturity, the SPD is proportional to the second derivative of

the European call options with respect to the strike price. In this case, SPDs

are one-dimensional functions. A two-dimensional point of view can be adopted

if maturities are taken as an additional argument and the SPDs are viewed as a

family of curves.

Let C : R2
≥0 → R denote the price function of a European call option with

strike price k and maturity τ such that

C(k, τ) = exp (−rττ)

∫ ∞
0

(sτ − k)+q(sτ , τ) dsτ , (3.1)

where rτ is the annualized risk free interest rate for maturity τ , sτ the future

price of the underlying asset at maturity τ , k the strike price and q the state

price density of the stochastic variable sτ . One can show that

q(sτ , τ) = exp (rττ)
∂2C(k, τ)

∂k2

∣∣∣∣
k=sτ

. (3.2)

Let s0 be the asset price at the moment of pricing and assume it to be fixed.

Then by the no-arbitrage condition, the forward price for maturity τ is

Fτ =

∫ ∞
0

sτq(sτ , τ)dsτ = s0 exp(rττ). (3.3)

Suppose that the call price is homogeneous of degree one in the strike price. Then

C(k, τ) = FτC

(
k

Fτ
, τ

)
. (3.4)

If we denote m = k/Fτ to be the moneyness, then

∂2C(k, τ)

∂k2
=

1

Fτ

∂2C(m, τ)

∂m2
. (3.5)

One can show that for d = (2, 0)>, C(d)(m, τ)|m=sτ/Fτ = q(sτ/s0, τ) = s0q(sτ , τ).

In practice, it is preferable to work with densities of returns instead of prices

when analyzing them jointly because prices are not stationary. Also, notice that
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call price curves are not centered. This leads to an additional additive term

in (2.4) and (2.6), which refers to the population mean. We illustrate in the

Supplementary Material S7 how to handle this in practice.

In our application, X refers to the rescaled and centered random call price

surface. Thus we have g = 2 with t = (m, τ) and observation points tij =

(mij , τij). Henceforth, we also assume that the indices i = 1, . . . , N refer to

ordered time-points.

The code used to generate the results reported in this section is published on-

line at www.github.com/QuantLet/FPCA and www.quantlet.de. The data used

in the empirical study is available from the authors upon request. Further details

regarding the implementation are presented in the Supplementary Material S7.

3.1. Simulation study

We investigate the finite sample behavior of our estimators in a simulation

study guided by the data application in Section 3.2. Simulated SPDs are modeled

as mixtures of G components, q(m, τ) =
∑G

l=1wlq
l(m, τ), where ql are fixed

components and wl are random weights. For fixed τ we consider log-normal

density functions ql(·, τ), with mean
{
µl − (1/2)σ2l

}
τ and variance σ2l τ , and

simulate weights wil satisfying
∑G

l=1wil = 1, where i = 1, . . . , N is the index for

the day. Then

qi(m, τ) =

G∑
l=1

wil
1

m
√

2πσ2l τ
exp

−1

2

[
log (m)−

{
µl − (1/2)σ2l

}
τ

σl
√
τ

]2. (3.6)

Following Brigo and Mercurio (2002) the prices of call options for these SPDs

are

Ci(m, τ) = exp (−riττ)

G∑
l=1

wil {exp(µlτ)Φ(y1)−mΦ(y2)} , (3.7)

where y1 = [log(m−1) + {µl + (1/2)σ2l }τ ]/(σl
√
τ), y2 = [log(m−1) + {µl −

(1/2)σ2l }τ ]/(σl
√
τ) and Φ is the standard normal cdf. This representation cor-

responds to a factor model in which the mixture components can be interpreted

as densities associated with a particular state of nature and the weights as prob-

abilities of these states.

We illustrate the finite sample behavior for G = 3 with µ1 = 0.4, µ2 = 0.7,

µ3 = 0.1, and σ1 = 0.5, σ2 = 0.3, σ3 = 0.3. The weights are simulated from

the positive half-standard normal distribution, then standardized to sum up to

one. As a result, the covariance operator of the SPD curves has L = G − 1

https://github.com/QuantLet/FPCA
http://quantlet.de/d3/ia/
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nonzero eingenvalues. In this example, using a mixture of three factors means

that only two principal components are necessary to explain the variance in the

true curves. In this application L = Ld = 2.

Without loss of generality, we set riτ = 0, for each day i = i, . . . , N . We

construct a random grid for each observed curve Xi by simulating points tik =

(mik, τik), k = 1, . . . , T , from a uniform distribution with continuous support

[0.5, 1.8] × [0.2, 0.7]. Finally, we record noisy discrete observations of the call

functions with additive error term i.i.d. εik ∼ N(0, 0.12).

The true SPDs given by (3.6) are used to verify the performance of X̂
(d)
i,L,ϕ,

X̂
(d)
i,L,γ and of the individually estimated curves X̂

(d)
i,LP by local polynomial re-

gression. To derive the optimal bandwidth in each case we use the rule-of-thumb

approach presented in Section S7. To illustrate the empirical performance for the

estimators of curve derivatives we compute the relative mean integrated square

error

RMISE
(
X

(d)
i , X̂

(d)
i,L,ϕ

)
=

N−1
∑N

i=1

∫
[0,1]g

{
X

(d)
i (t)− X̂(d)

i,L,ϕ(t)
}2
dt

N−1
∑N

i=1

∫
[0,1]g

{
X

(d)
i (t)

}2
dt

.

Similarly, we take RMISE(X(d), X̂
(d)
i,L,γ) and RMISE(X(d), X̂

(d)
i,LP.).

The bandwidth for the individually smoothed curve i is derived by replacing

p̂
(ν)
ir in (S7.23) by one and zero otherwise. The performance is recorded for

sample sizes N of 10 and 25 with T observations per day of size 50 and 250. This

procedure is repeated for 500 samples to get reliable results. The mean, variance,

median and the interquartile range based on the RMISE of all replications are

reported in Table 1.

Both FPCA-based approaches give better estimates for the derivatives of call

functions than the simple local polynomial regression applied to the individual

curves, as shown by the mean and the median of their corresponding RMISE.

However, the estimator X̂
(d)
L,i,γ performs decisively better for small T than the

other two, in terms of the mean and variance of RMISE. With small T , the

variability of RMISE for X̂
(d)
L,i,ϕ and individually smoothed curves is much larger

than for X̂
(d)
L,i,γ , while the median of RMISE for X̂

(d)
L,i,γ and X̂

(d)
L,i,ϕ are compa-

rable. This means that individual local polynomial smoothers and X̂
(d)
L,i,ϕ might

behave worse than X̂
(d)
L,i,γ in some instances while γ̂

(d)
r,T -based expansion provides

more to stable estimates. To get the same effect using X̂
(d)
L,i,ϕ a higher T is needed.

A possible explanation for this behavior is given by Proposition 1. The rates of
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Table 1. Simulation results for g = 2. Based on the mean and the median of RMISE,

X̂
(d)
i,L,ϕ and X̂

(d)
i,L,γ yield superior results compared to X̂

(d)
i,LP ; X̂

(d)
i,L,γ outperforms X̂

(d)
i,L,ϕ

in all cases. Results for X̂
(d)
i,L,ϕ and X̂

(d)
i,L,γ improve with raising N and T . These results

support our asymptotic results given by Proposition 1 and 3. All results are multiplied
by 102.

RMISE T 50 250

N X̂
(d)
• Mean Var Med IQR Mean Var Med IQR

10
X̂

(d)
i,L,ϕ 32.28 18.83 18.95 23.33 8.24 0.35 6.85 5.36

X̂
(d)
i,L,γ 29.85 22.33 16.80 22.22 7.48 0.35 5.80 4.76

X̂
(d)
i,LP 74.71 75.45 49.59 63.29 14.47 1.06 11.50 10.35

25
X̂

(d)
i,L,ϕ 17.35 3.89 12.18 11.48 6.10 0.08 5.28 4.19

X̂
(d)
i,L,γ 15.32 3.63 10.12 9.78 4.67 0.14 4.05 2.66

X̂
(d)
i,LP 80.83 82.15 54.18 67.78 14.57 1.05 11.77 10.39

Table 2. Simulation results for g = 2. The mean and the median of RISE for γ̂
(d)
r,T and

ϕ̂
(d)
r,T improve with raising N and T .

RISE Mean Median

T N γ̂
(d)
1,T γ̂

(d)
2,T ϕ̂

(d)
1,T ϕ̂

(d)
1,T γ̂

(d)
1,T γ̂

(d)
2,T γ̂

(d)
1,T ϕ̂

(d)
2,T

50 10 19.97 6.99 0.91 1.02 2.69 0.05 0.96 1.02
250 10 51.7 1.35 0.64 1.03 2.54 0.19 0.6 1.06
50 25 9.02 0.24 0.84 1.01 0.96 0.05 0.87 1.03

250 25 3.22 1.54 0.54 1.06 0.49 0.19 0.45 1.09

convergence for the estimators of the dual matrix entries rely on T . Thus in finite

samples, when T is small, the estimated loadings might be biased.

We evaluate the empirical performance of γ̂
(d)
r,T and ϕ̂

(d)
r,T based on the relative

integrated square error

RISE
(
γ̃(d)r , γ̂

(d)
r,T

)
=

∫
[0,1]g

{
γ̃(d)r (t)− γ̂(d)r,T (t)

}2
dt∫

[0,1]g

{
γ̂
(d)
r,T (t)

}2
dt

.

The results are summarized in Table 2. Here the mean and median of RISE

do not have the same order of magnitude and the results for the corresponding

r are not comparable because they refer to different functions ϕ̂
(d)
r,T and γ̂

(d)
r,T .

To compare the performance of our methodology with an existing FPCA-

based method, we include in the Supplementary Material S8 a simulation study

for the unidimensional case, in which we report the results from our second
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method in (2.6) and (2.7) and the results from Liu and Müller (2009). Both

these approaches aim to estimate γ̃
(d)
r .

3.2. Data example

3.2.1. Data description

We use settlement European call option prices written on the underlying

DAX 30 stock index. These prices are computed by EUREX at the end of each

trading day based on the intraday transaction prices. The data range runs be-

tween January 2, 2002 and December 3, 2011, and includes 2,557 days. The

expiration dates of the options are set on the third Friday of the month. There-

fore, on a particular day, option prices with only a few maturities are available, as

illustrated in the upper panels of Figure 1. Methods that analyze curves jointly

are generally better tailored to this type of data, because they provide better es-

timates at grid points with only a few observations of the individual curves. We

include call options with maturity between one day and one year. The sample

contains prices of options with an average of six maturities and sixty-five strikes

per day.

By assuming ‘sticky’ coordinates for the daily observations, in accordance

with (3.4), we divide the strike and the call prices within one day by the stock

index forward price to ensure that the observation points are in the same range.

Afterward, we apply the estimation methodology of Section 2 to the rescaled

call prices, which are functions of moneyness and maturity. The proxy for the

risk-free interest rates are the EURIBOR rates, which are listed daily for several

maturities. We apply a linear interpolation to calculate the rate values for desired

maturities.

3.2.2. Estimation results

We report the results for the empirical loadings based on the spectral de-

composition of empirical dual covariance matrix M̂ (0) of the rescaled option price

functions, and for the empirical second partial derivative of the eigenfunctions

γ̂
(d)
r,T , d = (2, 0)>. Recall that this method does not estimate orthogonal basis. In

the Supplementary Material S9.1 we explain the selection of three interpretable

components that we now analyze. They correspond to γ
(d)
1,T , γ

(d)
3,T and γ

(d)
7,T . Their

estimates together with the empirical loadings are displayed in Figure 2. They

describe three types of variation present in the dynamics of the SPDs. There is

a long left tail, specific to the negatively skewed densities, and a peak located at

a value of moneyness slightly above one. For positive loadings, this component
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Figure 1. Option prices around expiration date (upper panels). Estimated component

γ̂
(d)
2,T (lower panel left). The effect of expiration date on the level of empirical loadings

δ̂2,T (lower panel right).

increases the mass of SPD around the mode of the empirical mean and decreases

the mass in the tails. We find that this component is related to the time-varying

volatility of the index returns. The next component, γ̂
(d)
3,T has a ’valley-hill’ pat-

tern, which shifts mass around the central region of the density. A positive shock

in the direction of this component increases the negative skewness, and a large

negative shock can reverse the sign of the SPD skewness. This component is

interpreted as a skewness factor. Further justifications for the interpretation of

these two components are provided in the Supplementary Material S9.2. The last

component, γ̂
(d)
7,T takes negative values in the left tail and displays a prominent

positive-valued peak at the right of the mode of the empirical SPD mean. This

component can be interpreted as a tail factor, and we show in the next section

that its loadings are related to the volatility of volatility index.

We conjecture that the other components selected by PC(0) and IC(0) cri-

teria are related to reactions of option prices along the maturity direction. In

addition, their loadings contain regular spikes around the expiration date of op-

tions between mid-February 2007 and mid-September 2008. We illustrate this in
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Figure 2. Estimated components γ̂
(d)
1,T , γ̂

(d)
3,T and γ̂

(d)
7,T and their loadings.

the lower panels of Figure 1 for the second component.

3.2.3. Dynamic analysis of the loadings

In this section, we investigate the dynamics of the loadings in the approx-

imating model. In the Supplementary Material S9.3 we discuss the preliminary

analysis of these loadings in a time series context. This suggests that we consider

the following time-varying autoregressive model for the loadings

δ̂ir,T = br δ̂i−1r,T + eir, Var(eir) = σ2er, r = 1, 2, 3, (3.8)

where br is the autoregressive coefficient. We reestimate (3.8) daily based on

a rolling window of 250 past observation using OLS. This adaptive estimation

procedure helps detect the possible sources of non-stationarity in the estimated
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Figure 3. Time-varying autoregressive coefficients b̂r, standard deviation σ̂er and pair-
wise correlations corr(êir, êir′) of residuals in univariate AR(1) regressions of loadings,
and standard deviation of the VDAX volatility index σ̂IV estimated daily with a rolling
window of 250 observations.

loadings, by allowing the autoregressive coefficient and the error variance to vary

over time.

The upper left panel of Figure 3 displays the estimated autoregressive coef-

ficients. δ̂1,T is very persistent (b̂1 is close to one), except for 2004. Interestingly,

b̂3 is relatively small between 2003–2006 and increases significantly thereafter,

suggesting a possible regime shift. b̂7 is relatively high and its variation seems

sensitive to the changes in the other two parameters.

We also compute the time-varying cross-equation correlations between the

error terms. The two lower panels of Figure 3 illustrate the results. The er-

ror correlation of the skewness with the volatility and with the tail factor move

closely together, suggesting a strong relationship between the volatility and the

tail factors. We focus on corr(êi1, êi3), which describes the dynamic relationship

between the changes in SDP volatility and skewness. Most of the time, the plot-

ted correlation is negative, meaning that positive changes in the SPD variance are

associated on average with increases in the negative skewness. The negative cor-

relation between an asset return and its changes of volatility is generally known
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as the leverage effect. The correlation reverses sign and becomes positive between

2007-2009. This implies that when volatility increases, there is a change in the

concentration mass in the left side of the density, in the area of medium-ranged

negative returns. We identify this behavior with the implied volatility skew puz-

zle, as documented by Constantinides and Lian (2015). The authors rationalize

this behavior through the reduction in put option supply from credit-constrained

market makers together with an increase in the demand for OTM puts required

for hedging purposed, see also net buying pressure in Bollen and Whaley (2004),

Gârleanu, Pedersen and Poteshman (2009).

Typically, the error correlation corr(êi1, êi7) is negative. Its magnitude de-

creases and reaches values close to zero in 2009. In the lower right panel of Figure

3, we also plot the 250-observation standard deviation σ̂IV of the VDAX implied

volatility index. The two time-series are strongly correlated (the correlation co-

efficient is 90.78%). This suggests that the tail component can be interpreted as

the volatility of volatility risk factor. Similar interpretations were proposed in

Du and Kapadia (2012), Huang and Shaliastovich (2014) and Park (2015), who

use different measures of the volatility-of-volatility implied by VIX (the implied

volatility index of the S&P 500) as a tail risk indicator. The tail factor takes

highest positive values during the financial crisis, consistent with fat tail and

high risk hypothesis.

To verify the stability of the results reported, we repeat the regression analy-

sis by including a constant in (3.8). The root mean square error does not improve

significantly. We also estimate the model by including the lagged values of the

other two loadings as additional explanatory variables. Some of the estimated

autoregressive coefficients take values above one. Independently of these model-

ing choices, the estimated cross-error term interactions are very similar to those

shown in Figure 3. These suggest that changes in the correlation sign for the

levels of the loadings are driven mainly by the error term correlation structure

and not by the changes in the other lagged variables.

Several stylized facts emerge from the dynamic analysis of the loadings that

summarize the variation of SPDs. When volatility is small, the innovations to

the volatility, skewness and volatility of volatility loading equations are very

strongly correlated. When volatility increases, the correlation structure changes.

In particular, the leverage parameter changes sign during the financial crises.

By including volatility of volatility as an additional factor, see also Huang and

Shaliastovich (2014), our study distinguishes between the volatility induced skew-

ness through the leverage effect and by the volatility of volatility induced skew-
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ness, see also Feunou and Tédongap (2012). These findings may have important

consequences for the formulation of stochastic volatility models for option pricing.

Supplementary Materials

The online Supplementary Material includes a summary of technical assump-

tions, proofs of Proposition 1, 2 and 3, the convergence of Monte-Carlo integrals

that approximate the elements of the dual matrix, practical aspects for the imple-

mentation of proposed methods, comparison to an existing FPCA-based method

for estimating derivatives, supporting results for the analysis of DAX 30 SPDs

and additional references.
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