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Abstract: Estimating finite mixture models is a fundamental and challenging

problem. We propose a penalized method for a Gaussian mixture linear regression,

where the error terms follow a location–scale mixture of Gaussian distributions.

The objective function is a combination of the likelihood function of the observed

data and a penalty on the pairwise differences of the parameters. We develop an

alternating direction method of multipliers algorithm, and establish its convergence

property. By clustering and merging similar observations in an automatic manner,

our method provides an integrated tool for simultaneously determining the number

of components and estimating the parameters in finite mixture models. Moreover,

the proposed method allows the mean and precision parameters to have different

structures, enabling us to obtain pooled estimators. We also establish the statistical

properties of our estimators. Extensive simulations and real-data examples are

presented to evaluate the numerical performance of the proposed method.
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1. Introduction

Finite mixture models are often used to model heterogeneous data from

complex distributions, in areas such as density estimation (Escobar and West

(1995)), pattern clustering (Liu et al. (2022)), and quality control (Li et al.

(2021)). As the most popular mixture model, the Gaussian mixture model

(GMM) possesses many appealing features, including computational tractability,

affine invariance, and flexibility of representations.

Several methods have been proposed to estimate the parameters of GMMs.

Owing to missing information in the component membership, the complete-

data likelihood cannot be calculated directly. The expectation–maximization

(EM) algorithm is often used to estimate the parameters for a given number of

components, which is usually unknown in practice. To determine the number of

components, conventional methods often take a model-selection approach using

the Akaike information criterion (AIC) or the Bayesian information criterion

(BIC). Leroux (1992) show that the number of components estimated using
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the AIC or BIC is at least as large as the true number. Another approach is

using penalized methods, which jointly learn the cluster structures and estimate

the parameters. Chen and Khalili (2009) impose two penalty functions on the

mixing proportions and the location parameters in GMMs, but do not consider

heterogeneity among precisions. Huang, Peng and Zhang (2017) propose a new

penalized likelihood method for multivariate GMMs in which they penalize the

mixing probabilities, which can be applied to location–scale mixtures. Hao et al.

(2018) introduce a joint graphical lasso penalty on the elements of the precision

matrices to extract both homogeneity and heterogeneity components for high-

dimensional Gaussian graphical mixture models. Recently, Ren et al. (2022)

conducted heterogeneity analyses for Gaussian graphical models by imposing

fusion penalties on the mean and on the precision matrix parameters, thus

determining the number of components and estimating the parameters in an

automated way.

In a linear regression, when the distribution of the error terms deviates

significantly from normality, an effective strategy is to assume that the error

terms follow a mixture of Gaussian distributions. As suggested by Rossi (2014),

any distribution can be approximated by a Gaussian mixture, to a sufficient level

of accuracy, by using an adequate number of components. The EM algorithm

can be generalized naturally to the regression setting (Bartolucci and Scaccia

(2005)), which also requires a specification of the number of mixture components.

Together, the linear regression mixture model and the pairwise fusion penalty can

accommodate subject-specific intercepts (Ma and Huang (2017)), but focus only

on the skewness of the errors as a departure from normality, without considering

heterogeneity among precisions. Motivated by this work, we consider a more

general framework that incorporates the heterogeneity among both the means

and the precisions. These location–scale Gaussian mixtures are expected to

perform better in a heteroscedastic model, for example, when the errors follow a

leptokurtic distribution. Our objective function is a combination of the likelihood

of the observed data and a concave fusion penalty that measures the pairwise

differences of the means and the precisions. An alternating direction method of

multipliers (ADMM) algorithm is developed for optimization. As the weight for

the penalty term increases, some pairwise differences of the estimated parameters

shrink to zero, enabling us to identify the number of components, and estimate

the parameters.

Our work builds on, but differs from existing works on GMMs (Huang, Peng

and Zhang (2017); Hao et al. (2018); Ren et al. (2022)) by considering regression

settings. Our framework is motivated by the penalization and shrinkage strategies

in existing heterogeneity studies (Ma and Huang (2017)), extending them to

accommodate heterogeneity among precisions. More importantly, most existing

GMM methods assume that either the means and the precisions share the same

structure, or that the precisions of all components are equal. An appealing
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feature of our method is that it allows the means and precisions to have different

structures, thus obtaining more accurate pooled estimators than those of previous

studies from the perspective of computation and theory. In particular, we

conduct a rigorous theoretical investigation of our pooled estimators. Lastly,

we extensively investigate the numerical convergence of the ADMM algorithm

for optimization with finite samples when using nonconvex penalties.

The rest of this paper is organized as follows. In Section 2, we develop

a penalized method for a linear regression in order to identify the number

of components in a GMM using pairwise fusion and estimate the unknown

parameters. In Section 3, we develop an ADMM algorithm to facilitate the

computation, and establish the statistical properties in Section 4. In Section 5,

we conduct extensive simulations to evaluate the numerical performance of the

proposed method. Section 6 demonstrates the feasibility of our method based on

real data. Finally, Section 7 concludes the paper with a discussion.

2. Gaussian Mixture with Pairwise Fusion

For any vector u, let ∥u∥2 denote its L2-norm, and u−1 denote a vector with

components that are the reciprocals of those of u. For a matrix Θ, let θ[i·] and

θ[·i] denote its ith row and ith column, respectively. Let y ∈ R be the response

variable and x ∈ X ⊂ Rp be the p-dimensional vector of covariates. We consider

the linear regression model,

yi = β⊤xi + ϵi, i = 1, . . . , n,

where β ∈ Rp is the vector of unknown coefficients, ϵi is the random error, and

n is the sample size. Let

ϕ(z;µ, τ) =
( τ

2π

)1/2

exp

{
−τ(z − µ)2

2

}
,

which is the density function of a Gaussian distribution with mean µ and precision

τ . Suppose that ϵi is from a Gaussian distribution ϕ(ϵi; θi1, θi2), where θi1 and θi2
are the mean and precision, respectively, for subject i. The data heterogeneity

between ϵi and ϵj is represented by the difference between two vectors, namely,

θ[i·] = (θi1, θi2)
⊤ and θ[j·] = (θj1, θj2)

⊤. If ϵi and ϵj are from the same component,

then θ[i·] = θ[j·]; otherwise, θ[i·] ̸= θ[j·], meaning that at least one element is

not equal. Suppose there are Km distinct values in θ[·m], for m = 1, 2, denoted

by µ = (µ1, . . . , µK1
)⊤ and τ = (τ1, . . . , τK2

)⊤, respectively, where µi ̸= µj and

τi ̸= τj, for any i ̸= j. Given K1 and K2, one can apply the EM algorithm to

estimate β, θ[·1], and θ[·2] by introducing latent variables (Bartolucci and Scaccia

(2005)). However, in practice, it is difficult to identify the values of K1 and

K2. By introducing pairwise fusion penalties, we propose a novel approach to

automatically determine the number of components and simultaneously estimate
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the parameters.

Let y = (y1, . . . , yn)
⊤ and X = (x1, . . . ,xn)

⊤ denote the observed data. The

log-likelihood function is

L(β,Θ) =
n∑

i=1

log ϕ(ϵi; θi1, θi2) =
n∑

i=1

log ϕ(yi − β⊤xi; θi1, θi2).

Our goal is to identify the values of K1 and K2, and to estimate β and Θ.

We introduce a fusion penalty (Tibshirani et al. (2005)) to penalize the pairwise

differences between θim, encouraging the sparsity of the pairwise differences. The

objective function is

Q(β,Θ) =− L(β,Θ) +
2∑

m=1

∑
1≤i<j≤n

p(|θim − θjm|, λm, γm), (2.1)

where p(·, λ, γ) is a penalty function with tuning parameters λ and γ.

It is critical to choose an appropriate penalty function p(·, λ, γ). The L1-

penalty, which is similar to the least absolute shrinkage and selection operator

(lasso) (Tibshirani (1996)), with p(|θim−θjm|, λm, γm) = λm|θim−θjm|, penalizes
all paired differences |θim − θjm|. The L1-penalty tends to overshrink large

coefficients, and fails to recover the group structure (Fan and Li (2001); Zou

(2006)). On the other hand, there are established theories for nonconvex

penalties, such as hard penalties and the smoothly clipped absolute deviation

(SCAD) penalty. The hard penalty defined in Antoniadis (1997) takes the form

p(u, λ, γ) =

(
−u2

2
+ λ|u|

)
I(|u| < λ) +

(
λ2

2

)
I(|u| ≥ λ), (2.2)

where I(·) is the indicator function. The SCAD penalty function is p(u, λ, γ) =

λ
∫ u

0
min{1, (γ − t/λ)+/(γ − 1)}dt, where t+ = tI(t ≥ 0) denotes the nonnegative

part of t ∈ R, with λ ≥ 0 and γ > 2. The tuning parameter γ controls the

concavity of the SCAD penalty function, that is, how fast the penalization rate

goes to zero. As γ → ∞, it reduces to the L1-penalty. A smaller γ results in

more concavity and less bias, but the estimates become unstable, because there

is a greater chance of multiple local minima. These nonconvex penalties achieve

sparsity at individual levels and, more importantly, lead to an approximately

unbiased estimation of the coefficients and correctly shrink group differences,

with high probability, under regular conditions.

3. The ADMM Algorithm

Because the penalty function is not separable in θim form = 1, 2, it is difficult

to directly minimize the objective function in (2.1). To overcome this challenge,

we introduce new variables, defined as ∆ijm = θim − θjm, for 1 ≤ i < j ≤ n and
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m = 1, 2. Let ∆ = {(∆ij1,∆ij2)
⊤, i < j}. The optimization problem is

minQ(β,Θ,∆) = −L(β,Θ) +
2∑

m=1

∑
1≤i<j≤n

p(|∆ijm|, λm, γm),

subject to θim − θjm −∆ijm = 0, 1 ≤ i < j ≤ n;m = 1, 2. (3.1)

Using the augmented Lagrangian method, we can estimate the parameters

by minimizing

H(β,Θ,∆,ν) = Q(β,Θ,∆) +
2∑

m=1

∑
i<j

νijm(θim − θjm −∆ijm)

+
ρ

2

2∑
m=1

∑
i<j

(θim − θjm −∆ijm)
2,

where ν = {(νij1, νij2)⊤, i < j} are Lagrangian multipliers, and ρ > 0 is the

penalty parameter. To implement the ADMM algorithm (Boyd et al. (2011)), we

first derive the updating equations for β and θ[·1]. We aim to minimize

H(β,Θ,∆,ν) =− L(β,Θ) +
ρ

2

∑
i<j

{
(ei − ej)

⊤θ[·1] −∆ij1 + ρ−1νij1
}2

+ C,

=− L(β,Θ) +
ρ

2

∥∥Eθ[·1] −∆[·1] + ρ−1ν[·1]
∥∥2

2
+ C,

where ei is a vector of length n of zeros except for the ith element being one,

E = {(ei − ej), i < j}⊤, ∆[·1] = {∆ij1, i < j}⊤, ν[·1] = {νij1, i < j}⊤, and C is a

generic symbol for a constant. As shown in the Supplementary Material, given

the current estimates θ
(t)
[·2], ∆

(t)
[·1], and ν

(t)
[·1], the updating equations for θ[·1] and β

at the (t+ 1)th iteration are

θ
(t+1)
[·1] =

(
ρE⊤E +A(t)

)−1 {
A(t)y + ρE⊤

(
∆

(t)
[·1] − ρ−1ν

(t)
[·1]

)}
, (3.2)

β(t+1) =(X⊤W (t)X)−1X⊤W (t)(y − θ
(t+1)
[·1] ), (3.3)

respectively, where A(t) = W (t){In − X(X⊤W (t)X)−1X⊤W (t)}, with W (t) a

diagonal matrix of θ
(t)
[·2] and In an n× n identity matrix.

Because there is no closed form when we update θi2 simultaneously, we use

a cyclic coordinate descent scheme at the (t + 1)th iteration. Specifically, we

cycle through θi2, for i = 1, . . . , n, so that at the ith step, we update θ
(t+1)
i2 , while

holding all other {θ(t+1)
j2 , j ̸= i} fixed as

θ
(t+1)
i2 = {2ρ(n− 1)}−1

{
−b(t+1)

i +

√
(b

(t+1)
i )2 + 2ρ(n− 1)

}
, (3.4)
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with

b
(t+1)
i =

{yi − (β(t+1))⊤xi − θ
(t+1)
i1 }2

2
+

∑
j>i

ν
(t)
ij2 −

∑
j<i

ν
(t)
ji2

−ρ
{∑

j>i

(θ
(t+1)
j2 +∆

(t)
ij2) +

∑
j<i

(θ
(t+1)
j2 −∆

(t)
ji2)

}
,

for which the derivation is given in the Supplementary Material. The updating

of θ[·2] = (θ12, . . . , θn2)
⊤ at the (t + 1)th iteration proceeds by applying (3.4)

repeatedly in a cyclical manner, until the relative distance of the parameters

between two cycles is smaller than a tolerance (e.g., 10−3).

To update ∆[·m], for m = 1, 2, we minimize∑
i<j

p(|∆ijm|, λm, γm) +
∑
i<j

νijm(θim − θjm −∆ijm) +
ρ

2

∑
i<j

(θim − θjm −∆ijm)
2

= 2−1ρ
∑
i<j

{(
θim − θjm +

νijm
ρ

−∆ijm

)2}
+

∑
i<j

p(|∆ijm|, λm, γm) + C, (3.5)

where C is a constant. For simplicity, let rijm = θim − θjm + νijm/ρ and r[·m] =

(rijm)i<j. Minimizing (3.5) with respect to ∆[·m] is equivalent to solving the

penalized linear regression problem

min

{
2−1∥r[·m] −∆[·m]∥2 + ρ−1

∑
i<j

p(|∆ijm|, λm, γm)

}
. (3.6)

Because the design matrix in (3.6) is orthogonal, even for nonconvex penalties

such as the hard penalty and SCAD, it still often results in a unique solution, as

suggested by She (2009). As shown in the Supplementary Material, the updating

equation for ∆ijm under the hard penalty (2.2) is

∆
(t+1)
ijm =


S(r(t+1)

ijm , ρ−1λm)

1− ρ−1
, if |r(t+1)

ijm | < λm,

r
(t+1)
ijm , if |r(t+1)

ijm | ≥ λm,

(3.7)

where S(u, c) = sign(u)(|u| − c)+ is the soft-thresholding function. In addition,

the updating equation of ∆ijm under the SCAD penalty with γm > (1 + ρ−1) is

∆
(t+1)
ijm =


S(r(t+1)

ijm , ρ−1λm), if |r(t+1)
ijm | ≤ λm(1 + ρ−1),

S(r(t+1)
ijm , γmρ

−1λm/(γm − 1))

1− ρ−1/(γm − 1)
, if (1 + ρ−1)λm < |r(t+1)

ijm | ≤ γmλm,

r
(t+1)
ijm , if |r(t+1)

ijm | > γmλm.
(3.8)
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Finally, for 1 ≤ i < j ≤ n and m = 1, 2, νijm is updated using

ν
(t+1)
ijm = ν

(t)
ijm + ρ

(
θ
(t+1)
im − θ

(t+1)
jm −∆

(t+1)
ijm

)
. (3.9)

Define the primal and dual residuals as Rp(Θ,∆) = EΘ − ∆ and R
(t)
d =

ρE⊤(∆(t+1) − ∆(t)), respectively. Boyd et al. (2011) suggest that a reasonable

termination criterion for the ADMM algorithm is ∥Rp(Θ
(t),∆(t))∥F ≤ κpri and

∥R(t)
d ∥F ≤ κdual, with

κpri =

√
n(n− 1)

2
κabs + κrel max(∥EΘ(t)∥F , ∥∆(t)∥F ),

κdual =
√
nκabs + κrel∥E⊤ν(t)∥F ,

(3.10)

where ∥ · ∥F is the Frobenius norm, κabs is an absolute tolerance, κrel is a relative

tolerance, and both of the latter are small positive numbers. The detailed

procedure for estimating β, θ[·1], and θ[·2] is summarized in Algorithm S1 in

the Supplementary Material.

We now analyze the computational complexity of Algorithm S1. Because

E⊤E is computed in advance with complexity O(n4), we do not need to compute

it again in the loops. Updating θ
(t+1)
[·1] has complexity O(p3+n3). When updating

β(t+1), note that (X⊤W (t)X)−1X⊤W (t) has been computed when updating

θ
(t+1)
[·1] , and thus need not be computed again. As a result, the complexity of

updating β(t+1) is O(pn). The computational complexity of updating θ
(t+1)
[·2]

is O((n + p)NC), where NC is the iterative number of our coordinate descent

method. Finally, updating ∆(t+1) and ν(t+1) has complexity O(n2). Therefore,

for each loop of the ADMM method, the overall computational complexity is

O(p3 + n3 + (n+ p)NC). Next, we compare the computational complexity of our

method with that of Ma and Huang (2017), who do not consider heterogeneity

among precisions. First, many operations for updating the mean vector in Ma and

Huang (2017) can be computed in advance, rather than in each loop. For example,

in (3.2), we need to compute (X⊤W (t)X)−1X⊤W (t) in each loop, whereas in

the updating equation for means in Ma and Huang (2017), (X⊤X)−1X⊤ can be

computed in advance. Second, there is no need to update precisions in Ma and

Huang (2017). Third, the sizes of ∆(t+1) and ν(t+1) in Ma and Huang (2017)

are half of those in our method. As a result, in Ma and Huang (2017), the

computational complexity for operations in advance is O(p3 + n4), and that for

operations in each loop is O(pn + n3). When p ≤ n, for operations in advance,

the computational complexity of both methods is O(n4); for each loop of the

ADMM algorithm, the computational complexity is O(n3+nNC) in our method,

and O(n3) in the method of Ma and Huang (2017). Therefore, when p ≤ n, the

increase in computational complexity of our method is due mainly to updating

precisions.



2122 FAN AND YIN

The convergence of the ADMM in nonconvex optimization has been studied

extensively, for example, by Wang, Yin and Zeng (2019). However, to the best of

our knowledge, existing conclusions in the literature cannot be applied directly

to establish the convergence of Algorithm S1. Nevertheless, we can still prove

it following similar steps to those in Wang, Yin and Zeng (2019), with some

modifications. We first present two lemmas, and then show the convergence

property of our ADMM algorithm.

Lemma 1. Assume the penalty function p(·, λ, γ) is weakly convex with modulus

Cp and its subdifferential is bounded, that is, |∂p(·, λ, γ)| ≤ Cs, for some constant

Cs. If ρ > Cp, it holds that the augmented Lagrangian H(β(t),Θ(t),∆(t),ν(t)) is

lower bounded.

Lemma 2. Under the assumption in Lemma 1, it holds that

H(β(t),Θ(t),∆(t),ν(t))−H(β(t−1),Θ(t−1),∆(t−1),ν(t−1))

≤ 4ρ−1n(n− 1)C2
s −

ρ

2
∥EΘ(t) −EΘ(t−1)∥2F − ρ− Cp

2
∥∆(t) −∆(t−1)∥2F .

Theorem 1. Under the assumption in Lemma 1, if ρ > Cp, the following hold:

(1) the primal residual Rp(Θ
(t),∆(t)) and the dual residual R

(t)
d of Algorithm S1

satisfy limt→∞ ∥Rp(Θ
(t),∆(t))∥F = 0 and limt→∞ ∥R(t)

d ∥F = 0, respectively.

(2) the sequence {β(t),Θ(t),∆(t),ν(t)} has at least a limit point {β∗,Θ∗,∆∗,ν∗},
and any limit point is a stationary point.

Both the hard and SCAD penalties are weakly convex, and their subdiffer-

entials are bounded by constants. Lemma 1 shows that, for sufficiently large ρ,

the augmented Lagrangian is lower bounded, and Lemma 2 shows that its change

between successive iterations is upper bounded. Then, Theorem 1 presents that

the ADMM algorithm achieves primal feasibility and dual feasibility. Moreover,

it converges to an optimal solution, which may be a local minimum. The proof

is given in the Supplementary Material.

Given the tuning parameters, the pairwise fused penalty may result in ∆ijm =

0 for some i and j. As discussed in Section 2, we assume that ϵi and ϵj are from

the same component if ∆ij1 = ∆ij2 = 0. Therefore, we can recover the group

structure of the errors using the shrinkage procedure. Denote the estimates as

β̂, θ̂[·1], and θ̂[·2]. As a result, we have K̂1 estimated distinct values for the

mean, which divide the data into groups Ĝ(1)
1 , . . . , Ĝ(1)

K̂1
. The estimated mean for

the kth group is µ̂k = |Ĝ(1)
k |−1

∑
i∈Ĝ(1)

k
θ̂i1, where | · | is the cardinality of a set.

Similarly, there are K̂2 estimated distinct values for the precision, which divide

the data into groups Ĝ(2)
1 , . . . , Ĝ(2)

K̂2
. The estimated precision for the k′th group is

τ̂k′ = |Ĝ(2)
k′ |−1

∑
i∈Ĝ(2)

k′
θ̂i2.
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4. Asymptotic Properties

4.1. Heterogeneous model

We first study the theoretical properties of the proposed estimator under a

heterogeneous model, where at least two components exist in the mixture, that

is, max(K1,K2) ≥ 2. We discuss the homogeneous setting in the next section.

We show that under some regularity conditions, there exists a local minimizer

of the objective function converging to the true parameter. Specifically, we first

prove that the oracle estimator converges to the true parameter, and then show

that the oracle estimator is a local minimizer of the objective function, with

probability approaching one. Let β0, θ0
[·1], and θ0

[·2] denote the true parameters.

For m = 1, 2, suppose there are Km distinct values in θ0
[·m], which divide {ϵi}ni=1

into Km groups, G(m)
1 , . . . ,G(m)

Km
. Let IG(m) be the subspace of Rn, defined as

IG(m) = {θ[·m] ∈ Rn : θim = θjm for any i, j ∈ G(m)
k , 1 ≤ k ≤ Km}. Let Z(m) =

(z
(m)
ik ) be the n×Km matrix with z

(m)
ik = 1 for i ∈ G(m)

k , and z
(m)
ik = 0 otherwise.

In addition, let µ0 = (µ0
1, . . . , µ

0
K1

)⊤ and τ 0 = (τ 01 , . . . , τ
0
K2

)⊤, where µ0
k is the

mean for group G(1)
k and τ 0k′ is the precision for group G(2)

k′ . When the underlying

group structures G(m)
1 , . . . ,G(m)

Km
, for m = 1, 2, are known, the oracle estimators

for β, θ[·1], and θ[·2] are defined as the maximizers of the log-likelihood function

((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) = argmax
θ[·1]∈IG(1) ,θ[·2]∈IG(2)

n∑
i=1

log ϕ(yi − β⊤xi; θi1, θi2). (4.1)

Moreover, define the oracle estimators for β, µ, and τ as

((β̂or)⊤, (µ̂or)⊤, (τ̂ or)⊤)

= argmaxn−1
n∑

i=1

K2∑
k′=1

z
(2)
ik′

{
log τk′ − τk′(yi − β⊤xi − µ⊤z

(1)
[i·] )

2
}
.

For notational simplicity, we define for any vector u = (u1, . . . , us)
⊤ ∈ Rs,

∥u∥∞ = max1≤l≤s |ul|. For any an, bn ∈ R+, we denote an ≫ bn, if a−1
n bn =

o(1). Let p′(|t|, λ, γ) be the derivative of p(|t|, λ, γ) with respect to |t|, that is,

p′(|t|, λ, γ) = ∂p(|t|, λ, γ)/∂|t|. Let |G(m)
min | = min(|G(m)

1 |, . . . , |G(m)
Km

|), for m = 1, 2.

To establish the asymptotic properties for the estimators, the following regular

conditions are required:

(C1) There exist constants 0 < M, c1 < +∞ such that ∥x∥∞ ≤M for any x ∈ X ,

and the smallest eigenvalues of (X,Z(1))⊤(X,Z(1)) are bounded by c1|G(1)
min|.

(C2) There exist constants 0 < τmin ≤ τmax < +∞ such that τmin ≤ τ 0k′ ≤ τmax,

for k′ = 1, . . . ,K2.

(C3) The mixing probability πkk′ that a subject belongs to G(1)
k ∩ G(2)

k′ satisfies

mink,k′ πkk′ = O(maxk,k′ πkk′).
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(C4) The penalty function p(|t|, λ, γ) is symmetric with respect to t, and nonde-

creasing and concave in terms of |t|. There exists some constant 0 < a < +∞
such that p(|t|, λ, γ) is a constant for all t with |t| ≥ aλ, and p(0, λ, γ) = 0.

The derivative p′(|t|, λ, γ) exists and is continuous, except for a finite number

of t, and λ−1p′(|t|, λ, γ) = 1 as |t| → 0.

By definition, the smallest eigenvalue of (Z(1))⊤Z(1) is |G(1)
min|, and it is reasonable

to assume that the smallest eigenvalue of X⊤X is bounded by Cn, for some

constant 0 < C < +∞. Therefore, Condition (C1) assumes the smallest

eigenvalue of (X,Z(1))⊤(X,Z(1)) is bounded by c1|G(1)
min|, similarly to Ma and

Huang (2017). Condition (C2) assumes that the true value of the precision is

bounded, which is a common assumption in GMMs (Hao et al. (2018); Ren et al.

(2022)). Condition (C3) requires that the groups in the mixture model are not

too imbalanced, similarly to Ren et al. (2022). Condition (C4) is widely adopted

in high-dimensional settings (Ma and Huang (2017)), and is satisfied by the hard

and SCAD penalties.

Theorem 2. Under Conditions (C1) to (C3), assuming max{K1,K2}
√
p+K1K2 =

o(
√
n(log n)−1), it holds that

∥((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤)− ((β0)⊤, (θ0
[·1])

⊤, (θ0
[·2])

⊤)∥∞

= Op

max(K1,K2)

√
(p+K1)K2

2 log n

n
+max(K1,K2)

√
K2 log n

n

 .

Theorem 2 states that the oracle estimators of β, θ[·1], and θ[·2] converge

to the true parameters; the proof is given in the Supplementary Material. It

allows p, K1, and K2 to diverge with n, and requires max(K1,K2)
√
p+K1K2 =

o(
√
n(log n)−1). The result in Ma and Huang (2017) can be viewed as a special

case of Theorem 2 by assuming K2 = 1 (the negative log-likelihood reduces

to the mean squared error) or that the heterogeneity precisions are already

known. In these cases, we need only estimate the coefficients and the means.

The required condition is then K1

√
p+K1 = o(

√
n(log n)−1), and hence K1 =

o(n1/3(log n)−1/3), which is the same as in Ma and Huang (2017). The bound in

Theorem 2 is then K1

√
(p+K1)n−1 log n, which is also the same as in Ma and

Huang (2017, Remark 4). Moreover, Hao et al. (2018) consider high-dimensional

Gaussian graphical mixture models, which assume that the mean and precision

vectors have the same group structure and do not incorporate covariates. If we set

K1 = K2 and p = 0, the bound in Theorem 2 is
√
K5

1n
−1 log n+

√
K3

1n
−1 log n,

which is the same as in Hao et al. (2018) when applied to a one-dimensional GMM.

In particular, when p, K1, and K2 are fixed, the error bound is
√
n−1 log n.

As suggested by Hao et al. (2018), the first term of the bound in Theorem

2 represents the mean error, and the second term is the precision error. The

structure of the means affects the estimation of the precisions, and vice versa.
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Specifically, givenK1, the mean error is affected by the value ofK2, and givenK2,

the value of K1 also affects the precision error. Theorem 2 reveals the advantage

of separately investigating the structures of the means and the precisions. We

consider two special cases, (K1 = K,K2 = 1) and (K1 = 1,K2 = K). The

error bound is
√
K2(p+K)n−1 log n +

√
K2n−1 log n in the first case, and√

K4(p+ 1)n−1 log n +
√
K3n−1 log n for the latter. If we assume the mean

and precision share the same group structure, as in the literature, that is,

K1 = K2 = K, then the error bound is
√
K4(p+K)n−1 log n+

√
K3n−1 log n for

both cases. As expected, identifying the structure of the parameters separately

leads to estimates with smaller estimation errors. In addition, the estimation

problem with the same mean but heterogeneous precisions (K1 = 1,K2 = K)

is more difficult than that with heterogeneous means and the same precision

(K1 = K,K2 = 1).

Remark 1. Let X̃ = (X,Z(1)). By the first-order optimality condition, we have

((β̂or)⊤, (µ̂or)⊤)⊤ = (X̃⊤diag(θ̂or
[·2])X̃)−1(X̃⊤diag(θ̂or

[·2])y), which can be viewed as

a weighted least squares estimator for a heteroskedastic linear regression. Because

θ0
[·2] = Z(2)τ 0 is a smooth function and θ̂or

[·2] is a consistent estimator of θ0
[·2], by

Carroll (1982), we have that

((β̂or)⊤, (µ̂or)⊤)⊤ − ((β0)⊤, (µ0)⊤)⊤
d→ N

(
0,

(
X̃⊤diag(θ0

[·2])X̃
)−1)

,

where
d→ represents convergence in distribution. Therefore, as claimed in a large

amount of literature (e.g., Shao (1989)), ((β̂or)⊤, (µ̂or)⊤)⊤ is more efficient than

the ordinary least squares estimator in Ma and Huang (2017) when K2 ≥ 2.

Assuming max(K1,K2) ≥ 2, let bn = min(mini ̸=j |θ0i1− θ0j1|,mini̸=j |θ0i2− θ0j2|)
be the minimal difference of the means or precisions between two groups. For

simplicity, let ψn = max(K1,K2)
√
n−1 log n{

√
(p+K1)K2

2 +
√
K2}.

Theorem 3. Under Conditions (C1) to (C4), and assuming that the con-

ditions in Theorem 2 hold, max(K1,K2) ≥ 2, bn ≥ amax(λ1, λ2), and

min(λ1, λ2) ≫ ψn, with a defined in Condition (C4), there exists a local minimizer

(β̂(λ,γ), θ̂
(λ,γ)
[·1] , θ̂

(λ,γ)
[·2] ) of the objective function Q(β,Θ), such that

P
{
((β̂(λ,γ))⊤, (θ̂

(λ,γ)
[·1] )⊤, (θ̂

(λ,γ)
[·2] )⊤) = ((β̂or)⊤, (θ̂or

[·1])
⊤, (θ̂or

[·2])
⊤)

}
→ 1

as n→ ∞.

Theorem 3 shows that the oracle estimator ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) is a local

minimizer of the objective function Q(β,Θ) with probability approaching one as

n→ ∞; the proof is given in the Supplementary Material. Combining Theorems

2 and 3, we conclude that there exists a local minimizer of the objective function

converging to the true parameter.
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4.2. Homogeneous model

When the true model is homogeneous, that is, K1 = K2 = 1, we show that

the minimizer of the penalized objective function Q(β,Θ) also has the oracle

property. For m = 1, 2, let Im be the subspace of Rn, defined as Im = {θ[·m] ∈
Rn : θ1m = · · · = θnm}. The oracle estimators under the homogeneous model

are defined as ((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤) = argmaxθ[·1]∈I1,θ[·2]∈I2

∑n
i=1 log ϕ(yi −

β⊤xi; θi1, θi2).

Theorem 4. Under Conditions (C1) and (C4), assuming p = o(n(log n)−1), the

following hold:

(1) ∥((β̂or)⊤, (θ̂or
[·1])

⊤, (θ̂or
[·2])

⊤)− ((β0)⊤, (θ0
[·1])

⊤, (θ0
[·2])

⊤)∥∞
= Op

(√
(p+ 1)n−1 log n+

√
n−1 log n

)
.

(2) if λ ≫
√
(p+ 1)n−1 log n +

√
n−1 log n, there exists a local minimizer

(β̂(λ,γ), θ̂
(λ,γ)
[·1] , θ̂

(λ,γ)
[·2] ) of Q(β,Θ) such that

P
{
((β̂(λ,γ))⊤, (θ̂

(λ,γ)
[·1] )⊤, (θ̂

(λ,γ)
[·2] )⊤) = ((β̂or)⊤, (θ̂or

[·1])
⊤, (θ̂or

[·2])
⊤)

}
→ 1

as n→ ∞.

Theorem 4 shows that under a homogeneous model, there exists a local

minimizer ((β̂(λ,γ))⊤, (θ̂
(λ,γ)
[·1] )⊤, (θ̂

(λ,γ)
[·2] )⊤) converging to ((β0)⊤, (θ0

[·1])
⊤, (θ0

[·2])
⊤);

the proof is given in the Supplementary Material.

5. Simulations

We conduct extensive simulations to demonstrate the numerical performance

of the proposed method for GMMs using the hard and SCAD penalties (abbrevi-

ated as Hard-GMM and SCAD-GMM, respectively), and compare the results with

those of several existing methods. Specifically, we consider the following methods:

(i) the method proposed by Ma and Huang (2017), which conducts subgroup

analyses in a linear regression with different means using a concave fusion penalty

(SubAna); (ii) the EM algorithm for finite mixtures in a linear regression, with

the Gaussian error terms implemented using the R package “flexmix” (Grün and

Leisch (2008)), in which regression coefficients are restricted to be equal over all

components (FlexMix); and (iii) the method using model selection for GMMs

without covariates proposed by Huang, Peng and Zhang (2017), which penalizes

mixing probabilities, and implements a modified EM algorithm for the estimation

(MS-GMM). As suggested by the authors, we use the SCAD penalty for SubAna

and MS-GMM.

Based on preliminary experiments, we fix ρ = 1.2 for the hard penalty and

ρ = 0.5 for the SCAD penalty. To apply the proposed method, one needs to

select the tuning parameters λ1, λ2 (for both penalties) and γ1, γ2 (for the SCAD
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penalty). Simulation results show that the numerical performance is not sensitive

to the selection of γ1, γ2, and we set γ1 = γ2 = 3.7, following Fan and Li (2001).

Although information criteria such as the AIC and BIC have been proposed for

parameter tuning in the context of clustering, the model complexity penalty in

these criteria is often ad hoc. Motivated by the work of She (2010) and She and

Tran (2019), we set aside a separate validation data set to calculate the validation

error (negative log-likelihood) and select the tuning parameters using the one

standard error rule, which lead to the simplest model and a validation error that

falls within one standard error of the minimum. The size of the validation set is

fixed as 10 times that of the training set in our analysis. Moreover, we adopt an

alternative search strategy to tune the parameters, which has been shown to be

efficient (She (2009)). Specifically, we first search along the λ2-path with λ1 fixed

at the minimum, median, and maximum in its candidate set. Then, we select

the optimal value, denoted by λ
(opt)
2 . Then, we search along the λ1-path with λ2

fixed at λ
(opt)
2 . Accordingly, we search along four one-dimensional paths in total,

including three λ1-paths and one λ2-path. Although this strategy does not cover

the full parameter space, it is more computationally efficient than a grid search,

and leads to satisfactory estimates.

Owing to the critical role of the initial values in Algorithm S1, we borrow

ideas from prior works (Ma et al. (2020); Hu et al. (2021); Wang, Zhu and Zhang

(2023)) and consider the optimization problem with a ridge fusion penalty,

min

{
n∑

i=1

(yi − β⊤xi − θi1)
2 +

2∑
m=1

∑
1≤i<j≤n

λ̃m(θim − θjm)
2

}
. (5.1)

The parameters λ̃1 and λ̃2 are selected from the set {10−1, 10−2, . . . , 10−6}
using the same procedure described above. The objective function in (5.1)

is differentiable, and thus we apply the limited-memory Broyden–Fletcher–

Goldfarb–Shanno algorithm for bound constrained optimization to solve it, which

is computationally fast. Denote the solutions as β(rid), θ
(rid)
[·1] , and θ

(rid)
[·2] . Then, for

m = 1, 2, we divide the subjects into ⌊n1/2⌋ subgroups by ranking θ
(rid)
[·m] , where

⌊n1/2⌋ represents the maximum integer that does not exceed n1/2. Denote these

subgroups as G̃(m)
1 , . . . , G̃(m)

⌊n1/2⌋. Lastly, we set the initial estimates β(0) = β(rid) and

θ
(0)
[·m] = (θ

(0)
1m, . . . , θ

(0)
nm)

⊤, where θ
(0)
im is equal to the median of {θ(rid)jm : j ∈ G̃(m)

k },
with G̃(m)

k the subgroup to which the ith subject belongs, for k = 1, . . . , ⌊n1/2⌋.
Previous studies (Ma et al. (2020); Hu et al. (2021); Wang, Zhu and Zhang

(2023)) have verified the validity of such an initialization procedure in various

scenarios. As indicated by the following numerical studies, it can also provide a

good start point for our ADMM algorithm.

To evaluate the performance of our method, we consider the identification of

K1 and K2, as well as the estimation of β, θ[·1], and θ[·2]. Note that SubAna does
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not estimate the precision parameters, thus there is no result for K2 and θ[·2] for

this method. To apply MS-GMM in our regression setting, we first obtain the

ordinary least squares (OLS) estimator β̂ols, and then implement MS-GMM on

the pseudo errors yi − (β̂ols)⊤xi. In addition, FlexMix and MS-GMM assume

the means and precisions have the same structure, thus the estimated values

of K1 and K2 are always the same. We investigate two scenarios of mixture

models. Scenario 1 assumes a scale GMM with two components, which have the

same mean, but different precisions. Scenario 2 adopts a much more complicated

mixture model, with six distinct means and three distinct precisions. Set κabs = 0

and κrel = 0.01 in (3.10) for the termination criterion. Under each scenario, we

conduct 100 replications.

Scenario 1. For i = 1, . . . , n, ϵi is from a Gaussian distribution with density

ϕ(ϵi; θi1, θi2), where θi1 ≡ 1 and θi2 is generated from the distribution P (θi2 =

(0.2)−2) = 1/3 and P (θi2 = (0.9)−2) = 2/3. Let xi = (xi1, . . . , xi5)
⊤, where xij

are independent and identically generated from the standard normal distribution.

We simulate responses as yi = β⊤xi + ϵi, with β = (3, 2, 0.5,−2,−3)⊤, and set

n = 200.

We set the maximum number of iterations in Algorithm S1 to 200. For

the hard penalty, the candidate sets for λ1 and λ2 are {0.5, 0.6, . . . , 1.5} and

{5, 5.2, . . . , 7.2}, respectively; for the SCAD penalty, they are {0.05, 0.06, . . . , 0.15}
and {1, 1.2, . . . , 3.2}, respectively. Figure 1 shows the solution paths of θ̂[·1] and

θ̂[·2] by SCAD-GMM for one simulated data set. The values of θ̂[·1] and θ̂[·2] show

a similar pattern from divergence to convergence along the path. When λ1 is

small, the estimated means tend to be different, which should be close to the

residuals yi − β̂⊤xi. As λ1 increases, the estimated means converge to one point

around the true value, one. The trend for the estimated precisions is similar.

When λ2 is small, there are more than two distinct values for the estimated

precisions. They converge to the true values (0.2)−2 and (0.9)−2 as λ2 increases,

and finally converge to one point if λ2 continues to increase.

Table 1 reports the average value and standard deviation (given as a

subscript) of the bias and the square root of the mean squared error (RMSE) for

the estimated values of β over 100 replications. For a vector u = (u1, . . . , us)
⊤

and its estimator û = (û1, . . . , ûs)
⊤, the bias of ûj is defined as |ûj − uj|,

for j = 1, . . . , s, and the RMSE of û is ∥û − u∥2/
√
s. We consider the four

methods Hard-GMM, SCAD-GMM, SubAna, and FlexMix. The oracle and OLS

estimators are also presented as references. Table 1 shows that Hard-GMM and

SCAD-GMM perform similarly and deliver the results closest to those of the

oracle estimators. The other two competitors, SubAna and FlexMix, are inferior

to our method in terms of estimating β.

Table 2 shows the median of K̂m, the proportion of K̂m equal to the true

value, and the RMSEs of θ̂[·1] and θ̂
−1/2
[·2] (i.e., standard deviation), as well as
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(a) θ̂[·1] against λ1, with λ2 fixed at 1.8 (b) θ̂[·2] against λ2, with λ1 fixed at 0.1

Figure 1. Solution paths for estimated values against tuning parameters by SCAD-GMM
for one simulated data set under Scenario 1, where the dashed lines correspond to the
optimal tuning parameters.

the computation time to train the model once on the whole training set with

the specified tuning parameters. The results show that Hard-GMM and SCAD-

GMM always correctly identify the numbers of components, and perform best in

terms of estimating the parameters. SubAna also correctly identifies the number

of components for the means, and ranks second in terms of estimating θ̂[·1]. In

comparison, the proposed method delivers more accurate and robust estimators

than those of SubAna, because we consider heterogeneity among precisions. In

addition, our method shows great advantages over the EM-based algorithms,

FlexMix and MS-GMM, in terms of both determining the numbers of components

and estimating the parameters. We next focus on the computation time, where

MS-GMM runs fastest, followed by FlexMix, SubAna, Hard-GMM, and SCAD-

GMM. In general, the EM-based algorithms run much faster than the ADMM-

based algorithms. Compared to SubAna, our method spends twice as much

time in estimating precisions. We further compare the performance of these

methods in terms of clustering; detailed results and discussions are provided in

the Supplementary Material, where Table S1 shows that our method performs

best.

We now check the convergence of the ADMM algorithm, and present the

results of Hard-GMM for illustration purposes. In Figure 2, we show the

average curves over 20 runs of the primal relative residual ∥Rp(Θ
(t),∆(t))∥F ×

(max{∥EΘ(t)∥F ,∥∆(t)∥F})−1 and the dual relative residual ∥R(t)
d ∥F (∥E⊤ν(t)∥F )−1

against the number of iterations. The results show that the ADMM algorithm

converges steadily in this scenario, and the termination criterion is satisfied

within 50 iterations, on average. The primal relative residual gets close to zero
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Table 1. The average value and standard deviation of the bias and the square root of
the mean squared error (RMSE) of β̂ over 100 replications.

Bias(β̂1) Bias(β̂2) Bias(β̂3) Bias(β̂4) Bias(β̂5) RMSE(β̂)

Scenario 1

Oracle 0.0210.017 0.0210.015 0.0200.016 0.0200.016 0.0200.014 0.0240.008
Hard-GMM 0.0340.027 0.0310.022 0.0300.026 0.0290.022 0.0340.028 0.0380.014
SCAD-GMM 0.0340.027 0.0310.021 0.0300.026 0.0300.023 0.0330.027 0.0380.014
SubAna 0.0450.034 0.0440.031 0.0450.030 0.0430.034 0.0430.036 0.0520.018
FlexMix 0.0420.032 0.0390.031 0.0440.033 0.0470.034 0.0430.036 0.0510.018
OLS 0.0450.034 0.0440.031 0.0450.030 0.0430.034 0.0430.036 0.0520.018

Scenario 2

Oracle 0.0150.011 0.0140.010 0.0140.010 0.0160.011 0.0150.010 0.0170.005
Hard-GMM 0.1100.257 0.0730.226 0.1160.207 0.0850.208 0.0920.217 0.1110.224
SCAD-GMM 0.1120.271 0.0770.242 0.1150.201 0.0800.200 0.0910.212 0.1100.225
SubAna 0.2640.382 0.2090.282 0.2380.356 0.2410.340 0.2290.359 0.2800.311
FlexMix 0.3250.412 0.3100.404 0.3360.513 0.3990.539 0.3540.387 0.4200.388
OLS 0.6740.482 0.5700.421 0.6280.481 0.6040.472 0.6460.472 0.7430.234

Oracle: the oracle estimators defined in (4.1); Hard-GMM: the proposed method under the
hard penalty; SCAD-GMM: the proposed method under the SCAD penalty; SubAna: subgroup
analysis proposed by Ma and Huang (2017); FlexMix: the EM algorithm for finite mixtures
of linear regression developed by Grün and Leisch (2008); OLS: the ordinary least squares
estimators.

after about 10 iterations, whereas the dual relative residual decreases relatively

slowly. We also show the relative residuals after 200 iterations in Figure S1 in the

Supplementary Material, which verify that the dual relative residual continues to

decrease, albeit slowly, as the number of iterations increases. Figure 2 also shows

the average curves of the objective value Q(β(t),Θ(t)), which converges fast with

iterations. Furthermore, the RMSEs of β(t), θ
(t)
[·1], and (θ

(t)
[·2])

−1/2 in Figure 2 show

that the ADMM algorithm converges to a stationary point after a number of

iterations. We study the convergence of the RMSEs further for parameters under

different sample sizes; see Figure 3, which shows that the obtained solutions

converge faster, and eventually converge to smaller RMSEs with larger sample

sizes.

We finally investigate the sensitivity of SCAD-GMM to γ1 and γ2. We set

γ1 = γ2 = γ to 3.1, 3.3, . . . , 4.9. Figure 4 shows the RMSEs of the parameters

against the value of γ over 100 repetitions, indicating that the estimation of the

parameters is not sensitive to the value of γ. Figure S2 in the Supplementary

Material shows the primal and dual relative residuals for γ = 3.1, 3.7, 4.9. The

ADMM algorithm converges for all three values of γ, and the convergence rate is

slower for γ = 4.9.
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Table 2. The median (Med) of K̂1 and K̂2, the proportion (Prop) of K̂1 and K̂2 equal to
the true values, the average value and standard deviation of the square root of the mean

squared error (RMSE) of θ̂[·1] and θ̂
−1/2
[·2] , and the average computation time in seconds

over 100 repetitions.

K̂1 K̂2 RMSE
Time

Med Prop Med Prop θ̂[·1] (θ̂[·2])
−1/2

Scenario 1

Oracle – – – – 0.0190.014 0.0440.076 –

Hard-GMM 1 1 2 1 0.0300.023 0.2120.082 7.61

SCAD-GMM 1 1 2 1 0.0300.023 0.2190.080 8.22

SubAna 1 1 – – 0.0390.032 – 3.83

FlexMix 2 0.76 2 0.76 0.0640.059 0.2770.081 1.10

MS-GMM 2 0.74 2 0.74 0.1620.206 0.2590.126 0.08

Scenario 2

Oracle – – – – 0.0750.027 0.0300.015 –

Hard-GMM 6 0.69 3 0.95 0.6210.779 0.3860.184 38.98

SCAD-GMM 6 0.69 3 0.93 0.6560.788 0.3830.171 40.78

SubAna 6 0.68 – – 1.1471.150 – 24.26

FlexMix 6 0.54 6 0.54 2.4482.103 2.3712.056 1.55

MS-GMM 6 0.57 6 0.57 1.9982.063 2.2332.023 0.11

Oracle: the oracle estimators defined in (4.1); Hard-GMM: the proposed method under the
hard penalty; SCAD-GMM: the proposed method under the SCAD penalty; SubAna: subgroup
analysis proposed by Ma and Huang (2017); FlexMix: the EM algorithm for finite mixtures of
linear regression developed by Grün and Leisch (2008); MS-GMM: model selection for GMMs

proposed by Huang, Peng and Zhang (2017), applied to yi − (β̂ols)⊤xi.

Scenario 2. We simulate data from a more complicated mixture model. For

i = 1, . . . , n, ϵi is from a Gaussian distribution with density ϕ(ϵi; θi1, θi2), where

θi1 is generated from {−20,−12,−4, 4, 12, 20} with equal probabilities and

θi2 =


(0.2)−2, if θi1 = −20 or − 12,

(0.4)−2, if θi1 = −4,

(0.7)−2, otherwise.

Let xi = (xi1, . . . , xi5)
⊤, where xij are independent and identically generated

from the standard normal distribution. We simulate responses as yi = β⊤xi+ ϵi,

with β = (3, 2, 0.5,−2,−3)⊤, and set n = 300.

We set the maximum number of iterations in Algorithm S1 to 500 for this

complicated scenario. The estimated results are shown in Tables 1 and 2. In this

scenario, the proposed method demonstrates significant advantages in terms of

structure identification and parameter estimation. Although SubAna performs

similarly to our method in terms of identifying the number of components for the
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Figure 2. Average curves for the primal and dual relative residuals, the objective value,
and the RMSEs of the estimated parameters against the number of iterations by Hard-
GMM over 20 repetitions under Scenario 1.

Figure 3. Average curves for the RMSEs of the estimated parameters against the
number of iterations with different sample sizes by Hard-GMM over 20 repetitions under
Scenario 1.
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Figure 4. Average curves for the RMSEs of the estimated parameters against the value
of γ by SCAD-GMM over 100 repetitions under Scenario 1.

means, it does not consider heterogeneity among precisions. On the other hand,

our method achieves high accuracy in terms of identifying the structure of the

precisions. As a result, the proposed method delivers more accurate and robust

estimations of β and θ[·1] than those of SubAna. In addition, MS-GMM performs

poorly in this scenario, because it is applied to the pseudo residuals yi−(β̂ols)⊤xi,

where the OLS estimator is biased because of heterogeneity. Although FlexMix

delivers reasonable results in terms of estimating β, it also performs poorly in

terms of estimating θ[·1] and θ[·2]. One possible reason is that the EM algorithm

is sensitive to the initial points in this complicated scenario. Therefore, we adopt

the suggested strategy of Grün and Leisch (2008) to first make several runs

of the stochastic EM algorithm with different random initializations, and then

start the EM using the best solution obtained. Nevertheless, it still performs

unsatisfactorily. For computation, the ADMM-based methods, Hard-GMM,

SCAD-GMM, and SubAna, run much slower than MS-GMM and FlexMix for

this larger data set, because the latter two are less affected by the sample size.

The improvement in terms of estimation accuracy of our method is achieved at

the cost of computation. We also present clustering results in Table S1 in the

Supplementary Material, which show the superiority of our method. To check

the convergence of the ADMM algorithm, Figure 5 shows the average results

for SCAD-GMM over 20 runs. As shown, although the optimization problem

becomes difficult in this complicated scenario, the relative residuals still satisfy

the termination criterion, and the obtained solutions converge to stationary points

within 500 iterations, on average.

6. Real-Data Example

For illustration, we apply the proposed method to Cleveland Heart Disease

data (https://archive.ics.uci.edu/ml/datasets/Heart+Disease) from the

UCI repository. The selection of the tuning parameters λ1 and λ2 is the same as

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
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Figure 5. Average curves for the primal and dual relative residuals, the objective value,
and the RMSEs of the estimated parameters against the number of iterations by SCAD-
GMM over 20 repetitions under Scenario 2.

in Section 5, except that the validation error is calculated using five-fold cross-

validation.

The data contain 303 individuals and 14 variables, where the first 13 variables

are clinical measurements, and the last one indicates whether an individual

suffers from heart disease. After deleting observations with missing values, there

remain 297 observations. The variable “thalach”, which represents the maximum

heart rate achieved, is related to cardiac mortality (Lauer et al. (1999)). Our

analysis aims to identify group structures when predicting “thalach.” We are

interested in six covariates: age, sex, resting blood pressure, serum cholesterol,

fasting blood sugar, and a resting electrocardiographic (ECG) result, which

is a categorical variable with three levels (0=normal, 1=having ST–T wave

abnormality, 2=showing probable or definite left ventricular hypertrophy by

Estes’ criteria), and thus is converted to two dummy variables. We use six

additional variables to check heart problems, namely chest pain type, exercise

induced angina, ST depression induced by exercise relative to rest, slope of the

peak exercise ST segment, number of major vessels colored by fluoroscopy, and

heart status. Similar to the procedure in Ma and Huang (2017), we first regress

“thalach” on these six additional variables using a linear model, and then use the

fitted value of “thalach” as the pseudo response variable, denoted by y.

We regress y on the original set of seven covariates using the ordinary least

squares method. Figure 6 shows the KDE of yi − (β̂ols)⊤xi with the bandwidth
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Figure 6. The kernel density estimate of yi − (β̂ols)⊤xi’s in the Cleveland Heart Disease
data.

chosen using the method of Sheather and Jones (1991), which exhibits multiple

modes in the distribution, and thus indicates the existence of heterogeneity. We

apply Hard-GMM, SCAD-GMM, SubAna, and FlexMix to these data. The

estimated values of K1, K2, µ, and (τ )−1/2, where the latter two are the distinct

values of the means and the standard deviations, respectively, are presented

in Table 3. We also show the sizes of the subgroups of means and precisions,

denoted by |Ĝ(1)| and |Ĝ(2)|, respectively. Our methods Hard-GMM and SCAD-

GMM identify two subgroups for both the means and the precisions. Table

4 shows the estimates of β by various methods. We also report the standard

errors and p-values of the significance tests, obtained by refitting a weighted

linear model, incorporating the indicator vector z
(1)
[i·] as covariates, and using the

estimated precisions as weights. The result demonstrates that by recovering the

group structure of the data, we can identify variables that do have effects on

the response. For example, ECG (hypertrophy) is insignificant under the OLS

method, but becomes significant under the heterogeneous methods. Moreover,

the adjusted R-square of the OLS method is 0.103, indicating poor model fitting.

After considering heterogeneity, the adjusted R-square is 0.782, 0.778, 0.745,

and 0.746 for Hard-GMM, SCAD-GMM, SubAna, and FlexMix, respectively.

By taking into account the group structure, the model fitting can be greatly

improved, and the proposed method performs best.

7. Discussion

We propose a penalized approach enabling Gaussian mixture linear models

to handle heterogeneity. The concave hard and SCAD penalties are adopted

to shrink the pairwise differences of the means and precisions, respectively.

By increasing the value of the tuning parameter for the penalty term, our

method automatically clusters and merges similar instances. The theoretical

properties show that under mild conditions, there exists a local minimizer of
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Table 3. Estimated values of K1, K2, µ, and (τ )−1/2, and the sizes of the subgroups in

means and precisions, denoted by |Ĝ(1)| and |Ĝ(2)|, respectively, for the Cleveland Heart
Disease data.

K̂1 K̂2 µ̂ |Ĝ(1)| (τ̂ )−1/2 |Ĝ(2)|
Hard-GMM 2 2 (193.21, 167.69) (183, 114) (7.65, 4.22) (223, 74)

SCAD-GMM 2 2 (198.56, 174.60) (183, 114) (8.80, 4.34) (150, 147)

SubAna 2 – (193.26, 177.97) (183, 114) – –

FlexMix 2 2 (183.36, 164.84) (151, 146) (8.75, 5.92) (151, 146)

Table 4. Estimated values (Est) of the coefficients with the standard errors (S.E.) and
p-values (p) for the Cleveland Heart Disease data.

Blood ECG ECG
Model Age Sex Press. Cholesterol Sugar (wave) (hypertrophy)

OLS

Est -0.333 -4.617 -0.026 -0.008 -0.094 -14.076 -2.700

S.E. 0.083 1.531 0.042 0.014 2.023 6.140 1.441

p <0.001 0.003 0.531 0.553 0.963 0.023 0.062

Hard-GMM

Est -0.283 -3.201 -0.022 -0.002 1.924 -11.831 -3.676

S.E. 0.042 0.762 0.021 0.007 1.008 3.055 0.717

p <0.001 <0.001 0.300 0.753 0.057 <0.001 <0.001

SCAD-GMM

Est -0.280 -3.232 -0.024 -0.001 1.916 -11.597 -3.824

S.E. 0.040 0.746 0.021 0.007 0.981 2.974 0.699

p <0.001 <0.001 0.245 0.860 0.052 <0.001 <0.001

SubAna

Est -0.286 -3.095 -0.027 -0.001 1.760 -11.564 -3.599

S.E. 0.044 0.819 0.022 0.008 1.081 3.277 0.770

p <0.001 <0.001 0.228 0.876 0.105 <0.001 <0.001

FlexMix

Est -0.250 -1.294 0.030 0.002 0.989 -7.301 -2.944

S.E. 0.064 1.217 0.033 0.011 1.381 3.952 1.037

p <0.001 0.287 0.351 0.883 0.474 0.065 0.005

the objective function that converges to the true parameters. Our method can

separately identify the structures of different types of parameters and calculate

pooled estimators, which are more efficient. Simulation results corroborate the

advantages of the proposed method in terms of estimation accuracy.

Our method has several limitations. Although the initialization approach

in Section 5 performs well in numerical studies, it lacks theoretical support.

As indicated by the analysis in Section 3, the computational complexity of the

proposed method increases significantly with the sample size. In Section 4, we

establish theoretical properties under the condition that p ≪ n/ log n. In the

high-dimensional setting, an additional penalty term needs to be imposed on

the regression parameter β to enforce sparsity, that is,
∑p

j=1 p(|βj|, λ, γ). The

proposed ADMM algorithm is still applicable, with minor modifications, where

the updating equation (3.3) of β should be re-derived based on a penalized

likelihood. However, extra effort is needed to develop theoretical properties of

the estimators in the high-dimensional setting. Existing results (Yang, Yan and

Huang (2019)) may provide ideas for solving this technical problem. Recently,
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She, Shen and Zhang (2022) proposed a novel clustered reduced-rank learning

(CRL) framework that imposes two joint matrix regularizations to automatically

group the features in supervised multivariate learning. They prove that the CRL

rate always beats the rate using the pairwise-difference penalization, and claim

that the CRL method is computationally more efficient. Owing to its superiority,

it is of interest, though challenging, to extend the CRL framework to GMMs.

Supplementary Material

The online Supplementary Material contains the ADMM algorithm, detailed

derivations from Section 3, proofs of the theorems in Section 4, and additional

simulation and application results.
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