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Abstract: In this paper we study the problem of estimating quantiles from data that

contain additional measurement errors. The only assumption on these errors is that

the average absolute measurement error converges to zero for sample size tending to

infinity with probability one. In particular we do not assume that the measurement

errors are independent with expectation zero. We show that the empirical measure

based on the data with measurement errors leads to an estimator which approaches

the quantile set asymptotically. Provided the quantile is uniquely determined, this

implies that this quantile estimate is strongly consistent for the true quantile. If this

assumption does not hold, we also show that we can construct estimators for the

limits of the quantile set if the average absolute measurement error is bounded by a

given sequence, that tends to zero for sample size tending to infinity with probability

one. But if such a sequence, which upper bounds the measurement errors, is not

given, we show that there exists no estimator that is consistent for every distribution

of the underlying random variable and all data containing the measurement errors.

We derive the rate of convergence of our estimator and show that the derived rate

of convergence is optimal. The results are applied in simulations and in the context

of experimental fatigue tests.

Key words and phrases: Consistency, experimental fatigue tests, quantile estima-

tion, rate of convergence.

1. Introduction

LetX be a real-valued random variable with cumulative distribution function

(cdf.) F , i.e., F (x) = P{X ≤ x}. For α ∈ (0, 1) let

QX,α := {z ∈ R : P (X ≤ z) ≥ α and P (X ≥ z) ≥ 1− α}

be the set of all α-quantiles of X. More precisely, we have

QX,α =
[
q

[low]
X,α , q

[up]
X,α

]
,

where q
[low]
X,α := min {z ∈ R : F (z) ≥ α} is the lower α-quantile and q

[up]
X,α :=

sup{z ∈ R : F (z) ≤ α} is the upper α-quantile. The estimation of this set,

or its limits q
[low]
X,α and q

[up]
X,α, is well-researched in the literature. For example, a

https://doi.org/10.5705/ss.202016.0061


1662 MATTHIAS HANSMANN AND MICHAEL KOHLER

simple idea to estimate q
[low]
X,α from a sample X1, . . . , Xn of X is to use X1, . . . , Xn

to compute the empirical cdf.

Fn(x) =
1

n

n∑
i=1

I{Xi≤x} (1.1)

and to estimate the quantile by the corresponding plug-in estimate

q̂X,n,α = min{z ∈ R : Fn(z) ≥ α}, (1.2)

which is in fact an order statistics (Arnold, Balakrishnan and Nagaraja (1992)).

In this paper we assume that we have available only data X̄1,n, . . . , X̄n,n such

that
1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s.. (1.3)

We do not assume anything on the measurement errors X̄i,n −Xi (i = 1, . . . , n),

in particular, these errors do not need to have expectation zero. They also do

not need to be random and, in case that they are random, they do not need to be

independent or identically distributed. Particularly, it is not assumed that these

errors are independent of the i.i.d. data or that their distribution is known, so

estimates for convolution problems (see, e.g., Meister (2009) and the literature

cited therein) are not applicable in our context. Note also that our set-up is

triangular.

The consideration of additional measurement errors is motivated by exper-

imental fatigue tests from the Collaborative Research Center 666 at the Tech-

nische Universität Darmstadt, where we have to use measured data from other

similar materials to estimate quantiles of number of cycles until failure for a

certain material (cf., Section 3 below).

Measurement errors of this type have been recently considered in the context

of distribution estimation (cf., Bott, Devroye and Kohler (2013)), nonparametric

regression with random design (cf., Kohler (2006)), and nonparametric regres-

sion with fixed design (cf., Furer, Kohler and Krzyżak (2013), Furer and Kohler

(2015)).

Since we do not assume anything on the nature of the measurement errors

besides being asymptotically negligible in the sense that (1.3) holds, it seems

natural to ignore them completely and to try to use the same estimates as in

the case that an independent and identically distributed sample is given. We

investigate whether the corresponding quantile estimates are still consistent in

this situation and how their rate of convergence depends on
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1

n

n∑
i=1

|Xi − X̄i,n|.

But first, consider results of quantile estimation with i.i.d. data, without

additional measurement errors. If the quantile is uniquely determined, q̂X,n,α →
q

[low]
X,α a.s. (cf., e.g., Theorem 2.2. in Puri and Ralescu (1986)). We show that

this result also holds if data with the above mentioned measurement error is used

instead of the i.i.d. data (see Corollary 1 below).

In case the quantile is not uniquely determined, q̂X,n,α is no longer a strong

consistent estimate of q
[low]
X,α (cf., e.g., Theorem 1 in Feldman and Tucker (1966)),

but it is possible to find a suitable sequence αn, such that q̂X,n,αn
is a strong (or

weak) consistent estimator for q
[low]
X,α for all distributions of the random variable

X (cf. Theorem 4 (or 5) in Feldman and Tucker (1966)). If we use data with

measurement errors for the quantile estimation, one cannot find a sequence αn
such that q̂X̄,n,αn

is a strong consistent estimator of q
[low]
X,α for all distributions of

X and all corresponding data with measurement error fullfilling (1.3). There does

not even exist a general estimator that is strongly consistent for all distributions

ofX and all corresponding data with measurement error fullfilling (1.3) (Theorem

3). Should we know an upper bound on the average measurement error that

tends to zero almost surely for sample size tending to infinity, it is possible to

find sequences αn and βn, such that q̂X̄,n,αn
and q̂X̄,n,βn

are strongly consistent

estimators of q
[low]
X,α and q

[up]
X,α, respectively (Theorem 2).

The rate of convergence of quantile estimates with i.i.d. data can be de-

rived from the asymptotic theory of order statistics (cf., e.g., Mosteller (1946),

Smirnov (1952), and Bahadur (1966)). Then if the cdf. F of X is continuous

and differentiable at q
[low]
X,α with derivative greater than zero we have

√
n · F ′(q[low]

X,α ) ·
q̂X,n,α − q[low]

X,α√
α · (1− α)

→ N (0, 1) in distribution (1.4)

(cf., e.g., Theorem A on page 77 in Serfling (1980)). Reiss (1974) investigated

the accuracy of this normal approximation. Since (1.4) holds, we have

|q̂X,n,α − q[low]
X,α | = OP

(
1√
n

)
, (1.5)

where we write Xn = OP(Yn) if the nonnegative random variables Xn and Yn
satisfy limc→∞ lim supn→∞P{Xn > c · Yn} = 0. We investigate how additional

measurement errors influence the rate of convergence of our quantile estimates.

In Theorem 4 it is shown that if the average additional measurement error is
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bounded above by some ηn ≥ 0, then our estimate achieves a rate of convergence

of order
1√
n

+
√
ηn. (1.6)

We show in Theorem 5 that it is in general not possible to derive a better rate

of convergence with respect to the measurement errors.

Throughout this paper the following notation is used: The sets of positive

natural numbers and real numbers are denoted by N and R, respectively. For a

real number x, we denote by bxc and dxe the largest integer less than or equal

to x and the smallest integer larger than or equal to x, respectively. We write

→P as an abbreviation for convergence in probability and IA for the indicator

function on the set A.

The outline of the paper is as follows: The main results are formulated in

Section 2 and proven in the supplementary materials. In Section 3 we illustrate

the finite sample size performance of our estimates by applying them to sim-

ulated data, and we describe an application of our estimates in the context of

experimental fatigue tests.

2. Main Results

Let F̄n(x) = 1/n
∑n

i=1 I{X̄i,n≤x} be the empirical cumulative distribution

function corresponding to X̄1,n, . . . , X̄n,n, and let q̂X̄,n,α = min{z ∈ R : F̄n(z) ≥
α} be the corresponding plug-in quantile estimate.

2.1. Strong consistency

First we investigate whether the estimator q̂X̄,n,α approaches the quantile set

QX,α asymptotically.

Theorem 1. Let X,X1, X2 . . . be independent and identically distributed real-

valued random variables and let X̄1,n, . . . , X̄n,n be random variables that satisfy

1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (2.1)

If α ∈ (0, 1) is arbitrary, then dist
(
q̂X̄,n,α, QX,α

)
→ 0 a.s., where

dist (x,A) := inf
a∈A
|x− a| for x ∈ R and a set A ⊂ R.

Corollary 1. Under the assumptions of Theorem 1 assume the α-quantile is

uniquely determined. Then q̂X̄,n,α → q
[low]
X,α a.s..

Proof. The uniqueness of the α-quantile implies q
[up]
X,α = q

[low]
X,α and therefore
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QX,α = {q[low]
X,α }. The assertion follows directly by Theorem 1.

Remark 1. The uniqueness of the α-quantile is necessary for obtaining q̂X̄,n,α →
q

[low]
X,α a.s. Without it, the case q

[low]
X,α < q

[up]
X,α with F (x) = α for x ∈ [q

[low]
X,α , q

[up]
X,α)

is possible. In this case we get for i.i.d. data without measurement errors

P(q̂X,n,α ≤ q
[low]
X,α i.o.) = P(q̂X,n,α ≥ q

[up]
X,α i.o.) = 1, where i.o. means infinitely

often (cf., e.g., Theorem 1 in Feldman and Tucker (1966)). This implies that

q̂X̄,n,α → q
[low]
X,α a.s. cannot hold in this case.

Theorem 1 tells us under which conditions q̂X̄,n,α converges a.s. towards the

set QX,α. Estimating the lower bound q
[low]
X,α of this set by q̂X̄,n,α is only possible

under a suitable condition on F . It is possible to drop this condition, if we

replace α by an appropriate sequence αn, and if we know an upper bound ηn
of the average absolute measurement error, that tends to zero almost surely as

n tends to infinity. This approach extends Theorem 4 in Feldman and Tucker

(1966) to data that contains additional measurement errors.

Theorem 2. Let X,X1, X2 . . . be independent and identically distributed real-

valued random variables with cdf. F and let X̄1,n, . . . , X̄n,n be random variables

which satisfy

1

n

n∑
i=1

|Xi − X̄i,n| ≤ ηn a.s. (2.2)

for some ηn ≥ 0 satisfying ηn → 0 a.s. Let α ∈ (0, 1) be arbitrary. With

αn = α−2

√
2 log (log (n/2))

n
−√ηn and βn = α+ 2

√
2 log (log (n/2))

n
+
√
ηn,

q̂X̄,n,αn
→ q

[low]
X,α a.s. and q̂X̄,n,βn

→ q
[up]
X,α a.s..

Remark 2. The term 2
√

2 log (log (n/2))/n in the definition of the sequences

αn and βn in Theorem 2 can be replaced by any cn satisfying cn → 0 as n→∞
and

cn ≥ (1 + ν)

√
2 log (log (n/2))

n

for some ν > 0.

It is natural to ask whether there exists a sequence αn such that q̂X̄,n,αn
is

a strong consistent estimator of q
[low]
X,α for all distributions of X and all random

variables X̄1,n, . . . , X̄n,n satisfying (2.1). The answer is no, even if the sample with

measurement errors does not change each time when the sample size changes, i.e.,

if we have given data X̄1, . . . , X̄n.
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Theorem 3. Let α ∈ (0, 1) be arbitrary. There does not exist a sequence

(q̂n,α)n∈N of quantile estimates satisfying q̂n,α
(
X̄1, . . . , X̄n

)
→P q

[low]
X,α for all real-

valued random variables X and all random variables X̄1, . . . , X̄n satisfying

1

n

n∑
i=1

|Xi − X̄i| → 0 a.s. (2.3)

for some independent X1, X2, . . . that have the same distribution as X.

Remark 3. Analogously, it is possible to show that there does not exist a se-

quence (q̂n,α)n∈N of quantile estimates satisfying q̂n,α
(
X̄1, . . . , X̄n

)
→P q

[up]
X,α un-

der the same conditions.

2.2. Rate of convergence

Theorem 4. Let X,X1, X2 . . . be independent and identically distributed real-

valued random variables with cdf. F and let X̄1,n, . . . , X̄n,n be random variables

that satisfy

ηn :=
1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (2.4)

Let α ∈ (0, 1) be arbitrary and assume that F is continuous at q
[low]
X,α and∣∣∣F (q

[low]
X,α )− F (x)

∣∣∣ ≥ c2 ·
∣∣∣q[low]
X,α − x

∣∣∣γ (2.5)

for all |q[low]
X,α − x| ≤ ζ, for some finite constants c2, γ, ζ > 0. Then∣∣∣q̂X̄,n,α − q[low]

X,α

∣∣∣ = OP

((
1√
n

)1/γ

+ (
√
ηn)1/γ +

√
ηn

)
.

One sees then that for γ ≤ 1,∣∣∣q̂X̄,n,α − q[low]
X,α

∣∣∣ = OP

((
1√
n

)1/γ

+
√
ηn

)
and for γ > 1 ∣∣∣q̂X̄,n,α − q[low]

X,α

∣∣∣ = OP

((
1√
n

)1/γ

+ (
√
ηn)1/γ

)
.

Under the assumption that F is differentiable at q
[low]
X,α with derivative greater

than zero, (2.5) holds with γ = 1, yielding the 1/
√
n of the rate of conver-

gence in Theorem 4. This is known from the rate of convergence of the order

statistics with i.i.d. data without errors (see (1.5)). Because of (1.4) it is not

possible to improve this part of the convergence rate by an asymptotically faster
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decreasing sequence. It is also known that an order statistic is asymptotically

most concentrated about its distribution quantile in comparison with all other

translation-equivariant and asymptotically uniformly median unbiased estima-

tors (cf., Corollary 2 in Pfanzagl (1976)). The
√
ηn in the convergence rate is

due to the measurement errors of the data. We investigate whether the rate
√
ηn

is the best rate one can obtain for γ = 1.

Theorem 5. Let α ∈ (0, 1) be arbitrary. Under the assumptions of Theorem

4 with γ = 1, for every estimator q̂n,α there exists a random variable X and

random variables X̄1,n, . . . , X̄n,n satisfying

ηn =
1

n

n∑
i=1

∣∣Xi − X̄i,n

∣∣→ 0 a.s.

for some independent X1, X2, . . . that have the same distribution as X such that∣∣∣q̂n,α − q[low]
X,α

∣∣∣ = OP

(
1√
n

+ η̃n

)
does not hold, whenever η̃n is a sequence for which

η̃n√
ηn
→P 0.

3. Application to Simulated and Actual Data

In this section we consider estimates of 5%-, 50%-, 90%-, and 95%-quantiles.

We first consider distributions with known quantiles in order to investigate our

estimates, then we apply our estimator to experimental fatigue test data.

3.1. Application to simulated data

In our simulated data, we used n = 500, 1,000, and 2,000 samples. To reduce

the randomness contained in the quantile estimates due to the random number

generation, we repeated the quantile estimation 100 times and we indicate the

quantile estimate by an upper index i. We compared the quantile estimates

by considering the mean value (MV) 1/100
∑100

i=1 q̂
i and the mean squared error

(MSE) 1/100
∑100

i=1(q̂i − q[low]
X,α )2.

We first chose X,X1, X2, . . . to be independent N (0, 1) and X̄i,n = Xi +

Ei/n, where E1, . . . , En are samples from an exponential with expectation λ = 10.

Thus, we generated new samples with measurement error with change in n. We

also considered Ȳi,n = Xi +Ei/i, where samples with bigger measurement errors

were retained. Here 1/n
∑n

i=1 |Xi − X̄i,n| → 0 a.s. and 1/n
∑n

i=1 |Xi − Ȳi,n| → 0

a.s. Since the cdf. of X is strictly increasing, the estimators q̂X̄,n,α and q̂Ȳ ,n,α
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Table 1. Simulation results for X,X1, X2, . . . independent N (0, 1), X̄i,n = Xi+Ei/n and
Ȳi,n = Xi + Ei/i, where E1, . . . , En are samples from an exponential with expectation
λ = 10.

90%-quantile 95%-quantile

q
[low]
X,α = 1.2816 q

[low]
X,α = 1.6449

size of n 500 1,000 2,000 500 1,000 2,000
MV for qX̄,n,α 1.2931 1.2901 1.2894 1.6730 1.6597 1.6473
MSE for qX̄,n,α 0.0066 0.0030 0.0013 0.0128 0.0047 0.0023
MV for qȲ ,n,α 1.4217 1.3691 1.3275 1.8289 1.7507 1.7029
MSE for qȲ ,n,α 0.0248 0.0105 0.0036 0.0436 0.0164 0.0057

are strongly consistent for q
[low]
X,α . This can be seen in Table 1 for α = 0.9 and

α = 0.95. The estimator q̂X̄,n,α shows, even for n = 500, estimates with a small

mean squared error. The estimator q̂Ȳ ,n,α converged more slowly.

We next chose X,X1, X2, . . . as independent and identically distributed with

P (X = 0) = P (X = 1) = 1/2. Setting α = 0.5 leads to the lower quantile

q
[low]
X,α = 0. The mean value and the mean squared error of q̂X,n,α are shown

in Table 2. The estimator q̂X,n,α is obviously not strongly consistent for q
[low]
X,α .

However, by Theorem 2 we can modify our estimate to q̂X,n,αn
with αn = α −

2
√

2 log (log (n/2))/n. As seen in Table 1, this modification leads to a perfect

estimation of q
[low]
X,α . But, if we use the data X̄i,n = Xi + Bi/(5n

0.1), where

B1, . . . , Bn are i.i.d. samples from a b(1, 1/2), q̂X̄,n,αn
shows much larger errors, as

seen in Table 2. Since we can bound 1/n
∑n

i=1

∣∣Xi − X̄i,n

∣∣ by 1/(5n0.1), Theorem

2 has it that we can get a consistent esimator if we choose the sequence γn =

α− 2
√

2 log (log(n/2))/n−
√

1/(5n0.1) and consider the estimator q̂X̄,n,γn . The

results in Table 2 show that this estimator approximates the quantile well.

We then chose X,X1, X2, . . . as independent uniforms on (0, 1). As our

data with additional measurement error we took X̄i,n = Xi + 1/n0.25, so that

ηn = 1/n
∑n

i=1

∣∣Xi − X̄i,n

∣∣→ 0 a.s. We computed the absolute error

dn =
∣∣q̂X̄,n,α − qX,α∣∣

for α = 0.9 and sample sizes n in steps of 200. As illustrated in Figure 1, the

absolute error shows approximately the same asymptotic behaviour as 1/
√
n+ηn

in this case. Thus there exists data with measurement error such that a faster

convergence rate than 1/
√
n+
√
ηn is obtained.

It is also possible to construct data with measurement errors such that the

absolute error of the estimator behaves asymptotically as the claimed rate 1/
√
n+

√
ηn from Theorem 4:
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Table 2. Simulation results for X,X1, X2, . . . independent b (1, 1/2) and X̄i,n = Xi +
Bi/(5n

0.1), where B1, . . . , Bn are i.i.d. samples from a b (1, 1/2).

50%-quantile

q
[low]
X,α = 0

size of n 500 1,000 2,000
MV for qX,n,α 0.4000 0.4400 0.4800
MSE for qX,n,α 0.4000 0.4400 0.4800
MV for qX,n,αn

0 0 0
MSE for qX,n,αn

0 0 0
MV for qX̄,n,αn

0.1074 0.1002 0.0935
MSE for qX̄,n,αn

0.0115 0.0100 0.0087
MV for qX̄,n,γn 0 0 0
MSE for qX̄,n,γn 0 0 0

As a last example, we chose α = 0.9 and X,X1, X2, . . . as in the previous

example and

X̄i,n =


Xi +

1

n0.25
if Xi ∈

[
α− 1

n0.25
, α

]
and Xi is one of the b 1

n0.25
· nc

largest samples of (Xj)j=1,...,n in

[
α− 1

n0.25
, α

]
,

Xi, otherwise.

Here

ηn =
1

n

n∑
i=1

∣∣Xi − X̄i,n

∣∣ ≤ 1

n
· b 1

n0.25
· nc · 1

n0.25
→ 0 a.s..

This leads to an absolute error dn that has approximately the same asymptotic

behaviour as 1/
√
n+
√
ηn, as illustrated in Figure 2.

3.2. Application to data

We applied our methods in the context of fatigue behaviour of steel under

cyclic loading. This was motivated by experiments of the Collaborative Research

Center 666 at the Technische Universität Darmstadt, which studies integral sheet

metal design with higher order bifurcations. Here the main idea is to produce

structures out of one part by linear flow and bend splitting, which has several

advantages concerning the material properties. Our main goal was to study,

whether this modified, splitted material shows better fatigue behavior under

cyclic loading than the base material. Therefore, for each material m, data{(
ε
(m)
1 ,

(
N

(m)
1 , τ

(m)
1

))
, . . . ,

(
ε
(m)
lm

,
(
N

(m)
lm

, τ
(m)
lm

))}
was obtained by a series of experiments, in which for a strain amplitude ε

(m)
i the
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Figure 1. Typical asymptotic behaviour of dn =
∣∣q̂X̄,n,α − qX,α∣∣ in the setting of our

third example.

number of cycles N
(m)
i until failure and the corresponding stress amplitude τ

(m)
i

was determined. We had available a database of 132 materials, and 1,222 data

points in total. The data were used to compare the estimated 5%−quantiles of the

number of cycles until failure from the modified and the base material of ZStE500

for different strain amplitudes ε. Thus, we were interested in estimating the

number of cycles such that no failure occurs, with a probability of approximately

95%. Since the experiments are very time consuming, we only had available

4 to 35 data points per material, not enough for a nonparametric estimation.

To nevertheless estimate the quantile of the number of cycles until failure, we

assumed

N (m) (ε) = µ(m) (ε) + σ(m) (ε) · δ (3.1)

to hold, where µ(m) (ε) is the expected number of cycles until failure and σ(m) (ε)

is the standard deviation for each material m and strain amplitude ε; δ is an

error term with expectation zero. We estimated the α−quantile of δ as well as

µ(m) (ε) and σ(m) (ε), so that we could estimate the α−quantile of N (m) (ε) by a

simple linear transformation. Thus, we used a similar approach as in Bott and

Kohler (2017).

To estimate the expected number of cycles µ(m) (ε), we applied a standard-

method from the literature (cf., Williams, Lee and Rilly (2002)), that uses the
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Figure 2. Typical asymptotic behaviour of dn =
∣∣q̂X̄,n,α − qX,α∣∣ in the setting of the last

example.

measured data to estimate the coefficients p = (σ′f , ε
′
f , b, c) of the strain life curve

according to Coffin-Morrow-Manson (cf., Manson (1965)) by linear regression,

and to estimate µ(m) (ε) from the corresponding strain life curve.

For the estimation of the standard deviation σ(m) (ε), we augmented our data

points for every material m by 100 artifical ones, as in Furer and Kohler (2015),

and weighted the Nadaraya-Watson kernel regression estimates applied to the

real and the artificial data.

Thus, we determined the data samples

δ̂
(m)
i =

N
(m)
i − µ̂(m)

i

σ̂
(m)
i

for i = 1, . . . , lm and all materials m

of the random variable δ. These samples contained measurement errors because

we only estimated µ(m) (ε) and σ(m) (ε). Since we assumed in (3.1) that δ does not

depend on the material m, we used all data samples to estimate the α−quantile

q̂δ,α of δ and get an estimation of the α−quantile ofN (m) (ε) by the transformation

q̂N (m),α (ε) = σ̂(m) (ε) · q̂δ,α + µ̂(m) (ε).

The estimated quantiles of N (m) (ε) for ε ∈ [0%, 0.25%] for the modified and

the base material are illustrated in Figure 3. One can see that the material

shows much better fatigue behaviour after the flow splitting, which confirms the

conjecture that the strain hardening occuring during the flow splitting improves
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Figure 3. Comparison of the estimated 5%−quantiles of the number of cycles until the
failure occurs q̂N,5% from the base and the modified material of ZStE500. Here the strain
amplitude is divided by the length of the material sample used in the experiments.

the fatigue behaviour of materials.

Supplementary Materials

Proofs of Theorems 1 to 5 can be found in the supplementary materials.
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