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Abstract: Estimating finite mixture models is a fundamental and challenging
problem. We propose a penalized method for a Gaussian mixture linear regression,
where the error terms follow a location—scale mixture of Gaussian distributions.
The objective function is a combination of the likelihood function of the observed
data and a penalty on the pairwise differences of the parameters. We develop an
alternating direction method of multipliers algorithm, and establish its convergence
property. By clustering and merging similar observations in an automatic manner,
our method provides an integrated tool for simultaneously determining the number
of components and estimating the parameters in finite mixture models. Moreover,
the proposed method allows the mean and precision parameters to have different
structures, enabling us to obtain pooled estimators. We also establish the statistical
properties of our estimators. Extensive simulations and real-data examples are
presented to evaluate the numerical performance of the proposed method.
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1. Introduction

Finite mixture models are often used to model heterogeneous data from
complex distributions, in areas such as density estimation (Escobar and West
(1995))), pattern clustering (Liu et al. (2022)), and quality control (Li et al.
(2021)). As the most popular mixture model, the Gaussian mixture model
(GMM) possesses many appealing features, including computational tractability,
affine invariance, and flexibility of representations.

Several methods have been proposed to estimate the parameters of GMMs.
Owing to missing information in the component membership, the complete-
data likelihood cannot be calculated directly. The expectation—maximization
(EM) algorithm is often used to estimate the parameters for a given number of
components, which is usually unknown in practice. To determine the number of
components, conventional methods often take a model-selection approach using
the Akaike information criterion (AIC) or the Bayesian information criterion
(BIC). |[Leroux (1992)) show that the number of components estimated using
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the AIC or BIC is at least as large as the true number. Another approach is
using penalized methods, which jointly learn the cluster structures and estimate
the parameters. (Chen and Khalili (2009) impose two penalty functions on the
mixing proportions and the location parameters in GMMs, but do not consider
heterogeneity among precisions. [Huang, Peng and Zhang| (2017) propose a new
penalized likelihood method for multivariate GMMs in which they penalize the
mixing probabilities, which can be applied to location—scale mixtures. |[Hao et al.
(2018)) introduce a joint graphical lasso penalty on the elements of the precision
matrices to extract both homogeneity and heterogeneity components for high-
dimensional Gaussian graphical mixture models. Recently, Ren et al.| (2022)
conducted heterogeneity analyses for Gaussian graphical models by imposing
fusion penalties on the mean and on the precision matrix parameters, thus
determining the number of components and estimating the parameters in an
automated way.

In a linear regression, when the distribution of the error terms deviates
significantly from normality, an effective strategy is to assume that the error
terms follow a mixture of Gaussian distributions. As suggested by [Rossi (2014),
any distribution can be approximated by a Gaussian mixture, to a sufficient level
of accuracy, by using an adequate number of components. The EM algorithm
can be generalized naturally to the regression setting (Bartolucci and Scaccia
(2005)), which also requires a specification of the number of mixture components.
Together, the linear regression mixture model and the pairwise fusion penalty can
accommodate subject-specific intercepts (Ma and Huang| (2017))), but focus only
on the skewness of the errors as a departure from normality, without considering
heterogeneity among precisions. Motivated by this work, we consider a more
general framework that incorporates the heterogeneity among both the means
and the precisions. These location—scale Gaussian mixtures are expected to
perform better in a heteroscedastic model, for example, when the errors follow a
leptokurtic distribution. Our objective function is a combination of the likelihood
of the observed data and a concave fusion penalty that measures the pairwise
differences of the means and the precisions. An alternating direction method of
multipliers (ADMM) algorithm is developed for optimization. As the weight for
the penalty term increases, some pairwise differences of the estimated parameters
shrink to zero, enabling us to identify the number of components, and estimate
the parameters.

Our work builds on, but differs from existing works on GMMs (Huang, Peng
and Zhang| (2017); Hao et al|(2018); Ren et al.| (2022)) by considering regression
settings. Our framework is motivated by the penalization and shrinkage strategies
in existing heterogeneity studies (Ma and Huang (2017)), extending them to
accommodate heterogeneity among precisions. More importantly, most existing
GMM methods assume that either the means and the precisions share the same
structure, or that the precisions of all components are equal. An appealing



GAUSSIAN MIXTURE MODELS 2117

feature of our method is that it allows the means and precisions to have different
structures, thus obtaining more accurate pooled estimators than those of previous
studies from the perspective of computation and theory. In particular, we
conduct a rigorous theoretical investigation of our pooled estimators. Lastly,
we extensively investigate the numerical convergence of the ADMM algorithm
for optimization with finite samples when using nonconvex penalties.

The rest of this paper is organized as follows. In Section 2, we develop
a penalized method for a linear regression in order to identify the number
of components in a GMM using pairwise fusion and estimate the unknown
parameters. In Section 3, we develop an ADMM algorithm to facilitate the
computation, and establish the statistical properties in Section 4. In Section 5,
we conduct extensive simulations to evaluate the numerical performance of the
proposed method. Section 6 demonstrates the feasibility of our method based on
real data. Finally, Section 7 concludes the paper with a discussion.

2. Gaussian Mixture with Pairwise Fusion

For any vector u, let ||ul|, denote its Ly-norm, and ™" denote a vector with
components that are the reciprocals of those of u. For a matrix @, let };; and
0,.;) denote its ith row and ith column, respectively. Let y € R be the response
variable and * € X C R? be the p-dimensional vector of covariates. We consider
the linear regression model,

T .
yz:ﬂ x; + €, Z:L"'anv

where 3 € RP? is the vector of unknown coefficients, ¢; is the random error, and
n is the sample size. Let

¢z 1,7) = (L)l/2 exp {—T(Z_M)Q}

2T 2

which is the density function of a Gaussian distribution with mean p and precision
7. Suppose that ¢; is from a Gaussian distribution ¢(e;; 0,1, 60;2), where 6;; and 60,5
are the mean and precision, respectively, for subject i. The data heterogeneity
between €; and ¢; is represented by the difference between two vectors, namely,
01y = (0:1,0i2) " and 6 = (0;1,0;2) 7. If €; and €; are from the same component,
then 0 = 0(;;; otherwise, 0;; # 0[], meaning that at least one element is
not equal. Suppose there are K, distinct values in 0[.,,,), for m = 1,2, denoted
by p = (p1,...,pr,) " and 7 = (71,...,7k,) ", respectively, where u; # p; and
T, # 7;, for any ¢ # j. Given K; and K,, one can apply the EM algorithm to
estimate 3, 0.4, and 6.5 by introducing latent variables (Bartolucci and Scaccia;
(2005))). However, in practice, it is difficult to identify the values of K; and
K,. By introducing pairwise fusion penalties, we propose a novel approach to
automatically determine the number of components and simultaneously estimate
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the parameters.
Lety = (y1,...,yn)" and X = (xy,...,x,)" denote the observed data. The
log-likelihood function is

L(B,0) = Z log ¢(€:30i1,0i0) = Z log ¢(y; — BT @;0:1,0ia)-
i=1 i=1

Our goal is to identify the values of K; and K,, and to estimate 3 and ©.
We introduce a fusion penalty (Tibshirani et al.|(2005)) to penalize the pairwise
differences between 6;,,, encouraging the sparsity of the pairwise differences. The
objective function is

Q(/Bv®) :—L(ﬁ,@)—i- Z Z p(wim_ejm‘v)‘ma’VM)v (2'1)

m=11<i<j<n

where p(-, \,7) is a penalty function with tuning parameters A and ~.

It is critical to choose an appropriate penalty function p(-, A,~). The L;-
penalty, which is similar to the least absolute shrinkage and selection operator
(lasso) (Tibshirani| (1996))), with p(|0im — Ojm|, Ams Ym) = Am|Oim — 0jm|, penalizes
all paired differences |0;,, — 6;,,]. The L;-penalty tends to overshrink large
coefficients, and fails to recover the group structure (Fan and Li (2001); Zou
(2006)). On the other hand, there are established theories for nonconvex
penalties, such as hard penalties and the smoothly clipped absolute deviation
(SCAD) penalty. The hard penalty defined in |/Antoniadis (1997) takes the form

2 2

plur) = (S + Ml ) 1ul <+ ()1l =0, @22)

where I(-) is the indicator function. The SCAD penalty function is p(u, \,y) =
A Jy min{1, (y — t/A)4/(y — 1)}d¢, where t, = tI(t > 0) denotes the nonnegative
part of t € R, with A > 0 and v > 2. The tuning parameter v controls the
concavity of the SCAD penalty function, that is, how fast the penalization rate
goes to zero. As v — o0, it reduces to the Li-penalty. A smaller v results in
more concavity and less bias, but the estimates become unstable, because there
is a greater chance of multiple local minima. These nonconvex penalties achieve
sparsity at individual levels and, more importantly, lead to an approximately
unbiased estimation of the coefficients and correctly shrink group differences,
with high probability, under regular conditions.

3. The ADMM Algorithm

Because the penalty function is not separable in 6;,, for m = 1, 2, it is difficult
to directly minimize the objective function in (2.1]). To overcome this challenge,
we introduce new variables, defined as A;;,, = 0;, — 0,1, for 1 <i < j <n and
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m =1,2. Let A = {(Aij1,A2)",i < j}. The optimization problem is

man(Bv 97 A) = + Z Z |Azjm| )\m77m)
m=11<i<j<n
subject to 0, — 05, — ANijr, =0, 1<i<j<mym=1,2. (3.1)

Using the augmented Lagrangian method, we can estimate the parameters
by minimizing

H(ﬁv @7 A7 V) = Q(/Ba ®a A) + Z Z Vijm(eim - Qjm - Aijm)

m=1 i<j

+= Z Z wm 'm - zgm)za

m=1 i<j

where v = {(vij1,Vij2) " ,i < j} are Lagrangian multipliers, and p > 0 is the
penalty parameter. To implement the ADMM algorithm (Boyd et al.| (2011))), we
first derive the updating equations for 3 and 6. We aim to minimize

H(B3,0,Av) = p Z {(e; —€)) "0y — A1 + p_ll/ijl}z +C,

z<]

- L(B.©)+ % PIEOL — Ay + p w2 + C,

[
where e; is a vector of length n of zeros except for the ith element being one,
E={(e;—e;)i<j}", Apy={Aj1,i <j} vy ={vi,i<j}",and Cis a
generic symbol for a constant. As shown in the Supplementary Material, given
the current estimates 9[(_2], Aft) and 1/ , the updating equations for 6., and 3
at the (¢t + 1)th iteration are
-1
04 = (pB B+ A0) " (A0y BT (A8 W), 62
_ t+1

/B(t+1) :(XTw(t)X) 1xTw(t) (y . 9[(1'}‘ ))’ (33)

respectively, where A(t = WO, - X(X " WHOX)IXTW®} with W® a
diagonal matrix of 0[ o and I, an n x n identity matrix.

Because there is no closed form when we update 6,5 simultaneously, we use
a cyclic coordinate descent scheme at the (¢ 4+ 1)th iteration. Specifically, we
cycle through 6,5, for ¢ = 1,...,n, so that at the ¢th step, we update 9§§+”, while
holding all other {65, j # i} fixed as

00+ = [2(n — 1)}~ {—b§t+”+%(b&””)uzp(n—l)}, (3.4)
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with
(A1) _ plt+1) 2
(t+1) {yi — (B )T — 0} (t)
bi — 2 +ZV132 Z 312
> 7<i
—p{Z(e GV AD) > 0% - ﬂa)}
>t j<t

for which the derivation is given in the Supplementary Material. The updating
of Oy = (b1a,...,0,2)" at the (¢ + 1)th iteration proceeds by applying
repeatedly in a cyclical manner, until the relative distance of the parameters
between two cycles is smaller than a tolerance (e.g., 107?).

To update Ap.,,, for m = 1,2, we minimize

Zp(’Azij )‘m77m) + Z Vijm(eim - Hjm zym p Z im jm - Aijm)z

1<j 1<j z<]
2
— Vl m
= 2 lpz { < HjTYL + ; Aijm) } + Zp(’AijnL’a Anmf}/m) + C7 (35)
1<j 1<j

where C is a constant. For simplicity, let 7;;,, = 0ip, — 0jp + Viji/p and T, =
(Tijm)i<j- Minimizing (3.5) with respect to A, is equivalent to solving the
penalized linear regression problem

min {21HT[m] — A[m]Hz + P71 Zp(‘Aijm’a Am?f)/m)} . (36)

i<j

Because the design matrix in is orthogonal, even for nonconvex penalties
such as the hard penalty and SCAD, it still often results in a unique solution, as
suggested by [She| (2009). As shown in the Supplementary Material, the updating
equation for A;j,, under the hard penalty is

S(T(§+1) pfl)\m)

igm f (t+1) < )\
T S e B (3.7
ey if [0 > A,

where S(u, ¢) = sign(u)(|u| — ¢); is the soft-thresholding function. In addition,
the updating equation of A,j,, under the SCAD penalty with ~,, > (1 + p~') is

St p7 ), it [rEY) < A (14 p7Y),
S(rigm” s Ymp” A/ (i = 1))
Al — wm ' Tm m/\fm (1 A, < [P <y
ﬂ T A e < <k
(t+1) (t+1)

if ’rmm ’ > fY’m)\m-

gm0
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Finally, for 1 <i < j <n and m = 1,2, v;;,,, is updated using

D = vl (05— 05— ALY, 9)

Define the primal and dual residuals as R,(©,A) = E® — A and R} =
pET(AUTD — A®) respectively. Boyd et al. (2011) suggest that a reasonable
termination criterion for the ADMM algorithm is || R,(®®, A®)|| < kP and
IR ||p < K, with

. -1
KPr— ’I’L(’I’LQ )Eabs + K;rel maX(HE@(t)HF, ||A(t)”F)u

Kldual — \/ﬁ/{abs + HreIHETV(t)”F,

(3.10)

abs j5 an absolute tolerance, ™' is a relative

tolerance, and both of the latter are small positive numbers. The detailed
procedure for estimating B, Oy, and 6.5 is summarized in Algorithm S1 in
the Supplementary Material.

where || - || is the Frobenius norm, x

We now analyze the computational complexity of Algorithm S1. Because
ETE is computed in advance with complexity O(n?*), we do not need to compute
it again in the loops. Updating 0[(_tf]r1) has complexity O(p®+n?). When updating
B+ note that (XTW®WX)"!XTW® has been computed when updating
0[@1?1), and thus need not be computed again. As a result, the complexity of
updating 3%V is O(pn). The computational complexity of updating 0[(31”1)
is O((n + p)Nc), where N is the iterative number of our coordinate descent
method. Finally, updating A and v*Y has complexity O(n?). Therefore,
for each loop of the ADMM method, the overall computational complexity is
O(p® +n® + (n+ p)Ng). Next, we compare the computational complexity of our
method with that of Ma and Huang| (2017)), who do not consider heterogeneity
among precisions. First, many operations for updating the mean vector in Ma and!
Huang (2017)) can be computed in advance, rather than in each loop. For example,
in (3.2), we need to compute (X W®X)"'!XTW® in each loop, whereas in
the updating equation for means in Ma and Huang (2017)), (X" X) ' X " can be
computed in advance. Second, there is no need to update precisions in |Ma and
Huang| (2017). Third, the sizes of A®*D and v in [Ma and Huang (2017)
are half of those in our method. As a result, in Ma and Huang (2017)), the
computational complexity for operations in advance is O(p® 4+ n*), and that for
operations in each loop is O(pn + n®). When p < n, for operations in advance,
the computational complexity of both methods is O(n?); for each loop of the
ADMM algorithm, the computational complexity is O(n® +nN¢) in our method,
and O(n?) in the method of Ma and Huang| (2017)). Therefore, when p < n, the
increase in computational complexity of our method is due mainly to updating
precisions.
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The convergence of the ADMM in nonconvex optimization has been studied
extensively, for example, by [Wang, Yin and Zeng| (2019). However, to the best of
our knowledge, existing conclusions in the literature cannot be applied directly
to establish the convergence of Algorithm S1. Nevertheless, we can still prove
it following similar steps to those in [Wang, Yin and Zeng| (2019), with some
modifications. We first present two lemmas, and then show the convergence
property of our ADMM algorithm.

Lemma 1. Assume the penalty function p(-, \,~y) is weakly convex with modulus
C, and its subdifferential is bounded, that is, |Op(-, \,v)| < Cs, for some constant
C,. If p > C,, it holds that the augmented Lagrangian H(3®Y,0® A® p®) s
lower bounded.

Lemma 2. Under the assumption in Lemma 1, it holds that
H(BY, 00, AD 0y _ [(8t=D @t=1 Al-1 1,t-1)

_ p _ p—C, _
<4p'n(n =102 = £ EOY — BOU V| — L2 |A® — AV,

Theorem 1. Under the assumption in Lemma 1, if p > C,, the following hold:

(1) the primal residual R,(©®® A®) and the dual residual RY) of Algorithm S1
satisfy imy_ [|R, (O, AD)||z = 0 and limy_, [|RY || = 0, respectively.

(2) the sequence {BY, @W AWM v} has at least a limit point {B*, ©*, A*, v*},
and any limit point is a stationary point.

Both the hard and SCAD penalties are weakly convex, and their subdiffer-
entials are bounded by constants. Lemma 1 shows that, for sufficiently large p,
the augmented Lagrangian is lower bounded, and Lemma 2 shows that its change
between successive iterations is upper bounded. Then, Theorem 1 presents that
the ADMM algorithm achieves primal feasibility and dual feasibility. Moreover,
it converges to an optimal solution, which may be a local minimum. The proof
is given in the Supplementary Material.

Given the tuning parameters, the pairwise fused penalty may result in A;;,,, =
0 for some ¢ and j. As discussed in Section 2, we assume that ¢; and €; are from
the same component if A;;; = A;j5 = 0. Therefore, we can recover the group
structure of the errors using the shrinkage procedure Denote the estimates as
ﬂ, 0[ 1, and 0[ 9. As a result, we have K1 estimated distinct values for the
mean, which divide the data into groups G, (1) . ,QA};I) The estimated mean for

the kth group is ju; = |GL"]™* 3] > icg™ 0;1, where | - | is the cardinality of a set.
k

Similarly, there are f(z estimated distinct values for the precision, which divide
the data into groups g{”, e ,g}?. The estimated precision for the k’th group is
2

Trr =

165,(5) Os2.
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4. Asymptotic Properties
4.1. Heterogeneous model

We first study the theoretical properties of the proposed estimator under a
heterogeneous model, where at least two components exist in the mixture, that
is, max (K, Ky) > 2. We discuss the homogeneous setting in the next section.
We show that under some regularity conditions, there exists a local minimizer
of the objective function converging to the true parameter. Specifically, we first
prove that the oracle estimator converges to the true parameter, and then show
that the oracle estimator is a local minimizer of the objective function, with
probability approaching one. Let 8% 6f,;, and 67, denote the true parameters.

For m = 1,2, suppose there are K, distinct values in 67, ,, which divide {e;}i_,
into K., groups, G\, .. ,gﬁ;’j Let Zgem be the subspace of R™, defined as
Tgomy = {Opm) € R : by, = 0, for any i,j € GV, 1 < k < K,,}. Let Z(™ =
(z™) be the n x Km matrix with z{™ =1 for i € g™, and 2" = 0 otherwise.
In addition, let u° = (ul,...,uKl)T and 70 = (77,...,7%,) ", where 4 is the
mean for group g,j and 77, is the precision for group g,i?). When the underlying
group structures g("” e ﬁ(mj, for m = 1,2, are known, the oracle estimators

for B3, 0y.4), and 0. are defined as the maximizers of the log-likelihood function

(B) T @) B ) = argmax > logly — 67w 0 0). (1)

01.11€Z5(1),01.21€Z5(2) 11

Moreover, define the oracle estimators for 3, u, and T as
((;60r) (/\or)'l'7 (;’:or)'l')
= argmaxn_ Z Z 2k {log T — T (ys — B @ — uTz[(:])) }

=1 k’'=1

For notational simplicity, we define for any vector u = (uy,..., us)T € R?,
|u]loe = maxi<j<s|w|. For any a,,b, € RT, we denote a, > b,, if a,'b, =
o(1). Let p/(|t|, A,) be the derivative of p(|t], A,) with respect to |t|, that is,
P (Ith A7) = Op(lt], \,7)/0Jt]. Let |G| = min(|G{™],...,|GL"]), for m = 1,2.
To establish the asymptotic properties for the estimators, the following regular
conditions are required:

(C1) There exist constants 0 < M, ¢; < oo such that ||x|/. < M for any x € X,
and the smallest eigenvalues of (X, ZM)T (X, ZM) are bounded by ¢|G') |.

(C2) There exist constants 0 < Tyin < Timax < +00 such that 7 < 79 < Tiax,
for K =1,..., K.

(C3) The mixing probability m; that a subject belongs to g,i” N g,i?) satisfies
mink’k/ Tk = O(maxk)k/ Wkk’)'
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(C4) The penalty function p(|t|, A,7) is symmetric with respect to ¢, and nonde-
creasing and concave in terms of |t|. There exists some constant 0 < a < 400
such that p(|t], A,7) is a constant for all ¢ with |t| > aA, and p(0, A,y) = 0.
The derivative p’(|t|, A, y) exists and is continuous, except for a finite number
of t, and \™'p/(|t[,\,y) =1 as |t| = 0.

By definition, the smallest eigenvalue of (Z(M)TZ® is |GL) | and it is reasonable
to assume that the smallest eigenvalue of X "X is bounded by Cn, for some
constant 0 < C < +4oo. Therefore, Condition (C1l) assumes the smallest
cigenvalue of (X,Z™)T(X,Z®) is bounded by ¢;|G\) |, similarly to Ma and
Huang (2017). Condition (C2) assumes that the true value of the precision is
bounded, which is a common assumption in GMMs (Hao et al.| (2018); Ren et al.
(2022))). Condition (C3) requires that the groups in the mixture model are not
too imbalanced, similarly to Ren et al.| (2022). Condition (C4) is widely adopted
in high-dimensional settings (Ma and Huang (2017)), and is satisfied by the hard
and SCAD penalties.

Theorem 2. Under Conditions (C1) to (C3), assuming max{K;, Ks}v/p + K1 K>
o(y/n(logn)=1), it holds that

1B™) T, (623" (6P5)T) = (BT, (61) T (602 )|

K))K21 K1
=0, max(Kl,Kg)\/(p+ LS Ogn—{—max(Kl,Kg)\/ﬂ
n n

Theorem 2 states that the oracle estimators of 3, 6}.1), and 6|3 converge
to the true parameters; the proof is given in the Supplementary Material. It
allows p, K, and K, to diverge with n, and requires max(K;, Ky)v/p + K1 K, =
o(y/n(logn)=1). The result in Ma and Huang| (2017)) can be viewed as a special

case of Theorem 2 by assuming K, = 1 (the negative log-likelihood reduces
to the mean squared error) or that the heterogeneity precisions are already
known. In these cases, we need only estimate the coefficients and the means.
The required condition is then K;v/p + K; = o(y/n(logn)~1), and hence K; =
o(n'/?(logn)~1/3), which is the same as in Ma and Huang| (2017). The bound in
Theorem 2 is then K;+/(p + K;)n1logn, which is also the same as in Ma and
Huang (2017, Remark 4). Moreover, |Hao et al. (2018|) consider high-dimensional
Gaussian graphical mixture models, which assume that the mean and precision
vectors have the same group structure and do not incorporate covariates. If we set
K, = K, and p = 0, the bound in Theorem 2 is \/Kjn=1logn + \/K;n~!logn,
which is the same as in Hao et al.| (2018) when applied to a one-dimensional GMM.
In particular, when p, K, and K, are fixed, the error bound is v/n~Tlogn.
As suggested by Hao et al. (2018), the first term of the bound in Theorem
2 represents the mean error, and the second term is the precision error. The
structure of the means affects the estimation of the precisions, and vice versa.
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Specifically, given K1, the mean error is affected by the value of K,, and given Ks,
the value of K also affects the precision error. Theorem 2 reveals the advantage
of separately investigating the structures of the means and the precisions. We
consider two special cases, (K; = K,K, = 1) and (K; = 1,K; = K). The
error bound is /K%(p+ K)n-'logn + /K2?n Tlogn in the first case, and
VEK*(p+1)n-tlogn + K3n Tlogn for the latter. If we assume the mean
and precision share the same group structure, as in the literature, that is,
K, = K, = K, then the error bound is \/K*(p + K)n~'logn++/K3n logn for
both cases. As expected, identifying the structure of the parameters separately

leads to estimates with smaller estimation errors. In addition, the estimation
problem with the same mean but heterogeneous precisions (K; = 1, K, = K)

is more difficult than that with heterogeneous means and the same precision
(Kl == K, KQ == 1)

Remark 1. Let X = (X, ZW). By the first-order optimality condition, we have
(B°)T, () T)T = (Xdeiag(éﬁg])Xv)*l(X/Tdiag(A[‘fg])y), which can be viewed as
a weighted least squares estimator for a heteroskedastic linear regression. Because
60, = Z®7° is a smooth function and 5?’2] is a consistent estimator of 67y, by
Carroll (1982), we have that

(B)T (@) — (8. (1)) % N (0, (X ding(60,)X) ).

where % represents convergence in distribution. Therefore, as claimed in a large
amount of literature (e.g., Shao (1989)), ((3°")T, (u°)")" is more efficient than
the ordinary least squares estimator in Ma and Huang (2017)) when K, > 2.

Assuming max(Ky, K3) > 2, let b, = min(min,; [67, — 63|, min,,; |67, — 602])
be the minimal difference of the means or precisions between two groups. For
simplicity, let ¥, = max (K, K2)v/n Tlogn{\/(p + K1) K2 + vK,}.

Theorem 3. Under Conditions (Cl) to (C4), and assuming that the con-
ditions in Theorem 2 hold, max(K,,K;) > 2, b, > amax(\,N), and
min(Ay, Ap) > 1, with a defined in Condition (C4), there exists a local minimizer
(B(’\’V),é[(f;f),é[(‘;f)) of the objective function Q(B3,0), such that

PLBO)T, @O0, (057)T)

((B™)", (63", 0p) ")} — 1
as n — o0.

Theorem 3 shows that the oracle estimator ((3°")7, (é\ﬁrl])T, (éﬁg])T) is a local
minimizer of the objective function Q(3, ®) with probability approaching one as
n — o0o; the proof is given in the Supplementary Material. Combining Theorems
2 and 3, we conclude that there exists a local minimizer of the objective function
converging to the true parameter.
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4.2. Homogeneous model

When the true model is homogeneous, that is, K1 = K> = 1, we show that
the minimizer of the penalized objective function Q(3,®) also has the oracle
property. For m = 1,2, let Z,, be the subspace of R", defined as Z,, = {0}..,) €
R™ : 0y, = «-- :A9nm}. AThe oraicle estimators under the homogeneous model
are defined as ((8™)",(003)",(60y)") = argmaxy | o7, 0., cz, > iy l0g d(yi —
ﬁTwi;6i179i2)~

Theorem 4. Under Conditions (C1) and (C4), assuming p = o(n(logn)~'), the
following hold:

(1) [1((B°)T, (873) T, (B55) ™) — ((B)T, (821) T, (60) )l
=0, (\/(p + 1)n-tlogn + /n=1 logn) :

(2) if A > \/(pA—i— 1)n=tlogn + /n~tlogn, there exists a local minimizer
(B, 607,8(57) of Q(B,©) such that

P{(B)T 0077, 05 T) = ((B)T, (07 (Gp) )} — 1
as n — o0.

Theorem 4 shows that under a homogeneous model, there exists a local
o = ey O .

minimizer ((3%7)7, (83"")7, (B3")7) converging to ((8°)7,(60:)7, (60)7):
the proof is given in the Supplementary Material.

5. Simulations

We conduct extensive simulations to demonstrate the numerical performance
of the proposed method for GMMs using the hard and SCAD penalties (abbrevi-
ated as Hard-GMM and SCAD-GMM, respectively), and compare the results with
those of several existing methods. Specifically, we consider the following methods:
(i) the method proposed by Ma and Huang (2017)), which conducts subgroup
analyses in a linear regression with different means using a concave fusion penalty
(SubAna); (ii) the EM algorithm for finite mixtures in a linear regression, with
the Gaussian error terms implemented using the R package “flexmix” (Griin and
Leisch/ (2008)), in which regression coefficients are restricted to be equal over all
components (FlexMix); and (iii) the method using model selection for GMMs
without covariates proposed by Huang, Peng and Zhang] (2017), which penalizes
mixing probabilities, and implements a modified EM algorithm for the estimation
(MS-GMM). As suggested by the authors, we use the SCAD penalty for SubAna
and MS-GMM.

Based on preliminary experiments, we fix p = 1.2 for the hard penalty and
p = 0.5 for the SCAD penalty. To apply the proposed method, one needs to
select the tuning parameters A\, Ay (for both penalties) and vy, 2 (for the SCAD
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penalty). Simulation results show that the numerical performance is not sensitive
to the selection of 7y, 72, and we set v; = 72 = 3.7, following Fan and Li| (2001)).
Although information criteria such as the AIC and BIC have been proposed for
parameter tuning in the context of clustering, the model complexity penalty in
these criteria is often ad hoc. Motivated by the work of |She| (2010)) and |She and
Tran (2019), we set aside a separate validation data set to calculate the validation
error (negative log-likelihood) and select the tuning parameters using the one
standard error rule, which lead to the simplest model and a validation error that
falls within one standard error of the minimum. The size of the validation set is
fixed as 10 times that of the training set in our analysis. Moreover, we adopt an
alternative search strategy to tune the parameters, which has been shown to be
efficient (She| (2009)). Specifically, we first search along the \;-path with \; fixed
at the minimum, median, and maximum in its candidate set. Then, we select
the optimal value, denoted by /\g"“). Then, we search along the A\;-path with A\
fixed at AQOP”. Accordingly, we search along four one-dimensional paths in total,
including three A;-paths and one A,-path. Although this strategy does not cover
the full parameter space, it is more computationally efficient than a grid search,
and leads to satisfactory estimates.

Owing to the critical role of the initial values in Algorithm S1, we borrow
ideas from prior works (Ma et al.| (2020); Hu et al. (2021); Wang, Zhu and Zhang
(2023)) and consider the optimization problem with a ridge fusion penalty,

min {i(yi —BTE =02+ > . > Xl — 9jm)2} . (5.1)

i=1 m=11<i<j<n

The parameters A; and X, are selected from the set {107%,1072,...,107}
using the same procedure described above. The objective function in
is differentiable, and thus we apply the limited-memory Broyden—Fletcher—
Goldfarb—Shanno algorithm for bound constrained optimization to solve it, which
is computationally fast. Denote the solutions as B9, 0[(_r1i]d ). and 9[(2](1 ). Then, for
m = 1,2, we divide the subjects into |n'/?] subgroups by ranking 0[(:?]), where
|n'/2] represents the maximum integer that does not exceed n'/2. Denote these
subgroupsas G."™, ..., G f;”l)/,, |- Lastly, we set the initial estimates B = gtid) and
0[(331] = (69,...,09)T where 6°) is equal to the median of {9](2?) jegimy,
with QN,(Cm) the subgroup to which the ith subject belongs, for k =1,..., [n'/?].

Previous studies (Ma et al.| (2020); |[Hu et al. (2021)); Wang, Zhu and Zhang
(2023))) have verified the validity of such an initialization procedure in various
scenarios. As indicated by the following numerical studies, it can also provide a
good start point for our ADMM algorithm.

To evaluate the performance of our method, we consider the identification of
K, and K, as well as the estimation of 3, 0.1}, and 8.5). Note that SubAna does
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not estimate the precision parameters, thus there is no result for K, and 0|5 for
this method. To apply MS-GMM in our regression setting, we first obtain the
ordinary least squares (OLS) estimator ,@015, and then implement MS-GMM on
the pseudo errors y; — (BOIS)Twi. In addition, FlexMix and MS-GMM assume
the means and precisions have the same structure, thus the estimated values
of K; and K, are always the same. We investigate two scenarios of mixture
models. Scenario 1 assumes a scale GMM with two components, which have the
same mean, but different precisions. Scenario 2 adopts a much more complicated
mixture model, with six distinct means and three distinct precisions. Set k2P = 0
and ™ = 0.01 in for the termination criterion. Under each scenario, we
conduct 100 replications.

Scenario 1. For ¢ = 1,...,n, ¢ is from a Gaussian distribution with density
¢(€;;0,1,0,2), where 0;; = 1 and 0,5 is generated from the distribution P(6;; =
(0.2)72) = 1/3 and P(0;2 = (0.9)7%) = 2/3. Let @; = (x;1,...,x;5) ", where x;;
are independent and identically generated from the standard normal distribution.
We simulate responses as y; = B'x; + €;, with 8 = (3,2,0.5,—2,-3)", and set
n = 200.

We set the maximum number of iterations in Algorithm S1 to 200. For
the hard penalty, the candidate sets for A\; and A\, are {0.5,0.6,...,1.5} and
{5,5.2,...,7.2}, respectively; for the SCAD penalty, they are {0.05,0.06,...,0.15}
and {1,1.2,...,3.2}, respectively. Figure 1 shows the solution paths of é[_l] and
5[.2} by SCAD-GMM for one simulated data set. The values of 6[.1] and 5[42] show
a similar pattern from divergence to convergence along the path. When \; is
small, the estimated means tend to be different, which should be close to the
residuals y; — ﬁTzci. As )\; increases, the estimated means converge to one point
around the true value, one. The trend for the estimated precisions is similar.
When A, is small, there are more than two distinct values for the estimated
precisions. They converge to the true values (0.2)72 and (0.9)"2 as \, increases,
and finally converge to one point if A\, continues to increase.

Table 1 reports the average value and standard deviation (given as a
subscript) of the bias and the square root of the mean squared error (RMSE) for
the estimated values of B3 over 100 replications. For a vector u = (uy,...,u,)"
and its estimator @ = (@i,...,us)", the bias of u; is defined as |u; — uyl,
for 5 = 1,...,s, and the RMSE of u is ||u — ul|s/+/s. We consider the four
methods Hard-GMM, SCAD-GMM, SubAna, and FlexMix. The oracle and OLS
estimators are also presented as references. Table 1 shows that Hard-GMM and
SCAD-GMM perform similarly and deliver the results closest to those of the
oracle estimators. The other two competitors, SubAna and FlexMix, are inferior
to our method in terms of estimating 3.

Table 2 shows the median of IA(m, the proportion of IA(m equal to the true

value, and the RMSEs of 5[.1] and 5{21]/2 (i.e., standard deviation), as well as
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Figure 1. Solution paths for estimated values against tuning parameters by SCAD-GMM
for one simulated data set under Scenario 1, where the dashed lines correspond to the
optimal tuning parameters.

the computation time to train the model once on the whole training set with
the specified tuning parameters. The results show that Hard-GMM and SCAD-
GMM always correctly identify the numbers of components, and perform best in
terms of estimating the parameters. SubAna also correctly identifies the number
of components for the means, and ranks second in terms of estimating 5[,1]. In
comparison, the proposed method delivers more accurate and robust estimators
than those of SubAna, because we consider heterogeneity among precisions. In
addition, our method shows great advantages over the EM-based algorithms,
FlexMix and MS-GMM, in terms of both determining the numbers of components
and estimating the parameters. We next focus on the computation time, where
MS-GMM runs fastest, followed by FlexMix, SubAna, Hard-GMM, and SCAD-
GMM. In general, the EM-based algorithms run much faster than the ADMM-
based algorithms. Compared to SubAna, our method spends twice as much
time in estimating precisions. We further compare the performance of these
methods in terms of clustering; detailed results and discussions are provided in
the Supplementary Material, where Table S1 shows that our method performs
best.

We now check the convergence of the ADMM algorithm, and present the
results of Hard-GMM for illustration purposes. In Figure 2, we show the
average curves over 20 runs of the primal relative residual | R,(©@®, A®)|| x
(max{||EO® ||z,|A® | z})* and the dual relative residual | R || #(| ETv® || z)
against the number of iterations. The results show that the ADMM algorithm
converges steadily in this scenario, and the termination criterion is satisfied
within 50 iterations, on average. The primal relative residual gets close to zero
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Table 1. The average value and standard deviation of the bias and the square root of
the mean squared error (RMSE) of 8 over 100 replications.

=

Bias(8;) Bias(f,) Bias(Bs) Bias(8s) Bias(8;) RMSE(8)

Scenario 1
Oracle 0.0210.017 0.0210.015 0.0200.016 0.0200.016 0.0200 014 0.0240 00s
Hard-GMM  0.0349.027 0.0310.022 0.0300.026 0.029.022 0.0340 028 0.0380.014
SCAD-GMM  0.0340.027 0.031p.021 0.0300.026 0.0300.023 0.033¢.027 0.0380.014

SubAna 0.0450.034 0.0440 031 0.0450 030 0.0430.034 0.0430.036 0.0520 015

FlexMix 0.0420_032 0.0390_031 0.044()‘033 0.047()‘034 0-0430.036 0-0510.018

OLS 0.0450.034 0.044¢. 031 0.0450.030 0.0430.034 0.043¢.036 0.0529.018
Scenario 2

Oracle 0.0150_011 0.0140_010 0.01404010 0.01604011 0.0150.010 0.0170,005

Hard-GMM 0.1100‘257 0-0730‘226 0.1160.207 0.0850.208 0.0920.217 0.1110224
SCAD-GMM  0.1124.971 0.0779.242 0.1159.201 0.0809.200 0.091p.212 0.1109.925

SubAna 0.2640.382 0-2090.282 0.2380.356 0.2410.340 0.2290.359 0.2800.311
FlexMix 0.3250_412 0.3100_404 0.3360.513 0.3990.539 03540.387 04200.388
OLS 0.6740.482 0.5700,421 0.6280‘481 0.6040.472 0.6460.472 0.7430.234

Oracle: the oracle estimators defined in ; Hard-GMM: the proposed method under the
hard penalty; SCAD-GMM: the proposed method under the SCAD penalty; SubAna: subgroup
analysis proposed by [Ma and Huang| (2017); FlexMix: the EM algorithm for finite mixtures
of linear regression developed by |Griin and Leisch| (2008)); OLS: the ordinary least squares
estimators.

after about 10 iterations, whereas the dual relative residual decreases relatively
slowly. We also show the relative residuals after 200 iterations in Figure S1 in the
Supplementary Material, which verify that the dual relative residual continues to
decrease, albeit slowly, as the number of iterations increases. Figure 2 also shows
the average curves of the objective value Q(3®), ®®), which converges fast with
iterations. Furthermore, the RMSEs of B8®, 9[("51)], and (0[(2])*1/2 in Figure 2 show
that the ADMM algorithm converges to a stationary point after a number of
iterations. We study the convergence of the RMSEs further for parameters under
different sample sizes; see Figure 3, which shows that the obtained solutions
converge faster, and eventually converge to smaller RMSEs with larger sample
sizes.

We finally investigate the sensitivity of SCAD-GMM to 7, and ~,. We set
Y1 = v = v to 3.1,3.3,...,4.9. Figure 4 shows the RMSEs of the parameters
against the value of v over 100 repetitions, indicating that the estimation of the
parameters is not sensitive to the value of v. Figure S2 in the Supplementary
Material shows the primal and dual relative residuals for v = 3.1,3.7,4.9. The
ADMM algorithm converges for all three values of v, and the convergence rate is
slower for v = 4.9.
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Table 2. The median (Med) of K, and [/(\2, the proportion (Prop) of K and K equal to
the true values, the average value and standard deviation of the square root of the mean

squared error (RMSE) of 5[.1] and é;zl]/ 27 and the average computation time in seconds
over 100 repetitions.

K K, RMSE .
= = Time
Med Prop Med Prop 0.4 (6.07) /2
Scenario 1
Oracle - - - - 0.0190_014 00440.076 -
Hard-GMM 1 1 2 0.0309.023  0.212¢ g2 7.61
SCAD-GMM 1 1 2 0.0309.023  0.219¢.0s0 8.22
SubAna 1 1 — — 0.0390.032 - 3.83
FlexMix 2 0.76 2 0.76 0.0640.050 0.277¢.081 1.10
MS-GMM 2 0.74 2 0.74 0.162¢.206 0.259¢.126 0.08
Scenario 2
Oracle - - - - 0.0750.027  0.0300.015 -
Hard-GMM 6 0.69 3 0.95 0.6210_779 0.3860,184 38.98
SCAD-GMM 6 0.69 3 0.93 0.656¢.78s  0.383p.171 40.78
SubAna 6 0.68 - - 1.1471 150 - 24.26
FlexMix 6 0.54 6 0.54 2.4482_103 23712.056 1.55
MS-GMM 6 0.57 6 0.57 1.9985.063  2.2332.023 0.11

Oracle: the oracle estimators defined in ; Hard-GMM: the proposed method under the
hard penalty; SCAD-GMM: the proposed method under the SCAD penalty; SubAna: subgroup
analysis proposed by [Ma and Huang (2017)); FlexMix: the EM algorithm for finite mixtures of
linear regression developed by |Griin and Leisch| (2008); MS-GMM: model selection for GMMs
proposed by [Huang, Peng and Zhang| (2017)), applied to y; — (ﬁOIS)Tmi.

Scenario 2. We simulate data from a more complicated mixture model. For
i=1,...,n, ¢ is from a Gaussian distribution with density ¢(e;; 6,1, 6,2), where
0;1 is generated from {—20,—12, —4,4,12,20} with equal probabilities and

(0.2)72, if 6 = —200r — 12,
0i2 - (0.4)_2, if 0i1 = —47
(0.7)72, otherwise.

Let ©; = (w;1,...,25) ", where x;; are independent and identically generated
from the standard normal distribution. We simulate responses as y; = 8" x; +¢;,
with 8 = (3,2,0.5,—2,-3)", and set n = 300.

We set the maximum number of iterations in Algorithm S1 to 500 for this
complicated scenario. The estimated results are shown in Tables 1 and 2. In this
scenario, the proposed method demonstrates significant advantages in terms of
structure identification and parameter estimation. Although SubAna performs
similarly to our method in terms of identifying the number of components for the
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Figure 2. Average curves for the primal and dual relative residuals, the objective value,
and the RMSEs of the estimated parameters against the number of iterations by Hard-
GMM over 20 repetitions under Scenario 1.
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Figure 4. Average curves for the RMSEs of the estimated parameters against the value
of v by SCAD-GMM over 100 repetitions under Scenario 1.

means, it does not consider heterogeneity among precisions. On the other hand,
our method achieves high accuracy in terms of identifying the structure of the
precisions. As a result, the proposed method delivers more accurate and robust
estimations of 3 and 6., than those of SubAna. In addition, MS-GMM performs
poorly in this scenario, because it is applied to the pseudo residuals y; — (BOIS)Twi,
where the OLS estimator is biased because of heterogeneity. Although FlexMix
delivers reasonable results in terms of estimating 3, it also performs poorly in
terms of estimating 6.1} and 6[.5;. One possible reason is that the EM algorithm
is sensitive to the initial points in this complicated scenario. Therefore, we adopt
the suggested strategy of Grun and Leisch| (2008) to first make several runs
of the stochastic EM algorithm with different random initializations, and then
start the EM using the best solution obtained. Nevertheless, it still performs
unsatisfactorily. For computation, the ADMM-based methods, Hard-GMM,
SCAD-GMM, and SubAna, run much slower than MS-GMM and FlexMix for
this larger data set, because the latter two are less affected by the sample size.
The improvement in terms of estimation accuracy of our method is achieved at
the cost of computation. We also present clustering results in Table S1 in the
Supplementary Material, which show the superiority of our method. To check
the convergence of the ADMM algorithm, Figure 5 shows the average results
for SCAD-GMM over 20 runs. As shown, although the optimization problem
becomes difficult in this complicated scenario, the relative residuals still satisfy
the termination criterion, and the obtained solutions converge to stationary points
within 500 iterations, on average.

6. Real-Data Example

For illustration, we apply the proposed method to Cleveland Heart Disease
data (https://archive.ics.uci.edu/ml/datasets/Heart+Disease) from the
UCI repository. The selection of the tuning parameters A; and A, is the same as
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Figure 5. Average curves for the primal and dual relative residuals, the objective value,
and the RMSEs of the estimated parameters against the number of iterations by SCAD-
GMM over 20 repetitions under Scenario 2.

in Section 5, except that the validation error is calculated using five-fold cross-
validation.

The data contain 303 individuals and 14 variables, where the first 13 variables
are clinical measurements, and the last one indicates whether an individual
suffers from heart disease. After deleting observations with missing values, there
remain 297 observations. The variable “thalach”, which represents the maximum
heart rate achieved, is related to cardiac mortality (Lauer et al.| (1999)). Our
analysis aims to identify group structures when predicting “thalach.” We are
interested in six covariates: age, sex, resting blood pressure, serum cholesterol,
fasting blood sugar, and a resting electrocardiographic (ECG) result, which
is a categorical variable with three levels (0=normal, 1=having ST-T wave
abnormality, 2=showing probable or definite left ventricular hypertrophy by
Estes’ criteria), and thus is converted to two dummy variables. We use six
additional variables to check heart problems, namely chest pain type, exercise
induced angina, ST depression induced by exercise relative to rest, slope of the
peak exercise ST segment, number of major vessels colored by fluoroscopy, and
heart status. Similar to the procedure in Ma and Huang (2017)), we first regress
“thalach” on these six additional variables using a linear model, and then use the
fitted value of “thalach” as the pseudo response variable, denoted by y.

We regress y on the original set of seven covariates using the ordinary least
squares method. Figure 6 shows the KDE of y; — (8°%) @; with the bandwidth
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Figure 6. The kernel density estimate of y; — (BOIS)Twi’s in the Cleveland Heart Disease
data.

chosen using the method of Sheather and Jones| (1991)), which exhibits multiple
modes in the distribution, and thus indicates the existence of heterogeneity. We
apply Hard-GMM, SCAD-GMM, SubAna, and FlexMix to these data. The
estimated values of K, Ky, u, and (7)~'/2, where the latter two are the distinct
values of the means and the standard deviations, respectively, are presented
in Table 3. We also show the sizes of the subgroups of means and precisions,
denoted by |G| and |G®)|, respectively. Our methods Hard-GMM and SCAD-
GMM identify two subgroups for both the means and the precisions. Table
4 shows the estimates of 3 by various methods. We also report the standard
errors and p-values of the significance tests, obtained by refitting a weighted
linear model, incorporating the indicator vector z[(ll]) as covariates, and using the
estimated precisions as weights. The result demonstrates that by recovering the
group structure of the data, we can identify variables that do have effects on
the response. For example, ECG (hypertrophy) is insignificant under the OLS
method, but becomes significant under the heterogeneous methods. Moreover,
the adjusted R-square of the OLS method is 0.103, indicating poor model fitting.
After considering heterogeneity, the adjusted R-square is 0.782, 0.778, 0.745,
and 0.746 for Hard-GMM, SCAD-GMM, SubAna, and FlexMix, respectively.
By taking into account the group structure, the model fitting can be greatly
improved, and the proposed method performs best.

7. Discussion

We propose a penalized approach enabling Gaussian mixture linear models
to handle heterogeneity. The concave hard and SCAD penalties are adopted
to shrink the pairwise differences of the means and precisions, respectively.
By increasing the value of the tuning parameter for the penalty term, our
method automatically clusters and merges similar instances. The theoretical
properties show that under mild conditions, there exists a local minimizer of
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Table 3. Estimated values of K7, K5, u, and (T)_1/2, and the sizes of the subgroups in
means and precisions, denoted by |G| and |G(?)|, respectively, for the Cleveland Heart
Disease data.

Ki K> p G (7)~? G2
Hard-GMM 2 2 (193.21,167.69) (183, 114) (7.65, 4.22) (223, 74)
SCAD-GMM 2 2 (198.56, 174.60) (183, 114) (8.80, 4.34) (150, 147)
SubAna 2 — (193.26, 177.97) (183, 114) - -
FlexMix 2 2 (183.36,164.84) (151, 146) (8.75,5.92) (151, 146)

Table 4. Estimated values (Est) of the coefficients with the standard errors (S.E.) and
p-values (p) for the Cleveland Heart Disease data.

Blood ECG ECG

Model Age Sex Press. Cholesterol Sugar (wave) (hypertrophy)
Est -0.333 -4.617 -0.026 -0.008 -0.094 -14.076 -2.700
OLS S.E. 0.083 1.531  0.042 0.014 2.023 6.140 1.441
p <0.001 0.003  0.531 0.553 0.963 0.023 0.062
Est -0.283 -3.201  -0.022 -0.002 1.924 -11.831 -3.676
Hard-GMM S.E. 0.042 0.762  0.021 0.007 1.008 3.055 0.717
p <0.001 <0.001 0.300 0.753 0.057 <0.001 <0.001
Est -0.280 -3.232 -0.024 -0.001 1.916 -11.597 -3.824
SCAD-GMM S.E. 0.040 0.746  0.021 0.007 0.981 2.974 0.699
p <0.001 <0.001 0.245 0.860 0.052 <0.001 <0.001
Est -0.286 -3.095 -0.027 -0.001 1.760 -11.564 -3.599
SubAna S.E. 0.044 0.819  0.022 0.008 1.081 3.277 0.770
p <0.001 <0.001 0.228 0.876 0.105 <0.001 <0.001
Est -0.250 -1.294  0.030 0.002 0.989  -7.301 -2.944
FlexMix S.E. 0.064 1.217  0.033 0.011 1.381 3.952 1.037
p <0.001 0.287  0.351 0.883 0.474 0.065 0.005

the objective function that converges to the true parameters. Our method can
separately identify the structures of different types of parameters and calculate
pooled estimators, which are more efficient. Simulation results corroborate the
advantages of the proposed method in terms of estimation accuracy.

Our method has several limitations. Although the initialization approach
in Section 5 performs well in numerical studies, it lacks theoretical support.
As indicated by the analysis in Section 3, the computational complexity of the
proposed method increases significantly with the sample size. In Section 4, we
establish theoretical properties under the condition that p < n/logn. In the
high-dimensional setting, an additional penalty term needs to be imposed on
the regression parameter 3 to enforce sparsity, that is, Zé’:lp(\,@ﬂ,)\,y). The
proposed ADMM algorithm is still applicable, with minor modifications, where
the updating equation of 3 should be re-derived based on a penalized
likelihood. However, extra effort is needed to develop theoretical properties of
the estimators in the high-dimensional setting. Existing results (Yang, Yan and
Huang| (2019)) may provide ideas for solving this technical problem. Recently,
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She, Shen and Zhang| (2022)) proposed a novel clustered reduced-rank learning
(CRL) framework that imposes two joint matrix regularizations to automatically
group the features in supervised multivariate learning. They prove that the CRL
rate always beats the rate using the pairwise-difference penalization, and claim
that the CRL method is computationally more efficient. Owing to its superiority,
it is of interest, though challenging, to extend the CRL framework to GMMs.

Supplementary Material

The online Supplementary Material contains the ADMM algorithm, detailed
derivations from Section 3, proofs of the theorems in Section 4, and additional
simulation and application results.
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