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Abstract: A new test statistic based on Pearson correlation coefficient (rn) for

cross-sectional correlation in panel data is studied. The limiting distribution of rn

is presented. A simulation study shows that rn is useful in general situations. Com-

puting rn on the residuals from models for panel data motivates the study of a new

class of statistics, namely weighted degenerate U-statistics with estimated param-

eters (WUn(λ̂)). The limiting distributions of WUn(λ̂) and weighted degenerate

V-statistics with estimated parameters are established. Whether their limiting dis-

tributions are affected by using estimates of the parameters depends on whether or

not a certain mean function has zero derivative. Applications to testing correlation

in panel data and to testing for goodness-of-fit are presented.
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1. Introduction

Panel data (also called longitudinal data) are measurements taken from ex-
perimental units (typically individuals or economic entities) over time. For the
ith experimental unit, a set of panel data over time periods may be denoted by
Yit where t = 1, . . . , T . For further details of panel data, we refer to Hsiao (1986)
and Greene (1993).

Cross-sectional correlation occurs often in the social sciences due to a com-
mon environment. For instance, two automobile manufacturing companies oper-
ating in a common economic environment such as the same market and the same
work rules will show correlation in their trading behaviors.

According to Frees (1995), experimenters in social sciences are reluctant
to consider the data over long period of time because basic conditions appear
unstable. In this paper, we consider situations in which the time period for the
panel data (T ) is short whereas the number of experimental units (n) is large.
For the importance of this case, see Hsiao (1986).

Classical regression analysis assumes that experimental units are unrelated;
however, with panel data this is often not the case. Frees (1992, 1993) showed
that ignoring cross-sectional correlation results in overstated prediction bands in
interstate migration rates forecasts. Hence, assessing cross-sectional correlation
in panel data is important.
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In this paper, we first study a new test statistic rn for cross-sectional cor-
relation with panel data. The asymptotic and finite sample properties of rn

are provided. Then we investigate the asymptotics of a class of new statistics,
namely weighted degenerate U-statistics with parameters, which was obtained
by computing rn on residuals from models for panel data.

To illustrate a new test statistic rn proposed in this paper, we first consider a
simple model Yit = µi+σieit, i = 1, . . . , n, t = 1, . . . , T, where {Yit}, t = 1, . . . , T
are observations from the ith experimental unit. Assume that {eit} are mean zero
unobservable random variables (r.v.’s). We note that µi could be random or fixed
effects because the correlation of panel data is not affected by location and scale
parameters. We consider more general models in Section 3.

The cross-sectional correlation between the ith and the jth experimental
units is defined as ρij = Corr(Yit, Yjt). To determine whether there is cross-
sectional correlation, we shall test the null hypothesis that Ho : ρij = 0, for each i
and j.

We propose a new test statistic for H0 which is based on the Pearson corre-
lation coefficient, and call it rn.

rn =
∑

i�=j (S2
ij − S2

i S2
j )∑

i�=j S2
i S2

j

, (1)

where S2
ij =

∑T
t=1 Y 2

itY
2
jt/T and Si

2 =
∑T

t=1 Y 2
it/T . For a statistic of the Pear-

son correlation coefficient type and other rank test statistics for cross-sectional
correlation with panel data, we refer to Frees (1995).

In Section 2, the null limiting distribution (limiting distribution henceforth)
and a simulation of the properties of rn are presented. The simulation study
shows that under various situations, rn is more powerful than its rank version
studied in Frees (1995).

Since, in econometrics, the statistic is primarily used for model diagnostics,
the statistic based on residuals is likely to be useful. Furthermore, Randles (1984)
shows that under certain general conditions, test statistics computed on additive
residuals have the same limiting distributions as those based on independent
observations. This led the author to compute rn on the residuals, which motivates
a class of new statistics, namely weighted degenerate U-statistics with estimated
parameters (WUn(λ̂) henceforth). (For details, see Section 3.)

In Section 3, we first establish the limiting distribution of weighted degener-
ate V-statistics with estimated parameters (WVn(λ̂)), which is a class of statistics
closely related to WUn(λ̂). Then the limiting distribution of WUn(λ̂) is obtained
via WVn(λ̂). WUn(λ̂) extends the class of weighted degenerate U-statistics in
Shieh, Johnson and Frees (1994). Conditions under which the use of parameter
estimates affects the limiting distributions are specified. Two applications are
given. We conclude with some remarks in Section 4.
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2. The Test Statistic rn

Recall that the new statistic proposed in this paper, rn, assumes the form
rn =

∑
i�=j(S

2
ij − S2

i S2
j )/[

∑
i�=j S2

i S2
j ], where S2

ij =
∑T

t=1 Y 2
itY

2
jt/T and Si

2 =∑T
t=1 Y 2

it/T . rn is based on the Pearson correlation coefficient. If for t = 1, . . . , T
the {Yit : i = 1, . . . , n} are independent mean zero variables with variance σ2

i ,
then E

∑
i�=j(S2

ij − S2
i S2

j ) = 0, and it can be shown that |rn| ≤ 1. Thus the
statistic rn can be used to detect deviations from the independence assumption.
Frees (1995) studied a rank version of rn, R2

AV E , which will be compared to rn

in a simulation study in the next section.
The statistic rn is the ratio of a degenerate U-statistic to a non-degenerate U-

statistic and thus can be analyzed by results for degenerate U-statistics (Gregory
(1977) or Serfling (1980)). We establish its limiting distribution in the next
section.

2.1. The limiting distribution of rn

Let Un = [n(n− 1)]−1 ∑
i�=j (S2

ij −S2
i S2

j ) and Hn = [n(n− 1)]−1 ∑
i�=j S2

i S2
j ,

where {S2
ij} and {S2

i } are defined under the equation (1). It can be checked that
n[rn − Un/E(Hn)] →D 0, provided that

Hn − E(Hn) →P 0 and E(Hn) → CH , (2)

where CH is a positive constant. The implications in (2) follow from a result for
non-degenerate U-statistics (Theorem 5.4.A in Serfling (1980)). After straight-
forward algebra, it can be shown that

nrn →D [(T − 1)(µ4 − µ2
2)/(T

2CH)](χ2
T − T ),

where µ4 = E(Y 4
11), µ2 = E(Y 2

11) and χ2
T is a chi square random variable with T

degree of freedom. Frees (1995) showed that

n(R2
AV E − (T − 1)−1) →D a(T )[χ2

T−1 − (T − 1)] + b(T )[χ2
T (T−3)/2 − T (T − 3)/2],

where χ2
T−1 and χ2

T (T−3)/2 are independent χ2 random variables with T − 1 and
T (T−3)/2 degrees of freedom, respectively, and a(T ) = 4(T+2)/[5(T−1)2(T+1)]
and b(T ) = 2(5T +6)/[5T (T −1)(T +1)]. As anticipated, the limiting distribution
of R2

AV E is distribution-free because it is based on ranks.

2.2. Power study of rn

In this section, the results of a simulation study are presented to examine
the power of rn and then the power of rn is compared to that of a rank statistic,
R2

AV E , studied in Frees (1995). R2
AV E is based on the Spearman correlation

coefficient and is given by R2
AV E = 2/[n(n − 1)]

∑
i<j r2

ij/[rii rjj ], where rij =



1024 GRACE S. SHIEH

(T −1)−1 ∑T
t=1(Rit−(T +1)/2)(Rjt−(T +1)/2) and {Ri1, . . . , RiT } are the ranks

of {Yi1, . . . , YiT }. Note that rij/(rii rjj)1/2 is the Spearman rank correlation
coefficient between the ith and jth experimental unit.

The family of alternative models used is

Yit = αiβt + eit, (3)

where the {βt} and the {eit} are i.i.d. r.v.’s with variances σ2
β and σ2

e , E(β) = 1
and E(e) = 0. The {αi} are not random.

Under model (3), the cross-sectional correlation equals

ρij = Corr (Yit, Yjt) =
αiαjσ

2
β

[(α2
i σ

2
β + σ2

e)(α2
jσ

2
β + σ2

e)]1/2
.

The case σ2
β = 0 gives the zero cross-sectional correlation model, namely the

model under the null hypothesis. Taking σ2
e = 1 and the fixed parameters αi to

be either −1 or 1, gives cross-sectional correlations

ρij =
αiαjσ

2
β

σ2
β + 1

.

Let p be the proportion of ones among the values of αi. Three choices of p
were studied, namely (1) p = 1, corresponding to all positive ρij ’s, (2) p =
0.5 + 1/(2

√
n), corresponding to the case that

∑
i<j ρij = 0, that is, there are as

many positive correlations as negative ones and (3) p = 0.75 + 1/(4
√

n), most of
the correlations are positive but there are many negative ones as well.

The powers of the test statistics under the alternative family in (3) with
βt ∼ N(1, σ2

β), βt ∼ Exp(1 − σβ , σβ), eit ∼ N(0, σ2
e ), and with the above three

choices of p are summarized in Tables 1-3, respectively. In each simulation, the
number of replications used was 5,000 which yields a standard error about 0.0071.
The sample sizes studied are 10, 20, 50 and 250; T varies from 5 to 10; and the
choices of σβ = 1.0, 0.5, 0.1 and 0.0 correspond to |ρij | = 0.5, 0.2, 0.0909 and 0.00.

In Tables 1-3, both statistics detected cross-sectional correlations whose ab-
solute values are equal to or greater than 0.2. Power is increasing in n, T and
|ρij|. When βt has a N(1, σ2

β) distribution, in general, rn is more powerful than
R2

AV E which is because rn is based on the Pearson correlation coefficient whereas
R2

AV E is based on the Spearman correlation coefficient.
When βt has the exponential or uniform distribution with mean one and

variance σ2
β, rn dominates R2

AV E in most cases, and in the rest of cases they
are equivalent. When βt is exponentially distributed, both rn and R2

AV E exhibit
slightly lower power than when βt is normally distributed. When βt is uniformly
distributed, the powers of both statistics are similar to those when βt is normally
distributed. The details of the powers of both statistics when βt is uniformly
distributed is available from the author.
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Table 1. Power of rn and R2
AV E with p, the proportion of intercepts equal to

1, equal to 1.

βt ∼ N(1, σ2
β) βt ∼ Exp(1 − σβ , σβ)

n |ρij | T = 5 T = 10 T = 5 T = 10
rn R2

AV E rn R2
AV E rn R2

AV E rn R2
AV E

10 0.5 .848 .671 .980 .955 .812 .518 .963 .845
0.2 .571 .171 .797 .423 .465 .166 .682 .340

.0909 .080 .046 .081 .049 .099 .048 .101 .051
0.00 .054 .049 .047 .050 .054 .049 .047 .050

25 0.5 .960 .849 .999 .995 .911 .705 .992 .951
0.2 .861 .366 .980 .737 .660 .300 .849 .570

.0909 .126 .051 .145 .052 .105 .049 .111 .055
0.00 .051 .050 .041 .049 .051 .050 .041 .049

50 0.5 .998 .984 1.000 1.000 .990 .952 1.000 1.000
0.2 .988 .881 1.000 .996 .927 .805 .991 .974

.0909 .346 .436 .545 .517 .516 .437 .601 .488
0.00 .054 .054 .055 .055 .053 .049 .050 .051

250 0.5 .999 .998 1.000 1.000 .998 .986 1.000 1.000
0.2 .999 .973 1.000 1.000 .983 .928 1.000 .998

.0909 .849 .538 .983 .711 .650 .526 .762 .646
0.00 .050 .053 .057 .055 .052 .054 .056 .051

Table 2. Power of rn and R2
AV E with p, the proportion of intercepts equal to

1, equal to 0.5 + 1/(2
√

n).

βt ∼ N(1, σ2
β) βt ∼ Exp(1 − σβ , σβ)

n p |ρij | T = 5 T = 10 T = 5 T = 10
rn R2

AV E rn R2
AV E rn R2

AV E rn R2
AV E

10 0.658 0.5 .842 .669 .979 .962 .805 .513 .966 .852
0.2 .574 .180 .802 .417 .473 .169 .690 .354

.0909 .080 .052 .078 .058 .102 .050 .101 .056
0.00 .050 .045 .056 .047 .050 .045 .056 .047

25 0.600 0.5 .962 .845 .998 .996 .919 .702 .994 .956
0.2 .848 .354 .984 .746 .639 .294 .856 .593

.0909 .114 .050 .138 .054 .108 .050 .110 .056
0.00 .049 .048 .048 .052 .049 .048 .048 .052

50 0.571 0.5 .996 .984 1.000 1.000 .992 .951 1.000 1.000
0.2 .990 .876 1.000 .996 .938 .803 .992 .970

.0909 .315 .431 .541 .512 .503 .447 .577 .484
0.00 .048 .051 .052 .051 .050 .051 .053 .049

250 0.532 0.5 1.000 .998 1.000 1.000 .998 .988 1.000 1.000
0.2 1.000 .974 1.000 .999 .979 .920 1.000 .998

.0909 .849 .544 .981 .714 .640 .522 .764 .644
0.00 .050 .052 .057 .054 .053 .048 .055 .052
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Table 3. Power of rn and R2
AV E with p, the proportion of intercepts equal to

1, equal to 0.75 + 1/(4
√

n).

βt ∼ N(1, σ2
β) βt ∼ Exp(1 − σβ , σβ)

n p |ρij | T = 5 T = 10 T = 5 T = 10
rn R2

AV E rn R2
AV E rn R2

AV E rn R2
AV E

10 0.829 0.5 .852 .671 .982 .961 .816 .519 .961 .843
0.2 .578 .183 .807 .419 .474 .173 .680 .332

.0909 .083 .052 .086 .051 .103 .051 .098 .047
0.00 .050 .057 .056 .046 .050 .057 .056 .046

25 0.800 0.5 .961 .860 .999 .994 .914 .698 .994 .953
0.2 .843 .367 .982 .748 .633 .305 .854 .579

.0909 .108 .053 .143 .054 .100 .056 .116 .054
0.00 .044 .060 .049 .049 .044 .060 .049 .049

50 0.785 0.5 .996 .985 1.000 1.000 .989 .948 1.000 .999
0.2 .987 .892 1.000 .993 .929 .800 .992 .971

.0909 .318 .439 .526 .504 .512 .430 .584 .486
0.00 .043 .051 .050 .051 .051 .046 .053 .052

250 0.766 0.5 1.000 .997 1.000 1.000 .998 .989 1.000 1.000
0.2 .999 .974 1.000 1.000 .984 .925 .999 .996

.0909 .858 .539 .984 .695 .659 .534 .776 .646
0.00 .058 .051 .056 .050 .049 .051 .054 .048

In Frees (1995), R2
AV E is compared to RAV E , where RAV E =

∑
i<j rij/

[(riirjj)1/2]. Under the alternative model in (3), with βt ∼ N(1, σ2
β) and eit ∼

N(0, σ2
e), for the choices of p = 1 and p = 0.75 + 1/(4

√
n), rn has power similar

to that of RAV E in most cases, but is slightly less powerful than RAV E in the
small sample size cases (n = 10 and 25). In situations with p = 0.5 + 1/(2

√
n),

rn is much more powerful than RAV E .
The simulation studies show us when to apply each statistic. When either

positive or negative correlations will prevail, one should use RAV E or rn. When it
is unknown whether ρij is positive or negative or if there is a mixture of positive
and negative cross-sectional correlations, then one should use rn or R2

AV E. A
mixture of positive and negative cross-sectional correlations occurs in the study
of migration between states in Frees (1992).

3. rn(λ̂) and Weighted Degenerate U-statistics with Estimated Param-
eters

The simulation study shows that the statistic rn is powerful and thus is
useful in general situations. In econometrics, often rn is used for model diagnosis.
Hence, in practice, rn will be calculated using residuals from a complex model.
The following example illustrates this point. Assume that the panel data follow a
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regression model. In this model, slope coefficients are constants and the intercept
varies over individuals. Let

Yit = µi + C ′
itβ + σieit, for i = 1, . . . , n and t = 1, . . . , T, (4)

where β is an unknown parameter, the {σi} are known unequal constants, and
the {eit} are i.i.d. r.v.’s with mean zero.

Let β̂ be any consistent estimator of β. Define λ̂ = β̂−β, λ = 0, the residuals
êit = Yit − Ŷit = σieit + µi − µ̂i − Citλ̂, and

ẽit = σ−1
i (êit − ¯̂ei) = eit − ēi − σ−1

i (Cit − C̄i)λ̂ .

Substituting {Yit} of rn in (1) with “residuals” {σiẽit}, we obtain

rn(λ̂) =
∑

i�=j dijn[T−1 ∑T
t=1 ẽ2

itẽ
2
jt − (T−1 ∑T

t=1 ẽ2
it)(T

−1 ∑T
t=1 ẽ2

jt)]∑
i�=j dijn(T−1

∑T
t=1 ẽ2

it)(T−1
∑T

t=1 ẽ2
jt)

≡ An(λ̂)
Bn(λ̂)

,

(5)
where dijn = σ2

i σ
2
j /(n

2).
It turns out that the numerator of rn(λ̂), An(λ̂), is a weighted degenerate U-

statistic with estimated parameters (WUn(λ̂) defined in (6) below). (For details,
see Section 3.2.1.) The limiting distribution of rn(λ̂) depends on WUn(λ̂). This
led the author to investigate the limiting distribution of WUn(λ̂).

In Section 3.1, the limiting distribution of weighted degenerate V-statistics
with estimated parameters (WVn(λ̂)) is established. The limiting distribution of
WUn(λ̂) is obtained via WVn(λ̂) and turns out to be a weighted sum of chi-square
variates. Conditions under which both WUn(λ̂) and WUn(λ) assume the same
limiting distribution (referred to as Case I) and different limiting distributions
(referred to as Case II) are specified.

3.1. The limiting distributions of WUn(λ̂) and WVn(λ̂)

Let X1,X2, . . . denote i.i.d. r.v.’s. Assume that E(X1) = 0,Var (X1) = 1, and
E(X4

1 ) < ∞. Let the kernel h(·) be a symmetric real valued function with finite
second moment. Weighted degenerate U-statistics with estimated parameters are
defined as follows:

WUn(λ̂) =
∑
i�=j

dijnh(Xi,Xj ; λ̂). (6)

Here {dijn} are symmetric but non-stochastic weights, λ̂ = λ̂(X1, ...,Xn) is a
consistent estimator of the p-vector parameter λ, and h is degenerate in the
sense that Var [h1(X1)] = 0, where h1(x1) = E[h(x1,X2;λ)]. If λ is known,
WUn(λ) is a weighted degenerate U-statistic. Whether and how the variability
in λ̂ affects the limiting distribution of WUn(λ̂) is an important question.
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For investigations on the asymptotics of statistics with estimated parameters,
see De Wet and Randles (1987) for a thorough review. This paper investigates
how the estimated parameter λ̂ affects the limiting distributions of WUn(λ̂) and
WVn(λ̂). The result is based on the asymptotic results for degenerate U- and V-
statistics with estimated parameters in DeWet and Randles (1987) and weighted
degenerate U-statistics (WUn(λ) henceforth) in Shieh, Johnson and Frees (1994).

A class of statistics closely related to WUn(λ) is the class of weighted degen-
erate V-statistics which assumes the following form.

WVn(λ) =
∑
i,j

dijn h(Xi,Xj ;λ),

where
∑

i,j denotes the summation in which both indices i and j run from 1 to
n. To avoid the strong assumption that the kernel h is differentiable in λ̂, we
assume that

h(x, y;λ) =
∫ ∞

−∞
g(x, t;λ)g(y, t;λ)dM(t), (7)

where g is some real-valued function and M(t) is a finite positive measure.
Conditions 1 and 3 below are basic regularity conditions on the function g

and hence are conditions indirectly on the kernel h. Condition 2 is the usual
asymptotic linearity applied to λ̂. Conditions 4, 5 and W are necessary for the
limiting distributions of WVn(λ̂) and WUn(λ̂). We assume that µ(t;λ), where
µ(t; γ) = Eλ[g(X1, t; γ)], has an L2(R,M) differential at λ as follows. Suppose
that for any ε > 0, there is a bounded sphere C in Rp centered at λ such that
γ ∈ C implies

‖γ − λ‖−2
∫ ∞

−∞
[µ(t; γ) − d1µ(t;λ)′(γ − λ)]2 dM(t) < ε.

Condition 1. suppose that µ(t; γ) exists and µ(t; γ) ≡ 0 for every t and γ in a
neighborhood of γ = λ. Furthermore, assume that µ(t, γ) has an L2(R,M) differ-
ential at γ = λ with partial derivative vector d1µ(t;λ) and

∫ ∞
−∞[d1µ(t;λ)r]

2dM(t)
< ∞, for r = 1, . . . , p, where d1µ(t;λ)r is the rth component of the vector
d1µ(t;λ).

Condition 2. λ̂ = λ + n−1 ∑n
i=1 α(Xi) + op(n−1/2), where E[α(Xi)r] = 0 and

E[α(Xi)r α(Xi)r′ ] < ∞, for all 1 ≤ r ≤ r′ ≤ p.

Condition 3. Suppose that there exists a number K1 > 0 and a neighborhood
K(λ) of λ such that (a) if γ ∈ K(λ) and D(γ, d) is a sphere centered at γ with
radius d such that D(γ, d) ⊂ K(λ), then∫ ∞

−∞

{
E

[
sup

r′∈D(γ,d)
|g(X1, t; γ′) − g(X1, t; γ)|

]}2
dM(t) ≤ K1 d2
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and (b) for any ε > 0, there is a d∗ > 0 such that 0 <d< d∗, γ ∈ K(λ) and D(γ, d)
⊂ K(λ) imply∫ ∞

−∞
E

[
sup

γ′∈D(γ,d)
|g(X1, t; γ′) − g(X1, t; γ)|4

]
dM(t) < ε.

Condition 4. Suppose that g(X1, t;λ) ∈ D[−∞,∞] and for fixed t0, P{g(X1, t0)

= g(X1−, t0)} = 0. Further, Let K1(s, t) = E[g(X1, s;λ)g(X1, t;λ)]. K1(s, s) +
K1(t, t) − 2K1(s, t) ≤ |t − s|α, where α > 1.

Remark. Since K1 is a covariance matrix, in general it is smooth and thus
Condition 4 is not restrictive. When K1 has finite discontinuity points, we can
choose s and t from a small interval such that Condition 4 holds.

Remark. When K1 is smooth, we can take α = 2.
Let {δk} be the eigenvalues of h(x, y;λ) corresponding to the eigenfunctions

{φk(·)}, and

lim
K → ∞

E

{[
h(x, y;λ) −

K∑
k=1

δkφk(x)φk(y)
]2}

= 0. (8)

Condition 5. E[h2(X1,Xi)] < ∞, for i = 1 or 2.
∑∞

k=1 |δk| < ∞ and
h(X,X, λ) =

∑∞
k=1 δkφ

2
k(X).

The following notation is needed for Condition W. Let {bimn : i = 1, . . . , n;m
= 1, 2, . . .} and {ηm : m = 1, 2, . . .} be real numbers, and δkm = 1, if k = m, and
0 otherwise. Let ηm be limiting eigenvalues of the weight matrix, Dn = (ndijn),
in the following sense. Since Dn is symmetric, there exists an orthogonal matrix
Bn = (bimn) such that Bn

′DnBn = Λn. Let ηmn be the mth diagonal element of
Λn and limn→∞ ηmn = ηm. (For details, see Shieh, Johnson and Frees (1994).)

Condition W. (i) max1≤i≤n |bimn| → 0 as n → ∞ for each m,
(ii)

∑n
i=1

∑n
j=1 (ndijn)2 → ∑∞

m=1 η2
m < ∞,

(iii)
∑∞

m=1 |ηm| < ∞ and
∑∞

m=1 |ηmn − ηm| → 0, as n → ∞,
(iv) |bimn| ≤ b/

√
n < ∞.

(v) (1/
√

n)
∑n

i=1 bimn → cm, where {cm} are constants.

By (7), we can express WVn(λ̂) as WVn(λ̂) =
∑

i,j dijn
∫ ∞
−∞ g(Xi, t; λ̂)

g(Xj , t; λ̂)dM(t). By spectrum analysis in linear algebra, (ndijn) is symmet-
ric, thus we can expand ndijn into

∑n
m=1 ηmnbimnbjmn. Thus, WVn(λ̂) =

n−1 ∑n
m=1 ηmn

∫ ∞
−∞[

∑n
i=1 bimng(Xi, t; λ̂)]2 dM(t). If bimn ≡ 1/n, then the term

in square brackets (for each fixed t) is a degree-1 V-statistic with estimated pa-
rameters, and will be denoted by V1n(λ̂). Let λ̂ = λ(Fn), a functional of the
empirical d.f. Fn. Similar to the approach in De Wet and Randles (1987) (a
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standard technique applied to V-statistics), with bimn ≡ 1/n and t fixed, we
write V1n(λ̂) as a functional T (Fn) =

∫ ∞
−∞ g(x;λ(Fn))dFn(x). The first Gâteaux

differential of T (·) at F in the direction of Fn − F is

d1T (F ;Fn − F ) =
∫ ∞

−∞
g(x;λ)d(Fn − F ) + d1θ(λ)′d1λ(F ;Fn − F ), (9)

where d1θ(λ) denotes the partial derivative of θ(γ) = Eλ[g(X1; γ)] with respect
to γ, and the expectation assumes λ the actual parameter value. Equation (9)
motivates us to approximate g(Xi, t; λ̂) by

g(Xi, t;λ) + d1θ(λ)′(λ̂ − λ). (10)

Note that through this approximation, we do not need to assume that g(·) is
differentiable in γ at γ = λ, which is often not true, while θ(·) is differentiable
in γ. Furthermore, if θ(·) has a zero derivative at γ = λ, then the limiting
distribution of V1n(λ) is not affected if λ needs to be estimated.

By (10) and Condition 2 we define WVn, an approximation of the weighted
degenerate V-statistic with estimated parameters, as follows:

WVn =
n∑

m=1

ηmn

∫ ∞

−∞

{ n∑
i=1

bimn[g(Xi, t;λ) + d1µ(t, λ)′α(X)]
}2

dM(t),

where µ(t; γ) = Eλ[g(X1, t; γ)] and α(X) = n−1 ∑n
k=1 α(Xk). We note that the

effect of λ̂ is captured in d1µ(t;λ). The following lemmas are needed in Theorem
1, which establishes the limiting distribution of WVn(λ̂).

Lemma 1. (De Wet and Randles (1987), Lemma 4.1.) Let X1, . . . ,Xn be
i.i.d. and suppose kn(x, y) = kn(y, x) for every x, y and n. In addition, as-
sume for every x and n that E[kn(x,X2)] = 0 and E[k2

n(X1,Xi)] = o(n2) for
i = 1 and 2, as n → ∞, then Wn = n−2 ∑n

i=1

∑n
j=1 kn(Xi,Xj) →P 0.

Define

Qn(s) =
∫ ∞

−∞

{ n∑
i=1

bimn

[
g(Xi, t;λ+n−1/2s)−g(Xi, t;λ)−µ(t;λ+n−1/2s)

]}2
dM(t).

Note that for simplicity we have supressed the index m in Qn.

Lemma 2. Suppose that Conditions 1, 2 and W hold. Then Qn(
√

n(λ̂−λ)) →P 0.

Proof. See Appendix 1 of Shieh (1994).

The following theorem shows that when Conditions 1–4 and W hold, both
WVn(λ̂) and WVn have the same limiting distribution, which is a weighted sum
of chi-square variates. When d1µ(t;λ) ≡ 0 (case I situation) the estimator λ̂ does
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not affect the limiting distribution of WVn(λ̂), and the limiting distribution is a
weighted sum of independent chi-square one variates. For the case II situation,
d1µ(t;λ) 
= 0, so the effect of λ̂ is captured in d1µ(t;λ).

Theorem 1. Suppose that Conditions 1-4, and W hold. Then n[WVn(λ̂)−WVn]
→P 0 and

nWVn(λ̂) →D

∞∑
m=1

ηm

∫ ∞

−∞
[Zm(t) + cmd1µ(t;λ)′Z)]2dM(t),

where the {ηm} are the limiting eigenvalues of the weight matrix (ndijn) de-
fined above Condition W. Further, for any finite constant M , the {Zm(t),m =
1, . . . ,M} are i.i.d. Gaussian processes with covariance matrix function K1(u, v)
= E[g(X1, u, λ) g(X1, v, λ)], and Z ∼ Np(0,Σ) with Σ = E[α(X1)α(X1)′]. The
covariance matrix function of {Zm(t),m = 1, . . . ,M} and Z equals K2(u) =
{c1E[g(X1, u, λ)α(X1)], . . . , cM E[g(X1, u, λ)α(X1)]}.
Proof. An intermediate term between WVn and WVn(λ̂) is

Yn(λ̂) = n−1
n∑

m=1

ηmn

∫ ∞

−∞

{ n∑
i=1

bimn

[
g(Xi, t;λ) + d1µ(t;λ)(λ̂ − λ)

]}2

dM(t),

where the (bimn) are above Condition W. We first show that

n[WVn(λ̂) − Yn(λ̂)] →P 0. (11)

n[WVn(λ̂) − Yn(λ̂)] =
n∑

m=1

ηmn[WVmn(λ̂) − Ymn(λ̂)],

where WVmn(λ̂) =
∫ ∞
−∞[

∑n
i=1 bimng(Xi, t; λ̂)]2dM(t) and

Ymn(λ̂) =
∫ ∞

−∞

{ n∑
i=1

bimn[g(Xi, t, λ) + d1µ(t;λ)′(λ̂ − λ)]
}2

dM(t).

To prove (11), it suffices to show that
∑n

m=1 η
(s)
mn[WVmn(λ̂)−Ymn(λ̂)] →P 0. Let

s be “+” or “−” and let η
(+)
mn and η

(−)
mn be the positive part and the negative

part of ηmn, respectively. Treating [
∑n

m=1 η
(s)
mn

∫ ∞
−∞ (·)2dM(t)]1/2 as a norm, it

suffices to show that( n∑
m=1

η(s)
mnWVmn(λ̂)

)1/2 −
( n∑

m=1

η(s)
mn Ymn(λ̂)

)1/2 →P 0, (12)

since nYn(λ̂) will be shown to be bounded later. To prove (12), we need to show
that(∫ ∞

−∞

n∑
m=1

η(s)
mn

{ n∑
i=1

bimn[g(Xi, t; λ̂)−g(Xi, t, λ)−d1µ(t;λ)′(λ̂−λ)]
}2

dM(t)
)1/2→0.

(13)
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Now

( ∫ ∞

−∞

{ n∑
i=1

bimn[g(Xi, t; λ̂) − g(Xi, t, λ) − d1µ(t;λ)′(λ̂ − λ)]
}2

dM(t)
)1/2

≤
( ∫ ∞

−∞

{ n∑
i=1

bimn[g(Xi, t; λ̂) − g(Xi, t;λ) − µ(t; λ̂)]
}2

dM(t)
)1/2

+
( ∫ ∞

−∞

{ n∑
i=1

bimn[µ(t; λ̂) − d1µ(t;λ)′(λ̂ − λ)]
}2

dM(t)
)1/2 ≡ S1mn + S2mn,

the inequality holds by triangle inequality. In Appendix 1 of Shieh (1994), we
show that Qn(

√
n(λ̂ − λ)) →P 0 by Lemma 1. Thus 0 ≤ S1mn = [Qn(

√
n(λ̂−

λ))]1/2 →P 0. Let M0 =
∫ ∞
−∞ dM(T ) < ∞. S2

2mn ≤ M0(
∑n

i=1 bimn)2[µ(t, λ̂)
d1µ(t;λ)′(λ̂−λ)]2→P 0, provided that Conditions 2 and W hold. Thus S2mn →P 0,
since 0 ≤ S2mn. Now since η

(s)
mn ≥ 0, ηmn → ηm and Condition W(iii) holds, this

is sufficient for (13). In Appendix 2 of Shieh (1994), we show that n[Yn(λ̂) −
WVn] →P 0. Thus n[WVn(λ̂) − WVn] →P 0.

In the following, we proceed to derive the limiting distribution of nWVn.

nWVn=
n∑

m=1

ηmn

∫ ∞

−∞

{ n∑
i=1

bimng(Xi, t;λ)+n− 1
2

n∑
i=1

bimnd1µ(t;λ)′
√

n α(X)
}2

dM(t)

≡
n∑

m=1

ηmn

∫ ∞

−∞

{
Zmn(t, λ) + cmnd1µ(t;λ)′Zn

}2

dM(t).

First, for any finite M we have

{Zmn(t),m = 1, . . . ,M} →D {Zm(t),m = 1, . . . ,M} and Zn →D Z,

where {Zm(t),m = 1, . . . ,M} are i.i.d. Gaussian processes with mean 0 and
covariance matrix function K1(u, v) = E[g(X1, u;λ)g(X1, v;λ)], and the co-
variance matrix function of {Zm(t),m = 1, . . . ,M} and Z equals K2(u) =
{c1E[g(X1, u, λ)α(X1)], . . . , cME[g(X1, u, λ)α(X1)]}. Further, Z ∼ Np(0,Σ),
where Σ = E[α(X1)α(X1)′].

In Appendix 3 of Shieh (1994), we show that {Zmn(t),m = 1, . . . ,M} and
Zn satisfy conditions in Theorem 15.6 of Billingsley (1968); thus {Zmn,m =
1, . . . ,M} and Zn jointly converge to a sequence of Gaussian processes and a
random vector Z. From the strong representation theorem in Skorohod (1956),
we can find an appropriate probability space in which to define a probability
such that {Zmn(t),m = 1, . . . ,M} almost surely by converge to {Zm(t),m =
1, . . . ,M} in the Skorohod topology. Since the limiting process is continuous,
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the convergence is also uniform with probability 1. Hence we can apply the
Dominated convergence theorem to nWVn to obtain

nWVn =
n∑

m=1

ηmn

∫ ∞

−∞

{
Zmn(t) + cmnd1µ(t;λ)′Zn

}2
dM(t)

→D

∞∑
m=1

ηm

∫ ∞

−∞

{
Zm(t) + cmd1µ(t;λ)′Z

}2
dM(t),

where cm = limn→∞ cmn.
We note that the limiting distribution is a weighted sum of chi-square vari-

ates. If the weight matrix (dijn) has a special structure, the limiting distribution
of nWVn(λ̂) in Theorem 1 can be simplified.

Corollary 1. Suppose that
∑n

i=1 dijn = C, where C is a constant, then cm = 0,
for m = 2, . . ., and bi1n ≡ (1/

√
n), i = 1, . . . , n. Thus nWVn(λ̂) reduces to

η1

∞∑
k=1

δ∗kχ
2
1k +

∞∑
m=2

ηm

∞∑
k=1

δ∗1k χ2
mk,

where {δ∗k} and {δ∗1k } are eigenvalues of h∗ and h∗1 respectively defined below,
and {χ2

mk,m = 1, . . .} are independent chi-square one variates.

Now nWVn = η1n
∑

i,j h∗(Xi,Xj)+
∑n

m=2 ηmn
∑

i,j h∗1(Xi,Xj)dM(t), where

h∗(Xi,Xj) = (1/n)
∫ ∞

−∞
{ [ g(Xi, t;λ) + (1/n)d1µ(t;λ)′α(Xi)] ×

[ g(Xj , t;λ) + (1/n)d1µ(t;λ)′α(Xj)]}dM(t)

and h∗1(Xi,Xj) =
∫ ∞
−∞{bimnbjmn[g(Xi, t;λ)][g(Xj , t;λ)]}dM(t). Following the

methods in De Wet and Randles (1987), we can obtain {δ∗k} and {δ∗1k }.
When d1µ(t;λ) ≡ 0, the limiting distribution of nWVn is not affected by λ̂,

and

nWVn →D

∞∑
m=1

ηm

∞∑
k=1

δk χ2
1k,

where the {χ2
1k} are independent chi-square one variates.

The following theorem establishes the limiting distribution of weighted de-
generate U-statistics with estimated parameters.

Theorem 2. Suppose that Conditions 1−5, W and E[
∫ ∞
−∞ g2(X1, t;λ) dM(t)] <

∞ hold. Then

nWUn(λ̂) →D

∞∑
m=1

ηm

∫ ∞

−∞
[Zm(t) + cmd1µ(t;λ)′Z)]2dM(t) −

∞∑
m=1

ηm

∞∑
k=1

δk,
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where the {ηm}, the {Zm(t),m = 1, . . . ,M}, Z ∼ Np(0,Σ), and the covariance
matrix function of {Zm(t),m = 1, . . . ,M} and Z are defined below Theorem 1.

Proof. Note that WUn(λ̂) =
∑

i�=j dijn
∫ ∞
−∞ g(Xi, t; λ̂)g(Xj , t; λ̂)dM(t) and thus

nWUn(λ̂) = n[WVn(λ̂) − WU2n(λ̂)], where

WU2n(λ̂) =
n∑

i=1

diin

∫ ∞

−∞
g2(Xi, t; λ̂)dM(t). (14)

Recall that n[ WVn(λ̂) − WVn ] →P 0 from Theorem 1. In Appendix 4
of Shieh (1994), we show that nWU2n(λ̂) →P

∑∞
m ηm

∑∞
k=1 δk, where {δk} are

eigenvalues of h(x, y;λ) defined in (8). This completes the proof of the theorem.
Theorem 2 states that the limiting distribution of nWUn(λ̂) is a weighted

sum of chi-square variates. For case I situations, d1µ(t;λ) = 0, and hence
WUn(λ̂) and WUn have the same limiting distribution, which is a weighted sum
of independent chi-square one variates. For case II situations d1µ(t;λ) 
= 0, and
the effect of λ̂ is captured in d1µ(t;λ).

3.2. Applications

In this section, applications of the asymptotic result of WUn(λ̂) and WVn(λ̂)
to two statistics are presented. The first example considers the test statistic,
rn(λ̂), for cross-sectional correlation in panel data. The test statistic falls into
Case I in which the use of estimates of parameters does not affect the limiting
distribution of WUn(λ̂). The second example is a χ2 goodness-of-fit test statistic
which falls in Case II, i.e., the limiting distribution of WVn(λ̂) is affected by the
estimated parameters.

3.2.1. Testing for cross-sectional correlation in panel data under a
linear regression model

We assume that the panel data follow a regression model in (4) and define
the cross-sectional correlation between the ith and the jth experimental units as
ρij = Corr(Yit, Yjt). To determine whether there is cross-sectional correlation,
we test the null hypothesis, Ho : ρij = 0 for each i, j. Consider the case when the
number of experimental units, n, is large compared to the number of observations
per experimental unit T .

The model used here is one of the two most widely used when analyzing
panel data (Hsiao (1986) and Greene (1993)). Recall that in the panel data
example introduced in Section 3, we have derived rn(λ̂), the test statistic based
on residuals, for testing cross-sectional correlation in panel data. In (5) we have
that

rn(λ̂) =
∑

i�=j dijn[T−1 ∑T
t=1 ẽ2

itẽ
2
jt − (T−1 ∑T

t=1 ẽ2
it)(T

−1 ∑T
t=1 ẽ2

jt)]∑
i�=j dijn(T−1

∑T
t=1 ẽ2

it)(T−1
∑T

t=1 ẽ2
jt)

≡ An(λ̂)
Bn(λ̂)

,
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where dijn = σ2
i σ

2
j /(n

2).
Note that n[rn(λ̂) − An(λ̂)/E(Bn(λ))] →D 0, provided that

Bn(λ̂) − E(Bn(λ)) →P 0 and E(Bn(λ)) → CB, (15)

where CB is a positive constant. Note that (15) can be shown by techniques
similar to Iverson and Randles (1989). Hence the limiting distribution of rn(λ̂)
depends on An(λ̂) which is a WUn(λ̂).

In the following, we apply Theorem 2 to obtain the limiting distribution of
nrn(λ̂). Let ẽ2

i· = T−1 ∑T
t=1 ẽ2

it, for 1 ≤ i ≤ n. Then we can write An(λ̂) as

An(λ̂) =
∑
i�=j

dijnh(Zi, Zj ; λ̂),

where h(z1, z2; γ) =
∫ ∞
−∞ g(z1, t; γ)g(z2, t; γ) dM(t), g(z1, t; γ) = ẽ2

1t − ẽ2
1·, ẽ1t =

e1t − ē1 + σ−1
1 (C1t − C̄1)γ, and M(t) is the finite measure that places mass T−1

on the integers 1, . . . , T . It can be checked that the kernel of An(λ̂) is degenerate
and hence An(λ̂) is a WUn(λ̂). It is easily seen that

µ(t; γ) = E[g(Z1, t; γ)]

= E[(e1t − ē1)2 − E(e1t − ē1)2] + (γ/σ1)2[(C2
1t − 2C1tC̄1 − C2

1· + 2C̄2
1 ]

= (γ/σ1)2[(C2
1t − 2C1tC̄1 − C2

1· + 2C̄2
1 ],

since the {eit} are i.i.d. with mean zero. This clearly shows that µ(t;0) = 0,
for all t and d1µ(t; γ)|γ=0 ≡ 0. Hence the limiting distribution of nAn(λ̂) is not
affected by the estimated parameter λ̂, and is a weighted sum of independent
chi-square one variates.

If σ2
i ≡ σ2, then

Dn = (ndijn) =
σ4

n




0 1 · · · 1
1 0 1 · · ·
...

. . .
1 · · · 1 0


 .

Thus, the limiting eigenvalues of the weight matrix (Dn) are η1 = σ4 and ηi = 0,
for i = 2, 3, . . . By Theorem 2 and straightforward algebra, it can be shown that
the limiting distribution of the test statistic nrn(λ̂) is

[σ4(T − 1)(µ4 − µ2
2)/(T

2CB)] (χ2
T − T ),

where CB is defined in (15), µ4 = E(Y 4
11), µ2 = E(Y 2

11) and χ2
T is a chi square

random variate with T degree of freedom.
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3.2.2. χ2 goodness-of-fit test statistic (DeWet and Randles (1987),
Example 3.3)

Let X1, . . . ,Xn be i.i.d. F ((x − µ)/σ), and suppose that we wish to test
Ho : F = Fo, where Fo is completely specified. Let λ̂ = (µ̂, σ̂) be a consistent
estimator for λ = (µ, σ) satisfying Condition 2, and let Fn(t) be the empirical
distribution function of X1, . . . ,Xn. Define pj = Fo(bj) − Fo(bj−1) and p̂j =
Fn(µ̂+ bjσ̂) − Fn(µ̂+ bj−1σ̂) for j = 1, . . . , k, where −∞ = b0 < b1 < · · · < bk =
∞. Form the χ2 goodness-of-fit test statistic

WVn(λ̂) = n
n∑

j=1

p−1
j ( p̂j − pj)2 =

n∑
i,j=1

dijn h(Xi,Xj ; λ̂)

= n−1
∫ ∞

−∞

[ n∑
i=1

g(Xi, t; λ̂)
]2

dM(t),

where dijn ≡ 1/n, g(x, t; λ̂) = I[µ̂ + σ̂bt−1 < x ≤ µ̂ + σ̂bt] − pt, and M is the
discrete measure placing mass p−1

j on the point t = j, where j = 1, . . . , k. Thus

µ(t, γ) = Eλ[g(Xi, t; γ)] = F0(γ1 + γ2bt) − F0(γ1 + γ2bt−1) − pt.

Note that WVn(λ̂) has been scaled up by n, so dijn ≡ 1/n. Without loss of
generality, take µ = 0 and σ = 1. The conditions of Theorem 1 can be shown to
hold with

d1µ(tj ;λ) =

[
f0(bj) − f0(bj−1)

bjf0(bj) − bj−1f0(bj−1)

]
, j = 1, . . . , k,

where f0(b0) = f0(bk) = 0. Since dijn ≡ 1/n, we have η1 = 1 and ηi = 0, for
i = 2, . . . By Theorem 1, WVn(λ̂) converges to

∫ ∞

−∞

{
Z1(t) + c1d1µ(t;λ)′Z

}2

dM(t).

For given Fo and α(·), the limiting distribution of WVn(λ̂) can be obtained.

4. Concluding Remarks

The limiting distribution of a test statistic based on the Pearson correlation
coefficient is presented and a simulation study shows that the statistic is useful
in general situations. Note that the test statistics studied in this paper can also
be applied to estimate association of state-to-state migration rates.

The limiting distributions of weighted degenerate U- and V-statistics with
estimated parameters have been established. These results extend the literature
concerning weighted degenerate U-statistics.
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Classes of U-, V- and L-statistics having kernels of order 1 and 2 with es-
timated parameters have been studied since Sukhatme (1958). The study grew
intense after the appearance of Pierce (1982) and Randles (1982). The lim-
iting distribution of symmetric statistics of arbitrary order was established in
Dynkin and Mandelbaum (1983). Exploring the limiting distribution of symmet-
ric statistics of arbitrary order with estimated parameters will extend the study
of statistics with estimated parameters in the kernels.
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