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Abstract: Without correction, kernel density estimates suffer from boundary effects.

Many boundary corrections now exist, but almost all those with good theoretical

performance allow the corrected estimator to become negative. An exception is

provided by some recently proposed sophisticated transformation methodology. In

this paper, we propose much simpler nonnegative boundary corrected estimators

which are analogues of the wide class of simple, but possibly negative, boundary

corrections based on generalized jacknifing.
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1. Introduction

Suppose we are doing kernel density estimation (e.g. Silverman (1986), Scott
(1992), Wand and Jones (1995)) on data on the positive real line. Near the
support boundary at the origin, the estimator is poor and, in fact, has consider-
able bias. This is because the kernel density estimator has no knowledge of the
boundary and, in general, assigns probability mass outside the support.

A variety of boundary correction methods for kernel density estimation now
exists, and most are referred to in Jones (1993). He sets up a unified ap-
proach to many of the more straightforward methods using “generalised jack-
knifing” (Schucany, Gray and Owen (1971)). To describe this, suppose that
f̆(x) = n−1 ∑

i Kh(x−Xi) is a kernel density estimator based on data X1, . . . ,Xn

employing the kernel function K. Here, Kh(·) = h−1K(h−1.) and will be taken
to be a probability density function itself. Write p = x/h and

al(p) =
∫ min{p,SK}

−SK

ulK(u)du,

where [−SK , SK ] is the support of K. Divide f̆(x) by a0(p) to give f̄ . The
“local renormalisation” by division by a0(p) is, on its own, an inadequate form of
boundary correction, as discussed in Section 2 of Jones (1993); also, it could be
replaced by a reflection technique. Let f̃ be like f̄ only with kernel function L,
on [−SL, SL], replacing K, let cl(p) =

∫ min{p,SL}
−SL

ulL(u)du and make the division
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by c0(p). Think of f̄ and f̃ as being defined only on [0,∞). Then, in a minor
reformulation of the presentation of Jones (1993), generalised jackknifing seeks a
linear combination

f̂(x) ≡ αxf̄(x) + βxf̃(x) (1)

with good asymptotic bias properties. Away from the boundary, kernel density
estimation typically affords a bias of order h2 as h = h(n) → 0. It turns out that
the choices

αx = c1(p)a0(p)/{c1(p)a0(p) − a1(p)c0(p)}, (1a)

βx = −a1(p)c0(p)/{c1(p)a0(p) − a1(p)c0(p)}, (1b)

allow O(h2) bias at and near the boundary also. (Note that c1(p)a0(p) must
not equal a1(p)c0(p).) Observe that boundary corrected kernel density estimates
typically do not integrate to unity, but could be renormalised to do so.

There are many possible choices for L. It is usually preferred to make L a
function of K because then one has a boundary correction derived solely from the
“interior kernel” K. Examples include taking L(u) to be Kc(u) = c−1K(c−1u)
or K ′(u) or K(2p − u) or uK(u). The last of these is particularly popular. It
results in the simple linear boundary kernel (lx + mxu)K(u) where

lx = a2(p)/{a2(p)a0(p) − a2
1(p)} and mx = −a1(p)/{a2(p)a0(p) − a2

1(p)}.

This is used in the literature in many places, often as an ad hoc technique and
sometimes as an automatic consequence of something else, e.g. local linear fitting
(see Jones (1993)). It seems that the performance of many generalised jackknives
is broadly equivalent, and hence linear boundary correction is as good as any.

A disadvantage of all generalised jackknife boundary corrections, however,
is their propensity for taking negative values near the boundary. See the dashed
curves in Fig. 1 where n = 50 data points are simulated from the Gamma (3, 1)
distribution (but only the boundary region 0 < x < h is shown). The purpose
of this paper is to describe how to attain much the same boundary performance
whilst retaining nonnegativity via a simple “nonnegativisation” device. This
device can actually be applied to any boundary corrected density estimate and
in particular yields a nonnegative version of each and every generalized jackknife
boundary corrected method. Non–unit integral remains a feature of the result,
but again renormalisation is possible (simulations suggest that renormalisation
would make little difference). The successful results of applying the nonnegative
analogue of (lx + mxu)K(u) are included, as solid lines, in Fig. 1. Here, K is
the biweight kernel K(u) = (15/16){(1 − u2)+}2, where (·)+ is the “nonnegative
part” function, and h = 1.3, chosen as explained in Section 4.
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Figure 1. Six pairs of density estimates based on random samples of size 50
from the Gamma (3,1) distribution, L(u) = uK(u), K the biweight kernel,
and h = 1.3. Solid lines: f̂P , dashed lines: f̂ , dotted curve: f . The boundary
region 0 < x < h only is shown.

Marron and Ruppert’s (1994) excellent work on transformation-based bound-
ary correction includes methods that remain nonnegative everywhere, and one
that also has unit integral. But their methodology is complicated. Our com-
petitors are very much simpler (see Section 2 for details). Properties of the new
proposals will be derived in Section 3. Some further simulation evidence will
be provided in Section 4. In cases where negative-allowing boundary corrections
work well, so too do ours, and these are the cases dealt with in almost all of the
boundary correction literature. But one intriguing arm of Marron and Ruppert’s
(1994) methodology which affords good estimation even when the underlying
density has a pole at the boundary remains superior to what we can achieve. In
the closing Section 5, we indicate why our approach is not quite as obvious as
one might expect from, for example, related work of Jones and Foster (1993),
and we mention other possible approaches.

2. The Methodology

Here is the basic idea. Recall that f̄(x) denotes the basic kernel density
estimator (0 ≤ x < ∞) divided by a0(p) and that f̂ is the boundary corrected
kernel density estimator given by (1), (1a) and (1b). Then the combination of f̄

and f̂ given by

f̂P (x) ≡ f̄(x) exp
{ f̂(x)

f̄(x)
− 1

}
(2)
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is the proposed modified boundary corrected estimator. It is clearly nonnegative
because, since K and a0(p) are nonnegative, f̄ is nonnegative, and the rest of the
formula is exponentiated. That it is a modification of f̄ “in the direction of” f̂

is clear, and thus to each f̂ there corresponds a nonnegative f̂P . Indeed, there
is no requirement here of generalised jackknifing to obtain f̂ , so the proposal is
a completely general nonnegativisation; it might also be used, for instance, with
the boundary kernels of Müller (1991). That f̂P has the properties required of a
boundary corrected estimator is verified in Section 3. The L(u) = uK(u) special
case of the generalised jackknifing version of this will be utilised in Section 4.

3. Theoretical Performance

The asymptotic means and variances of both f̂(x) and f̂P (x) are given in
the following theorem. By way of notation, write

B(p) =
c1(p)a2(p) − a1(p)c2(p)
c1(p)a0(p) − a1(p)c0(p)

and

V (p) =
c2
1(p)b(p) − 2c1(p)a1(p)e(p) + a2

1(p)g(p)
{c1(p)a0(p) − a1(p)c0(p)}2

,

where b(p), e(p) and g(p) are
∫ min{p,SK}
−SK

K2(u)du,
∫ min{p,SK ,SL}
−min(SK ,SL)

K(u)L(u)du

and
∫ min{p,SL}
−SL

L2(u)du, respectively.

Theorem. Suppose that f has at least two continuous derivatives. Then, as
n → ∞, h = h(n) → 0 and nh → ∞,

E{f̂(x)} � f(x) +
1
2
h2B(p)f ′′(x),

E{f̂P (x)} � f(x) +
1
2
h2

{
B(p)f ′′(x) +

a2
1(p)

a2
0(p)

f ′(x)2

f(x)

}

and
V {f̂E(x)} � (nh)−1V (p)f(x),

where f̂E denotes either f̂ , given by (1), or f̂P , given by (2).

The results for f̂ are taken from Jones (1993), and are presented for com-
parison with the results for f̂P . The asymptotic variance terms are the same,
although in finite samples one might expect the new estimator to have less vari-
ance because of nonnegativity. If the terms containing f ′′ and f ′ in the bias are,
respectively, B1(x) and B2(x), then while the additive jackknife has asymptotic
bias B1(x), the multiplicative one has bias B1(x) + B2(x). The results for f̂P (x)
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in the theorem can be obtained by making the following approximation to (2)
using a Taylor expansion:

f(x)
[
1+

{f̄(x)−f(x)}
f(x)

]
exp

[
1 +

{f̂(x) − f(x)}
f(x)

− {f̄(x) − f(x)}
f(x)

−{f̄(x)−f(x)}
f(x)

{f̂(x)−f(x)}
f(x)

+
{f̄(x)−f(x)}2

f2(x)

]

� f(x)
[
1 +

{f̂(x) − f(x)}
f(x)

+
1
2
{f̄(x) − f(x)}2

f2(x)

]
.

Complete the manipulations by using the mean and variance of f̂ as in the
theorem together with

E{f̄(x)} � f(x) − h(a1(p)/a0(p))f ′(x) + (1/2)h2(a2(p)/a0(p))f ′′(x).

Because of the different dependencies of these terms on the underlying den-
sity f , it is difficult to compare biases in general. We plotted these bias terms
(not shown) for the three representative members of the gamma family used
in Section 4. A similar result pertained to each, namely, identical biases from
around p = 0.7 upwards, the bias of f̂P remaining positive while that of f̂ crosses
the zero line and that the larger in absolute value at the boundary itself changed
from one situation to the other. For the Gamma (2,1) density, the two biases had
a generally similar shape throughout, but because (f ′2/f)(x) → ∞ as x → 0, the
bias of f̂P exploded there. The higher order contact of many densities that have
f(0) = 0 means that this difficulty is not too widespread. Overall, we believe
there is no serious deterioration of the asymptotic bias of f̂P when compared to
that of f̂ .

4. Practical Performance

The purpose of this section is to show, via simulated examples, that noth-
ing seems to be lost, in terms of finite sample performance relative to alternative
methods, while nonnegativity is to be gained. We consider samples of size n = 50
from each of the Gamma (1,1), Gamma (2,1) and Gamma (3,1) densities. The
biweight kernel was employed. The bandwidths used in each of these cases are
simply obtained by entering knowledge of the true f into the standard asymp-
totic mean squared error optimal formula h5 = [{∫ SK

−SK
u2K(u)du}2

∫ ∞
0 (f ′′)2(x)

dx n]−1
∫ SK
−SK

K2(u)du (e.g. Silverman (1986), Wand and Jones (1995)); we find
that h = 1.07, 0.89 and 1.30 respectively. Note that this formula takes no account
of boundary effects nor, indeed, do any published practical automatic bandwidth
selectors, but progress is now being made on remedying this (Cheng (1996)).
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We made 10000 replications of the simulation setups above and in Table 1
present integrated squared biases, variances and mean squared errors of f̂ and
f̂P . These each employ L(u) = uK(u). Overall, squared biases are increased a
little by use of f̂P , which is not surprising. There is sometimes, however, a related
decrease in variance. The latter serves to actually make f̂P better in integrated
mean squared error terms than f̂ for Gamma (2,1) and only a little worse for
Gamma (3,1). For the exponential density, Gamma (1,1), large f near zero
makes for increased variance of f̂P and hence a noticeable overall deterioration.
By the way, f̂ takes negative values in 0.0%, 34.5% and 76.9% of cases in these
simulations for the densities in the order of Table 1.

Table 1. Results of simulations comparing negativity-allowing, f̂ , and nonneg-
ative, f̂P , boundary corrected estimators for samples of size n = 50, averaging
over 10000 simulations. Here, L(u) = uK(u) and K is the biweight kernel.

Density Estimator h Integrated Integrated Integrated Mean
Squared Bias Variance Squared Error

(×10−4) (×10−4) (×10−4)

Gamma (1,1) f̂ 1.07 7.284 104.9 112.2
f̂P 1.07 9.803 133.9 143.7

Gamma (2,1) f̂ 0.89 8.882 42.87 51.75
f̂P 0.89 12.62 36.78 49.40

Gamma (3,1) f̂ 1.30 1.283 11.06 12.34
f̂P 1.30 2.565 9.999 12.56

We should add that we also did such simulations for the alternative Ls,
K ′ and K ′′; the latter is not so immediately attractive in respect of its “joining”
with interior kernels. Comparisons between additive and multiplicative proposals
within each L were much the same. The choice L(u) = uK(u) proved to be best
in two of the three situations.

We also made analogues of Figures 1 to 3 of Marron and Ruppert (1994)
for estimator f̂P , again using L(u) = uK(u), but these are also not shown
to save space. These concern, respectively, eight random samples for each of
n = 500 observations from parabolic, “uniform squared” and mixture densities.
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Using the biweight kernel and bandwidths matched with those used by Marron
and Ruppert, we found (i) great similarities with Marron and Ruppert’s (1994)
transformation and an adjustment due to Rice (1984) for the parabolic density,
(ii) great similarities also for the mixture density, but note that we have avoided
the problem (disguised in Marron and Ruppert’s Fig. 3(b) by truncation) that
the Rice adjustment affords negativity near the origin, and (iii) made a much
better indication of the pole at the origin than did Rice’s method in the U2 case.
However, Marron and Ruppert’s Algorithm P, designed specifically to deal with
poles of this sort, has the edge if the precise form of the density near zero when
there is a pole is of major concern.

5. Motivation for (2)

Generalised jackknifing was earlier employed to increase the “order” of ker-
nels in the interior from the probability density’s order 2 to order 4 (and more): a
kernel of order k has the properties

∫ SK
−SK

ulK(u)du = 0 if 1 ≤ l < k,
∫ SK
−SK

K(u)du

= 1 and
∫ SK
−SK

ukK(u)du �= 0,∞. Schucany and Sommers (1977) initiated this;
Jones and Foster (1993) greatly developed it. If f̄ and f̃ use K and L as kernels,
this, again, means utilise an appropriate linear combination, Axf̄(x) + Bxf̃(x).
Higher order kernels also suffer from negativity problems. It was Terrell and
Scott (1980) who suggested using generalised jackknifing on log estimates to al-
leviate this. This is equivalent to using a multiplicative combination of the form
f̄Ax f̃Bx. Nonnegativity is restored at the expense of a minor deviation from unity
integral, a property which does hold for higher order kernels.

Rice (1984) extended Schucany and Sommers (1977) to the boundary prob-
lem; Jones (1993) noticed that the same methodology applies quite generally to
boundary kernel derivation. The natural nonnegative extension of this work via
Terrell and Scott (1980) does not always work, however! The problem, which
does not rear its head for L functions suitable for obtaining higher order kernels,
is that for the kinds of L we prefer to work with here, e.g. uK(u), K ′(u), f̃ is
negative in places. That said, nonnegative Ls could be used in such a formula.
However, in the Schucany and Sommers (1977) and Rice (1984) special case that
L(u) = Kc(u), Jones and Foster (1993) observed that, when logs were taken, the
limiting case as c → 1 was not of the multiplicative form above but rather of the
exponential form (2). The observation here is that this formulation continues to
work to good effect for boundary kernels too.

Referees have pointed out that there are other potential alternatives for
nonnegative boundary–corrected estimates. The projection technique of Gajek
(1986) proposed to nonnegativise higher order kernels could be adapted to bound-
aries. This consists essentially of iterating between truncation of the estimate
where it goes negative and adding/subtracting a suitable constant so that the
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integral becomes one. Our method wins on explicitness, and hence simplicity,
grounds. Certain semiparametric density estimates in which parametric models
are fitted locally, such as Loader (1996), can also be nonnegative and have good
boundary properties (Hjort and Jones (1996)). Another version of this is to apply
semiparametric regression methodology as in Fan, Heckman and Wand (1995) to
histogram counts. These ideas are interesting, although linked in with switching,
perhaps appealingly, to semiparametric density estimation throughout. It is also
reasonable to consider spline–based density estimation approaches on a bounded
support in which the boundaries can be quite naturally accommodated as con-
straints. Complicated computational algorithms are a drawback, as is the lack
of straightforward theory for such estimators.

Finally, write

f̂g(x) ≡ f̄(x)g
{ f̂(x)

f̄(x)
− 1

}
(3)

as a generalisation of (2). The case g(z) = exp(z) that we have used seems to
be the most natural. But in fact other g’s will work too: what is required is
that g(ε) ∼ 1 + ε for small ε and that g(z) ≥ 0,∀z. A family of examples is
g(z) = (1+k−1z)k for even k. A referee has also noted how (2) — and hence also
(3) — can be used with appropriate pairs {f̄ , f̂} to reduce bias in more general
situations: the other obvious application of this, to nonnegativising higher order
kernels, is already mentioned in Jones and Foster (1993).
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