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Abstract: We prove a law of iterated logarithm for the maximum likelihood es-
timator of the parameters in a generalized linear regression model with binomial
response. This result is then used to derive an asymptotic bound for the difference
between the maximum log-likelihood function and the true log-likelihood. It is
further used to establish the strong consistency of some penalized likelihood based
model selection criteria. We have shown that, under some general conditions, a
model selection criterion will select the simplest correct model almost surely if the
penalty term is an increasing function of the model dimension and has an order
between O(loglogn) and O(n). Cases involving the commonly used link functions
are discussed for illustration of the results.
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1. Introduction

An important task in linear regression is to identify an optimal subset of
available explanatory variables to form a model for best predicting the response
variable. We refer to|Georgd (2002) and [Rao_and Wu (2001) for a detailed survey
in this area of research. Among the many model selection methods, the classical
ones like AIC and BIC are still widely used in practice. It is therefore of interest
to investigate the asymptotic properties of model selection criteria which have
not yet been established for many problems.

In this paper, we focus on variable selection in generalized linear models
with binomial responses. We consider a set of model selection criteria, such
as AIC, BIC, C, and the stochastic complexity criterion, that follow the form
of a penalized log-likelihood. We assume that all the explanatory variables af-
fecting the response variable are available in observations, so that selecting the
simplest correct model is possible. We establish a strong representation for the
maximum log-likelihood function relative to the true log-likelihood under some
general conditions. Based on this representation we show that, when the sample
size n is sufficiently large, the simplest correct model is selected almost surely if
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the penalty term in the selection criterion is an increasing function of the model
dimension and is of an order higher than O(loglogn) but lower than O(n). Dur-
ing this asymptotic study we also obtain the law of iterated logarithm for the
maximum likelihood estimator Bn of the regression coefficient vector 3, with its
unknown true value denoted as (p, in the binomial regression model. Namely,
limsup,, ... (n"tloglogn) /2|3, — fo|| = ¢ almost surely for some constant c,
where || - || is the Euclidean norm.

An earlier study related to this paper is IQian_and Field (20024), where the
focus is limited to the logistic regression models. Here we consider the more
general and applicable binomial regression models where any meaningful link
function is allowed. The method developed in IQian_and Field (2002a) cannot
be carried forward automatically to this seemingly simple generalization, and it
entails a substantial new proof technique. This can be seen from the following.
First, the log-likelihood function under this generalization loses simplicity and
some good properties, for example global convexity, that it possesses under the
logistic link. Consequently, it becomes substantially more difficult to derive var-
ious almost sure uniform bounds for establishing a strong representation for the
log-likelihood function. That the response variable follows a binomial distribu-
tion does not help much in easing this difficulty. Second, the lack of specificity
about the link function presents another complication. Some general conditions
need be sorted out to properly regulate the link function for desired performance
of model selection. In this paper we carry out a detailed study of the asymptotic
properties of the log-likelihood function with regard to its use in model selection,
and how they depend on the link function. Our asymptotic results also provide
a justification to the empirical findings that some link functions, such as the lo-
gistic and the probit, behave quite well in practice, while some others, such as
the complementary log-log and the log-log, do so only in some specific situations
(McCullagh and Nelder (1989, Section 4.3.1)).

The paper is organized as follows. Section 2 provides an overview of binomial
regression models and a model selection framework. Section 3 presents the main
results. Proofs are given in Section 4. In Section 5 we discuss binomial regression
model selection. The Appendix contains proofs of the lemmas in Section 4, and
verification of the conditions imposed for the link function.

2. Binomial Regression Models and Model Selection

Suppose the response variable Y measures the proportion of “successes” in
m independent and identical trials. Thus we can write Y = Z/m where Z
follows a binomial(m, 7) distribution. Suppose the “success” probability for Y is
dependent on a set of explanatory variables x = (z1,... ,:cp)t. The dependence
may be formulated by a binomial regression model g(7) = x!3, where g =
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(B1,-..,3p)" is the unknown coefficient parameter vector to be estimated and

g(+) is the link function relating the linear predictor n = x!3 to the probability

w. A wide range of link functions are available, four commonly used in practice

are the following.

7))
1

1. The logit or logistic link gy (7) = log(w/(1
) = (), where ®(-) is the standard

2. The probit or inverse normal link go(m
normal distribution function.

3. The complementary log-log link gs(m) = log{—log(1 — 7)}.

4. The log-log link g4(m) = —log{—log(m)}.

o~

We denote m = h(n) as the inverse link function corresponding to g(m). As 7 is a
probability, it is reasonable to regard h(-) as a cumulative distribution function
defined on (—o0, +00).

Now let Y,, = (y1,...,yn)" be n independent observations of Y, with the cor-

responding binomial “success” probabilities being 71, ..., m,. The corresponding
observations of the explanatory variables are X,, = (x1,...,%,)!. Under the bi-
nomial regression model we have m; = h(x!3) (i = 1,...,n). The log-likelihood

function for the parameter § is then

(FY 0 X0) = o (ﬂjf‘;,) =3 o), 1)
i—1 1Y

i=1
where
p(m;y,m) = —mylogm —m(1 —y)log(l — ). (2)
Note that p(0;0,m) = p(1;1,m) = 0 by convention. When the likelihood func-

tion is smooth enough, the maximum likelihood estimator (MLE) of 5 may be
obtained by solving the likelihood equation

Z il (x — )% = 0. (3)

™ 1—7‘(‘2

Actually, if ([B]) has a finite solution and the log-likelihood function ¢(5|Y,, X;,)
is strictly concave, the solution is the unique estimator maximizing the likeli-
hood function. This is the case when the link function is the logistic, probit,
complementary log-log or log-log; see Wedderburn (1976). But (B) may have
multiple solutions in general and not all of them maximize the likelihood func-
tion. An example involving multiple stationary points and local maximizers
can be constructed if the inverse of the link function is taken to be hgo(n) =
w~Larctann + 0.5 + 0.1~ 2 sin?  where w = 3.14159 - --. We provide details in
the Appendix. Now if we can find a solution ﬁn of @) which is a local maximizer
of £(8|Yn, X,,) and satisfies lim,, oo HBn — Boll = 0 a.s. with 8o = (Bot, - -, Bop)*
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being the finite true value of 8, we know ﬁn, if different from the global maxi-
mizer of £(3|Y,, X,,), is asymptotically at least as good as the global maximizer
in terms of consistency. In this paper, such a ﬁn is taken to be the MLE of
(. (In Lehmann and Casella (1998, p.449), the solution of the likelihood equa-
tion is called an efficient likelihood estimator.) We show in Theorem 1 that
3, exists and lim sup,, . (n"loglogn)~Y/ 2||Bn — Bol| = ¢ almost surely under
some general conditions. The asymptotic efficiency of Bn has been established by
Fahrmeir and Kanfmann (1985), who proved that (3, in generalised linear mod-
els has an asymptotic normal distribution with the inverse Fisher information
matrix as the asymptotic variance, subject to some mild general conditions.

Based on the binomial regression model, the effect of any x variable on Y can
be measured by the corresponding G component. There is no need to include in
the model those x variables whose 3 components equal 0. Since the true value Gg
of 3 has to be estimated, this induces the problem of model selection or variable
selection: find those = variables that have significant effects on Y. But the best
subset of = variables is better chosen as a whole in terms of a submodel, because
an z variable may have significant effect on Y in the presence of some x variables,
but not in the presence of other x variables.

Many approaches have been proposed for selecting an optimum model in
general parametric settings, see e.g., Rao_and Wu (2001) or [Georgd (2002) for
a detailed survey. In the context of binomial regression models, some of these
approaches, such as AIC (Akaike (1973)), BIC (Schwarz (1978)), C, (Mallows
(1973)) and stochastic complexity criterion (SCC, [Rissanen (1989, [1996) and
Qian_and Kiinsch (1998)), lead to a model selection criterion function that has
the following general form for each candidate model g(my) = 1, = x!,3():

Sa) = p(h(Xlefn(a)); yi,mi) + C(n, Bu()). (4)
i=1
Here « is a pa-component sub-vector of (1,2,...,p) for ipdexing; X, and x;, are

the corresponding sub-vectors of x and x; indexed by «; 3, («) is the MLE of 3(«)
— the sub-vector of 3 indexed by «. The first term in (H) is basically the negative
maximum log-likelihood, while the second term C(n, 3,()) is a penalty term
measuring the complexity of the underlying candidate model indexed by «. For
AIC and C,, C(n, B (a)) = pa; for BIC, C(n, fn(a)) = (pa logn)/2; and for SCC,
C(n, Ba(e)) = log [Ln(Ba(@)|/2 + 7%, log(|Bn(a)i| + en™"/*) where I, (5(a)) is
the Fisher information for §(«), Bn(a)i is the ith component of 3,(c), and ¢ is
a specified quantity to ensure the invariance of the SCC (see IQian_and Kiinsch
(1998) for details).

The candidate model that minimizes (H) is regarded as the optimum model.
To see how this optimum model is related to the true model ng = x!3; is one
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of the major objectives of this paper. Suppose all the candidate models under
consideration have an intercept term that corresponds to the first component of
x, and the model n = x!/3 that includes all the p explanatory variables is the full
model. Of the 2P — 1 candidate models for selection, we see that each candidate
model can be uniquely represented by «. Thus all the candidate models can
be classified into A, = {a : fo; = 0 forany i & a} or A, = {a : [o; #
0 for some i ¢ a}. Each model in A, is wrong because it misses at least
one x variable that has non-zero effect on Y’; each model in A, is correct. Still,
many models in A, may contain some redundant x variables that have no effects
on Y. The model in A, that contains no redundant x variables is the most
desirable. Here we assume the simplest correct model is unique for simplicity
of the presentation, which would be the case if all components of x are linearly
independent of each other. In this paper we show that the simplest correct model
is almost surely selected by the criterion (H]) under some general conditions. If
there are multiple simplest correct models among the candidates, the results in
the next section suggest that the criterion (H) selects one of the simplest correct
models almost surely. In practice, if we find multiple models have criterion values
close to the smallest and fit the data well, we take it that there are multiple
simplest correct models.

3. Conditions and Main Results

In this paper, ¢ is a constant independent of n and may represent different
values in each appearance.

The properties of the MLE Bn and the model selection criterion S(7,) depend
on the link function, the design matrix and the Fisher information in binomial
regression models. The Fisher information for 3 is

18 = -2 _ 2": mah' (<0)°

900"~ A (1)
h/(Xt ﬁ)2 /(Xt 6)2
= X! M, di 1 o L X,
" lag{7T1(1 —m) (1 —Wn)} ’
where M,, = diag(mi,...,m,). In the following we describe conditions be needed

on various occasions for proving our main results.

(C.1) The function h is a strictly increasing cumulative distribution function,
and is second order differentiable with A’ and A" uniformly continuous.

(C.2) There exists a constant to > 0 such that h”(¢t) < 0if t > ¢, and h”(t) > 0

if t < —tg.
2 /l
(C.3) sup |4 log(1 — h(t))| = sup ‘ (1hi(zt(t i o 0] ‘ <0
> t>to
_ W2 R'()
iupzo |dt2 log h(t)| = tililfzo R(t)2 R(t) ‘
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. R (1)2 B (t n(t h(t
(C4) inf {(1_2&))2 + 1_;5(,)5)} >0, 1nf { h((t)) o Tg))} > 0.

5 It t<-
_ [A=he)Ph(s) | (= ho)h(s)] H(e)°
e [ A=R@P RGP ] W2
oitos) = [ U5 A(s) his) _ <1—h<s>>h<s>2] W)
7 (t) h(t) h'($)2’
there exist constants Ag > 0 and sg > 0 such that inf\t—s|§AO7|s‘>80{u(t, s)
+u(t,s)} > 0.
(C6) S“p‘ﬁz;—fl$%7w < 0.

(C.7) Let Mi{G} < --- < A\ {G} be the eigenvalues of a p x p symmetric matrix
G. Then limn_,Oo MedIn(Bo)} = o0, k = 1,...,p. Also, there exists a
constant dg > 0 such that 0 < A\ {I,(60)} < doAi{In(Bo)}-

(C.8) If 8§, = {maxicic, m2[h'(x450)/(m0i(1 — m0i))]?x L (Bo) " 1x; 1/ where
moi = h(x!0p), then d, (loglog \p{I,,(Bo)})/? = o(1).

(C.9) din < Mp{I.,(Bo)} < dan holds for some positive constants d; and ds.

(C.10) Tf & ={ max mixt(XE M, X,) 7 % Y1/, then &, (log log \p{ X% M, X, })'/?

= o(1).
(C.11) d3n < N\p{ X! M, X,} < dyn for some positive constants ds and dy.
(C.12) >°p; mg(zgizy;)? = O(n) for all i,j = 1,...,p, where xy; is the ith
component of xy.
h'(x . R (xnB0)?
(C.13) If An—dlag{mm{% mo1(1=m1) }, - - - ,mln{ﬁ,ﬂ'on(l—ﬂ'on)}},
there exists a positive constant ds such that A\ {X!M,A, X, } > dsn.
(C.14) Let b = (1/2) mini<i<p, |Go(0)i| where ay is the correct model in A, that
has the minimum dimension, and suppose (3y(cp); is the ith component
of fo(a). Define Ay = {5 :||8 — Bo|| < b}. Then there exist a constant

dg > 0 and a positive integer ng such that
sup £(B|Yn, Xpn) — sup £(6|Y,, X,) > dgn  a.s. when n > ng.
BEAo B¢ Ao

Note that Conditions (C.1) to (C.6) are about the behaviour of the link function
and its various derivatives. It may be difficult to understand (C.5), but it is not
required for the proof of our results if (C.2) and (C.4) are satisfied. On the other
hand, it can be shown that

@ Yog h(t) & log(1 — h(t))
{Llog h(s)}? {Llog(1 — h(s))}?

Thus (C.5) implies that, when ¢ is in a neighbourhood of s, the coefficient of h
in (Bl) should not go to zero in the limit as s — 400, and the coefficient of 1 — h

u(t,s) +v(t,s) = (1—h(s)) - h(s). (9
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in (@) should not go to zero in the limit either as s — —oo. In the Appendix we
show the following.

1.

For the logistic link, Conditions (C.1), (C.2), (C.3), (C.5) and (C.6) hold while
(C.4) does not.

. For the probit link, condtions (C.1) to (C.4) and (C.6) hold while (C.5) does

not.

. For the complementary log-log link, Conditions (C.1), (C.2) and (C.6) hold

while (C.3) to (C.5) do not, but (C.3) and (C.5) hold if one only considers
h(t) <1 — ¢ for some constant ¢’.

. For the log-log link, Conditions (C.1), (C.2) and (C.6) hold while (C.3) to

(C.5) do not, but (C.3) and (C.5) hold if one focuses on h(t) > ¢ for some
constant §”.

These four link functions and their first three derivatives are plotted in Figure 1.
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Figure 1. Plots of the four inverse link functions (logit, probit, complemen-
tary log-log and log-log) and their first three derivatives.
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The conditions (C.7) to (C.13) are essentially about the behaviour of the
explanatory variables x. They suggest that most of the x observations should be
finite and stay away from 0. One can follow IQian_and Field (2002a) to provide
some sufficient conditions for (C.7) to (C.13) by assuming the x variables are
random, but we do not pursue that here. Condition (C.14) is about the behaviour
of the log-likelihood function relative to the full model: its maximum value is
attained in a neighbourhood of the true value Gy and is distinctly greater than
any log-likelihood outside this neighbourhood. Condition (C.14) becomes quite
natural by the results of Theorems 1 and 2 plus the assumption that the MLE
can be uniquely solved at (B]).

The main results of this paper are listed below.

Theorem 1. Suppose Conditions (C.1) to (C.4) (or alternatively (C.1), (C.3)
and (C.5)) hold. Further suppose Conditions (C.6) to (C.13) hold. Then for any

correct model o € A,, there exists an estimator [, () such that 3,(a) is a local
maximizer of £(B|Y n, Xna) and

5 _ 1
1Ba(@) = Bo(@)ll = O((n " loglog m)?)  a.s.. (6)
Further, there exists a constant ¢ > 0 such that for a € A,

i sup 12(0) = A
n—oo  (n~lloglogn)z

=c as. (7)

Theorem 2. Under the same conditions as given in Theorem 1 we have, for any
correct model o € A,

0 < L(Bn()|[ Y, Xna) — £(Bo(a)| Yo, Xpa) = O(loglogn)  a.s., (8)

where X, 1s the matriz comprising those columns of X, indezred by «; equiva-
lently,

0 <) {p(h(xhaBo(@)); Y i) — p(R(Xh B (1)) Yk, i) }
k=1
= O(loglogn) a.s., 9)

where Xgo (k=1,...,n) is the subvector of xj, indexed by «.

Theorem 3. In acAldition to the conditions of Theorem 1, suppose Condition
(C.14) holds and €(3,|Yn, Xn) = supgea, £(B]Yn, Xn). Then for any incorrect
model o € Ay,

lim sup 2~ (B ()Y, Xna) — (B0 Yn, X))} <0 a.s.; (10)

n—0o0
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equivalently,

linnlio%on_l{p(h(xzaﬂAn(a));yk,mk) — p(h(x5B0); Yk, M)} >0 as. (11)
k=1

From Theorems 2 and 3 we know that the maximum log-likelihood for any
correct model is almost surely greater than the log-likelihood of the true model,
with the difference bounded by O(loglogn) almost surely. On the other hand,
the maximum log-likelihood for any incorrect model is almost surely smaller
than the log-likelihood of the true model by a term of order |O(n)|. Therefore,
if we carry out a model selection by minimizing (H), we almost surely select
the simplest correct model in A, provided the penalty term C(n, f,(c)) is an
increasing function of the model dimension p, and is of an order higher than
O(loglogn) but smaller than O(n). We call a model selection criterion strongly
consistent if it selects the simplest correct model almost surely. From the above,
we have the following.

Theorem 4. Consider a binomial regression model. Under the conditions of
Theorem 1 and (C.14), the model selection criterion based on stochastic complex-
ity and the BIC criterion are both strongly consistent, while the AIC criterion is
not strongly consistent.

Proof. It is easy to see that the criterion BIC is strongly consistent because it has
a penalty term C(n, B, (a)) = (pa logn)/2, while AIC is not strongly consistent
because C(n, B, () = pa. Because the Fisher information |I(8(a))] is typically
of order O(nP=), it follows that the stochastic complexity criterion is also strongly
consistent.

4. Proof of the Results

In the proofs we make use of the local convexity properties of the negative
log-likelihood function, and locally approximate it with bounded quadratic errors.
The main difficulties lie on how to properly regulate the link function, and on
establishing uniform bounds for the error term in the almost sure expansion of
the log-likelihood function. The idea of using convexity is widely seen in the
context of M-estimators for linear models, see e.g., [Rao and Zhad (1992) and
others.

First of all we define a sequence of real numbers {v,} such that, for both
a=1and 2,

Vi1 oo, Vﬁ&n(loglogn)%—m and V,Z(n_lloglogn)%lo. (12)

Using {v,,} we introduce the sequences A, ={8: ||8—3|| < vn(n"'loglogn)'/?},
0An = {0 : |18 = Boll = va(n~tloglogn)/?}, B, = {3 : ||8 = Goll < vj
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(n~'loglogn)¥/?}, and OB, = {B: || — Bol| = v2(n"'loglogn)'/?}, so A D
Ay DA3D---,Bi DBy D>B3D---,and B, D A,. We also define

H(B) =Y {p(h(x},8); yr i) — p(h(x},50); vk, mi) }- (13)

k=1
To prove the theorems we need some lemmas.

Lemma 1. Let

D(t:5,) = p((0):9,m) — p(h(s): ,m) — (D), )=t — 5)
_ 0 L-ht) [y ],
= —mylog@ —m(1—y)log T h(s) [1 “hs) h(s)} R'(s)(t —s)

and suppose (C.1) and (C.3) hold.

(R.1) There exists a constant ¢ such that |D(t;s,y)| < cm(t — s)? for any real
numbers s, t, and y € [0,1].

(R.2) D(t;s,h(s)) > 0.

Lemma 2. Let K(t,s) = p(h(t);h(s),m) — p(h(s); h(s),m) and suppose (C.1),

(C.2) and (C.4) (or alternatively (C.1) and (C.5)) hold. Then there exist positive

constants ¢ and A such that

mh/(s)?
h(s)(1 = h(s))
for any s and t satisfying |t — s| < A.
Lemma 3. Let R(t,s) = log(h(t)/(1 — h(t))) — log(h(s)/(1 — h(s))) — (k'(s)/
(h(s)(1 — h(s))))(t — s) and suppose (C.1) and (C.3) hold. Then there exists a

positive constant ¢ such that |R}(t,s)| < c and |R(t,s)| < c(t — s)? for any t and
s. Further, for any t1 and ta, |R(t1,8) — R(ta,s)| < c(|t1 — s| + |[ta — s|)[t1 — ta].

Lemma 4. Under (C.7) and (C.8) we have
n k! (x8) e (1 — mos) "L (yi — 70i )T
lim sup + Zi:l mih (Xlﬁo)ﬂbz (1 7TOZ) (yz WOZ).CUZ]

n—o0 {21,,(50) (J, ) log log I (B0) (j, 1)} 2
=1a.s forj=1,...,p. (14)

K(t,s) > cmin{ ,mh(s)(1— h(s))} (t — s)?

Here x;; is the jth component of x; and I,(Bo)(J,j) is the component of I,(5o)
at the jth row and jth column. If, in addition, (C.9) is satisfied, then we have

aﬁ ‘5:50 - ; WOi(l _ 7702') (yz 7TOZ)X2
o W (x15) W (xt By)
:XtMnd 71777/” Yn_Hn
n iag{ o1 (L—o1) Ton (L—70n) H 0)

=O(y/nloglogn) a.s., (15)
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where Tl,0 = (mo1, ..., Ton) is the true value of 11, = (71, ..., m,)".
Lemma 5.(Law of the Iterated Logarithm). Let {Z,,n > 1} be a sequence of

independent random variables with EZ, = 0, EZ% = 02 and B, = > p_, 0% —
0o. If |Zy| < 0{(By/loglog B,)'/?} a.s., then

+30 . 7, r . Z
lim sup 2=t 2 - = limsup | Xk Zil T
n—oo {2B,loglog B, }2 n—oo {2B, loglog B, }2

The proof can be found in Chow and Teicher (1997, pp.373-374) or Petrov
(1995, pp.239-246).

Lemma 6. Under (C.1), (C.3), (C.6), (C.7) and (C.9)—(C.12), the function
H(B) = S5 {p(h(x B); s i) — p(h(xL Bo)s g i)} is strictly convex on 3 €
By, when n is sufficiently large, for all sample sequences {y1,...,Yn,...} except a
subset with probability 0. Further, the eigenvalues of O*H(3)/(0B93) at B = By
satisfy

=1 as..

O*H(B) O*H(3)
opBIp ‘5:50} ss Ap{ 0303

for some positive constants ¢ and C when n is sufficiently large.

cn < )\1{ ]5:50} <Cn a.s.

The proofs of Lemmas 1, 2, 3, 4 and 6 are given in the Appendix.
Proof of Theorem 1. It suffices to prove () for the full model:
HBn — Bol| = O((n"tloglog n)%) a.s.. (16)
By the definition of H () we have
H(B) = > {p(h(x},B); mormx) — p(h(xck50); Tor, )}

k=1

+> {p((x},8); yi, mi) — p(h(x4B); mok, M)}
k=1

= {p(h(xB0); yi ) — p(h(xkBo): Tow, ) }

k=1
T+ T — Ts.

Here one can show that 71 = >_}_; K(x}3,x%060) by the definition of K(¢,s) in
Lemma 2, and

denote

" omyh! (x4 Bo)
T —Ts=— ;::1 ﬁ(% — 7ok)xk (6 — Bo)

n
d
- Z mi R(xL,8, x450) (yk — mox) “=C Ty — T
k=1
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by the definition of R(t, s) in Lemma 3.
We first show that T5 satisfies

sup |T5| = o(1)v2 loglogn a.s.. (17)
BEAn

For each integer n there exists a unique integer m such that 2™ < n < 2m+1,
Define a subset Cp, = {Bm; € Aam : j = 1,...,hy,} such that for any 3 € Agm,
there exists j to satisfy ||3 — Bm;|| < vam27"/2\/Toglog 2™ /m. Tt is easy to see
that at least one such C,, exists with h,, < 4PmP. Also define another subset
D,, = {ﬁml € Agm : 1 =1,...,ry} such that for any 5 € Agm, there exists [ to
satisfy [|8 — Bpi|| < vam2-™/2\/Toglog 2™ /2™, It is easy to see that at least one

such D,, exists with r,, < 4P2"P Foreachl=1,...,7r,, let
_m y/loglog 2™
Agm = {8118 = Bul| < vpm2~% LE0E

be a hyper-ball centered at Bml- By the definition of D,, we have (J;, Agm; D
Aogm. If Zi(B) = miR(x.3, x5 B0) (yr, — mok), it has a mean of 0, and we see that
for each 8 € Agm, there exist [ with ||8 — By|| < vam2-"/2/loglog 27 /2™ and
§ with ||Bot — Bumjl| < vam2~™/2\/Toglog 2 /m, such that 3 € Aym; and

1Z(8)| <1Z1(B) — ZkBau)| + 1 Z1(Brnt) = Zi(Bms)| + 1 Zk(Brnj ) - (18)

From ([IJ) it follows that for any € > 0

n
max su Z ‘ > v, log log 2™
{ 27rl<n<2m+l BEAE)m ‘ kZ=1 k(ﬁ) - 2 & 108 }

om+1 n
= U { sup ‘ZZk(ﬂ)‘Zeugmloglog2m}

n=2m41 BEAsm h—1
2m+1 T, 1
g U U Sup ‘ Z Zk‘ Zk; ﬁml)]‘ 357/2m lOg log 2m
n=2m41 |=1 ,BGAgml
r 2m+1 Tm
U U U U {‘ Z Z 5ml Zk(ﬂmj)]‘ €V2m log log 2mH
=2m41 [=1 jES5; k=1

- om+l
U U U {‘ ZZk(Bm])‘ > %Eugm loglong}]

L n=2"+41 j=1
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Py 2MTL n
— swp | S 12(8) — Ze(Bu)l| = Ler2n loglog 2
U u > |23

=1 n=2m+1 B€A2m,l k=1
[ Tm n 1
2 2 . T2 m

Jiuu {2m<123>2<m+1 Z[kaml)—zk(ﬁmj)]\ > gevin loglog2 H

Li=1j€S; =

_h’!?L 1

Zi( ‘ Zev2a loglog 2™ b | 19

0[O s otmnl] oo

where S; = {j : |8 — Bmjl| < vam2~™/2\/loglog 2™ /m.} for each [ given.
By Lemma 3, (Z1I), the Cauchy-Schwarz inequality and (C.11), we have

n

D 1Zk(B) = Zr(Bra)| <2 mi R4, %450) — R(X Bt X1 50)]

k=1 k=1
n
< 2c5 > mallxxl*(118 = Bol| + 1Bt — Bol DB — Bt
k=1
< 272 loglog 2™ = o(1)v2y loglog 2™  for every 3 € Agm g,

which implies that for large m,

™m 2m+l

P{ U U { sup ‘Z Z1(B8) — Zi (Bt | > éaugm loglog2m]} =0. (20)

I=1 n=gmt1 ~BEA2m
By the definition of &,, and (C.11),

£§m+l Z kal];(X;nJrl M2m+1X2m+1)_1Xk
> mpxix g, Ap{ X b st Moms1 Xomer )78 > dy 127 M Dy xy, |2 (21)

for any k = 1,...,2™*1. For any (3, and ij with j € .5, it follows from
Lemma 3, (Z1I), the Cauchy-Schwarz inequality and (C.11), that

|Zk(ﬁ~ml) — Zk(Bm])| < 403d4m_1£§m+1 1/22m loglog2™, k=1,... ,2’”“, (22)

2m+1

> ElZi(Bri) — Zi(Bmi))?
k=1
am+l
<> mic3 1%k (B — Bo)l + x4 (Bmj — BN 1%k (Bt — Brmg)

k=1
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< max  myl|xk| 2l Bmt — Bol|

1<k<om+1
2m+1
H[Bmj — Bolll* (Bt = Brmg)" (D maxixXy) (Bt — B )
k=1
< 16c3d3€2,11Vamm ™2 (log log 2™)2. (23)

By (23)) and the well-known relationship among the median, mean and variance,
|med(X) — E(X)| < y/Var(X) (Chow and Teicher (1997, p.109)), it follows that

2m+1

‘med(kzzn;l[Zk(Bml) — Zk(BmJ)]) ‘ < 4ezdyboms1 vamm ™ loglog 2™

= 0(1)v3m loglog 2™, (24)

By ([24)) and Lévy’s inequality,

., 7 1
P{ 2m<122}2(m+1 Z:[Zk (ﬂml) Zk (ﬂm] )] ‘ 3EV2m log lOg 2m}
n 2m+1
< P{ o A ;[Zk(ﬁml) — Zi(Bmj)] — med(k:%;l[Zk(ﬁml)

Zk(ij)D‘ > cvjm log log 2m}

2m+1

< 2P{( ; (Z(Bot) — Zk(ﬁmj)]( > e, log log 2m}. (25)

Before we proceed, we give Bernstein’s inequality, it can be found in Chow
and Teicher (1997, p.111).

Bernstein’s Inequality. If S, = Z?:l Zj; where Z;’s are independent random

variables with £Z; = 0 and |Z;| < a for each j, then for any x > 0,

2ax + >} EZ?)

By &3), [22), @3), Bernstein’s inequality, (C.10) and (C.11), it follows that

Tm
PUU{, m
2m<n<2m+l

1=1j€S, = k=1
2m+1

< 22 > P{‘ ; Z1(Bri) — Zk(ﬁmj)]( > im 10g10g2m}

=1 j€5

P{|Sp| > x} < 2exp{

1.

n

> [ Zk(Bt) — Zk(ﬁmg)]‘ % V3n loglog 2m}}
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4 2

<:4%H44np2mpexp{ —Vym (log log 2) }

- m=1Es, 1 Vg (loglog 2m)2 +m=2E3 ., v (loglog 2)2

mP2"mP eXp{—cmg;g+1 } < exp{—cmloglog 2™},

when m is sufficiently large.

For any f3;, it follows from Lemma 3, (Z), the Cauchy-Schwarz inequality
and (C.11) that

< 42p+1 (26)

|Zk(Bm])| < 203d4£§m+17/22m lOg IOg 2m’ k= 17 s ’2m+17

(27)
omtl gmAl

N EZBmi)? <D mixi(Bmi — Bo)]*

k=1 k=1

2mtl

<c§_mas gl el | s — ol (s — 0" kZ_lmkxkxz) (Bms — o)

< c§d42m+1€§m+1 ’ ‘ij _ﬁO‘ ’4AP{X§771+1M27H+1X27H+1}
< 4c3d3€5mnvam (log log 2™)2.

(28)
Similar to (24)), following (C.10) and (28), we have
m+l
‘med( Z Zk(Bm]))‘ < 2c3d4€qmn Vam loglog 2™ = o(1)van loglog 2™, (29)
k=n+1

Therefore, using the Lévy and Beinstein’s inequalities, (I2), &), ), 9),
(C.10) and (C.11), we find that, when m is sufficiently large,

P{ tj { max

] 2m<nS2m+1

Z Zk(Bm])‘ > ésugm log log Qm}}
k=1

hm n 2m+1
< P{ Zi(Br i) — d( T B > ‘ > 2m log 1 2m}
- ]Ez:l 2M<nr}2}2(m+1 kZ:1 k(Bimj) — me k:%;rl HBmj) )| = cvam loglog

2m+1

hm
< 2ZP{‘ Z Zk(Bm])‘ > cUam loglong}
j=1 k=1

< exp { — cVam loglog 2m+1}.

(30)
Combining (), @0), @6) and B), we see for any £ > 0 and for large m,
[ee] n
P{ max sup | > Zp(B)| > evan loglog 2m}

o0

_ m+1 g m+1
<c+ Z{e cm loglog 2 + e Vam log log 2 } < 0. (31)
m=1
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It follows from the Borel-Cantelli Lemma that

max su Zi(B)] = o umlo log 2™ a.s.. 32
o I eAIZ)m|Z x(B)] 5 log log (32)

Hence, supge a,,, | >op—1 Zk(B)| = o(1)v3n loglog 2™ = o(1)v3 loglogn  a.s.. Ac-
cordingly supgea, | > i_; Zi(B)] = o(1)v2loglogn as. and supgega, | >y
Z(B)] = o(1)v2loglogn a.s., which proves that () is true.

Concerning the uniform bound of T}, by Lemma 4 and the Cauchy-Schwarz
inequality, we see that

sup |T4] < O(y/nloglogn) sup [|6— Boll = O(1)v,loglogn as.. (33)
BEDA,

BEDA,

Concerning 77, by Lemma 2 and (C.13),

inf 7y > inf e me{ k! (i o) ,mpmor(1 — WOk)} [x}.(8 — Bo))?

BEOA, = BEOAn mok(1 — 7o)’
= inf — Bo) ! XEA, X (5 —
oot (B — fo)' X, (B — Bo)
> 511615 cl|3 = BolPAM{XEAX,} > cadsp? loglog n. (34)
€ n

From (), B3) and (B4) it follows that there exists a positive constant cy
such that, when n is sufficiently large,

ﬁeiggn H(B) = ﬁeiralgn(Tl + Ty —Ts) > ey’ loglogn  as.. (35)
Note that H(fy) = 0, and, from Lemma 6, H(/3) is strictly convex on € B,, D
A,, for almost surely every sample sequence {y1,...,y,} when n is sufficiently
large. This and (B3) imply that the minimizer (3, of H(J3) over B, must be
a stationary point of H (), i.e, a solution of the likelihood equation (B), and
an interior point of A,. By our assumptions, this minimizer is the MLE and
180 — Bol| < vn(n~tloglogn)'/? as.. Since v, can be chosen to be divergent as
slowly as possible, it follows that ([l holds.

Now we proceed to show that there exists a constant ¢ > 0 such that

lim sup 118 = Boll =c as. (36)

n—oo 1/n~lloglogn

Suppose (B0) is not true. By (IH), this implies that ||3,— fo|| = o(y/n~ T loglog n)
s.. Now let H(B) = H(B,n) and T; = T;(6,n) (i = 1,...,5) to indicate their
dependence on n. Following the same line for proving (I[7) and (B3]) one can
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show that Ty(3,,n) = o(1)loglogn as. and T5(Bnsn) = o(1)loglogn a.s..

Further, by Lemma 1, T1(Bn,n) = 37_; K (%450, x},00) = 4y D(x}, 503 %, 6o,
h(x}3)) and accordingly

T By )| < 3 cxmilch (B — o)

k=1
=c1(Bn — B0) X! My X0 (Bn — Bo) = o(1)loglogn  a.s.

by (C.11) and the assumption that || 3, — Go|| = o(r/n~'loglogn) a.s.. Therefore,

|H (B, n)| = |T1(Bny 1) + Ta(Bnyn) — T5(Bnsn)| = o(1) loglogn  as..  (37)
On the other hand, from Lemma 4 there exists a sequence n; T co such that

vy mih! (xLBo) o (1 — mok) ™Yk — Tok) k1
i {21, (By)(1,1)log log I, (o) (1, 1)} 2

Now define a p x 1 vector Bm with the first component being

(1) = [dl/(4d0d401)]\/ o 08 a8 o o

and B, (j)=Po; (j=2,...,p). By @), (C.7) and (C.9), there exists an i’ >0 such
that T4(Bni,n,~) < —dy/(4dpdscy)]loglog n; a.s. for i > i'. Following the same line
of proving (7)), one can show that |T5(83,,,ni)| < [d1/(28dodsc)]loglogn, a.s.
when i > ¢” for some i > 0. Further, by Lemma 1, (C.7), (C.9) and (C.11),

=1 as. (38)

0 < T2 (Bn;smi) = Z K (X} B0, X1, B0) = Z D(x}, B, X},%0, h(x},50))

k=1 k=1

< Z C1Mmy, [ng (Bm - ﬂO)P =C (Bm - ﬂO)tszszan(Bm - ﬂo)
k=1
2

~ dy
t 2
< cl)\P(XniMnani)H/Bni - 50” < Cld4n28d2di % d

log log I,, (5o)(1,1)

~loglog I, (Bo)(1,1) < ~loglog i,

dy
~ Tdydyc
when ¢ is suﬂiciently large. Combining the above results for Ty,T5 and 17, we
have

dy
8dd

H(Bmvn) =T (Bm’ n) + T4(Bni7 n) —1T5 (Bm’ n) =

1 Jogl .S.
Tddodacr oglogn,; a.s.,
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when ¢ is sufficiently large. It follows that H(B,,,n) < H(Bn,n) as. by &0,
which contradicts the fact that 3, is the MLE minimizing H (3,n) over B,,. This
suffices to prove ([0).

Proof of Theorem 2. It is sufficient to prove (@) only for the full model.
Namely, we only need to prove

0< Z{p(h(XZBO)§ykamk) — p(h(x4.53,); ye,mi)} = O(loglogn)  as..  (39)
k=1

The inequality part of (BH) is obvious because Bn is the MLE. The equality part
of (B9) is equivalent to H(3,,n) = O(loglogn) a.s.. From the proof of Theorem 1
we know H(B,,n) = Th(Bn,n) + Ta(Bn,n) — T5(Bn,n). Following the same line

for proving (B7) and noting 18 — Bol| = O(v/n~Tloglogn) a.s., one can show
that H(0,,n) = O(loglogn) a.s.. Therefore, (BY) holds.

Proof of Theorem 3. By Theorem 1 we have ||3, — Bo|| = O(v/n—1loglogn)
a.s.. Thus ﬁn € Ap a.s., where Ay is defined in (C.14). Now we introduce a
p x 1 vector B,ﬁ(a) which is obtained by augmenting Bn(oz) with p — py zeros
in such a way that the sub-vector of B,*L(oz) indexed by a equals Bn(oz). Clearly,
3% (a) & Ag for any incorrect model a € A,,. Hence by (C.14) and the assumption

K(K%IY,L,XH) = SUPge 4, (B]Yn, Xp) we have, for any o € Ay,
(Bl Yn, Xn) — (G5 ()Y, X,) > dgn a.s. when n > ny.

By Theorem 2 we know £(5,|Y, X,) — €(Bo| Y, X,,) = O(loglogn) a.s.. There-
fore, R
lim inf n = (80| Yn, X0n) — L(B5()| Y0, X))} >0 as.

Noting that £(3%(a)|Yn, Xn) = £(3n(a)|Yn, Xna), we see that () and hence
(D) hold.

5. Discussion

In this paper we study a set of penalized likelihood based model selection
criteria for generalized linear models with binary or proportional responses. We
assume that all explanatory variables that affect the response variable Y are
available for selection. In this situation, a binomial distribution is appropriate
for modeling Y. In practice, some variables affecting Y may not be observed
thus a binomial distribution modeling ¥ may not be valid. Consequently, one
may introduce an over-dispersion parameter to the regression model and use a
beta-binomial distribution to model Y to account for the effects of those lurking
variables. It should not be very difficult to extend the asymptotic results derived
in this paper to this situation.
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When the focus is only on the four link functions listed in the paper, the
results of Lemma 6 can be strengthened in that the negative Hessian matrix
—[c0%/(030/3")] is positive definite for any 3, and accordingly H(3) is strictly
convex at every (3. This can be proved by following [Wedderburn (1976) and some
intricate calculus.

It is worth mentioning that executing a model selection criterion by a compu-
tationally feasible procedure is as important as finding a desirable model selection
criterion, especially when there are large number of candidate models for selec-
tion. However, this is beyond the scope of this paper. We refer to IQian (1999)
and [Qian_and Field (2002h) for a Markov chain Monte Carlo selection procedure
which is both feasible and consistent.

Appendix

Proof of Lemma 1. It is easy to see that Dj(t;s,y) = m[(1 —y)/(1 — h(t)) —
y/h(@)P'(t) — m[(1 —y)/(1 = h(s)) — y/h(s)]h'(s), and D{(t;s,y) = m(l —y)
(221 = B(£))? + B(0) /(1 — R{t))] + mylW (62 /h(2)° — B(£) /1(1)]. Condition
(C. 1) implies that lim; ,_ ooh(t) = O limi o0 h(t) = 1. It also implies that
h(s = [ W(x)dz and W' (s = [’ W'(x)dxz. Thus, by the uniform con-
t1nu1ty of h'(t) and h”( ), it follows that limy 400 h (t) = 0 and limy—, 1o A (t) =
0. Now it is easy to see that lim;_._o[R'(£)?/(1 — h(t))2+A"(t)/(1 — h(t))] =
0 and lim;_ 4 oo[R/(t)2/h(t)®> — W"(t)/h(t)] = 0. By this and (C.3), if ¢; =
macfsup, [ (£)2 /(1 — h(t))? + K(2) /(1 — h(£))],sup, | (42 [h(2)? — "(6)/(E)]},
one has ¢; < co. Therefore, | D} (t;s,y)] < cym for any ¢, s and y. Now define
Fi(t) = D(t;s,y) — erm(t — s)? and Fy(t) = D(t;s,y) + cym(t — s)2. Clearly,
Fi(s) = F{(s) = Fy(s) = Fj(s) = 0 and F{(t) = D/(t;s,y) — 2c;m < 0,
FJ(t) = D/ (t;s,y) + 2cim > 0. Therefore Fi(t) < 0 and Fy(t) > 0 and (R.1) fol-
lows. Statement (R.2) follows from the fact that D(s; s, h(s)) = Dj(s; s, h(s)) =
and D} (s;s,h(s)) = mh'(s)?/(h(s)(1 — h(s))) > 0.

Proof of Lemma 2. First suppose that (C.1), (C.2) and (C.4) hold. It is easy to
see that K (t,s) = —mh(s)log(h(t)/h(s)) —m(1—h(s))log[(1 — h(t))/(1 — h(s))]

and (1, ) = m{(1 ~ h(s))/ (1 — (8)) — h(s) /A(B]H (1) Further.
" h(s) h(s) | ., L—nh(s) W),
Y60 =m |17 <>>2+ <>]h” il e o G

_ mh’ S)) {[h )2 L (b s)gh(sﬂ} B (t)?

h( — (s <><1—h<s>> Wt
*[ 1—h<t> h(t) }

)
h’(s)2

B h/(t)2 h”(t)

= m{1=h(s) [(1—h<t>>2 ! 1—h<t>} + mhis) [W (o) } - )




1354 GUOQI QIAN AND YUEHUA WU

We now consider three cases according to the position of s in relation to tg in (C.2)
and (C.4): (i) |s| < 1.1tg, (i) s > 1.1tp and (iii) s < —1.1¢p. In case (i), K[ (t,s) =
mh'(s)?/(h(s)(1 = h(s){u(t, s) + v(t, )} = mh'(s)?/(h(s)(1 — h(s))){[u(t, s)
u(s, s)] + [v(t,s) — v(s,s)] + 1} by (El), the definitions of wu(t,s) and wv(t,s),
and the fact that u(s,s) =1 and v(s,s) = 0. By (C.1), h(t), h'(t) and h”(t) are
uniformly continuous on [—1.2¢¢, 1.2¢g]. This implies uniform continuity of u(t, s)
and v(t, s) with respect to t € [—1.2¢0, 1.2tg] when s € [—1.1¢g, 1.1¢p]. Thus, there
exists a positive constant Aj such that |u(t,s) — u(s,s)| < 1/4 and |v(t,s) —
v(s,s)] < 1/4 when |t — s| < Ay and s € [—1.1tp, 1.1¢p]. Therefore K/ (t,s) >
(1/2)mh(5)?/(h(s)(1 — h(s))) when |t —s| < A; and s € [~1.1tg, 1.1¢¢]. In
case (ii) where s > 1.1tg, there exists Ay > 0 such that ¢ > ¢, when |t —
s| < Agz. Assuming this, by (C.2), the second term of (EIl) is non-negative,
and by Condition (C.4) the first term of (HI)) is not smaller than c¢hm(1 — h(s)),
where ¢, = infy~q {h'(£)2/(1 — h(t))? + h"(t)/(1 — h(t))}. Therefore, K}'(t,s) >
chmh(s)(1 — h(s)) when |t — s| < Ay and s > 1.1ty. Similarly, it can be shown
that in case (iii) there exist A3 > 0 and ¢4 > 0 such that K/ (t,s) > cimh(s)(1—
h(s)) when |t —s| < Az and s < —1.1t5. Define A = min{A;, Ay, As} and
co = (1/2) min{1/2,c4,c4}. From the three cases discussed above and the fact
K(s,s) = Kj(s,s) =0, Lemma 2 follows under (C.1), (C.2) and (C.4).

Now suppose that (C.1) and (C.5) hold. If |s| < max(sg, 1.1¢¢), Lemma 2 can
be proved following the same lines as in case (i) above. If |s| > max(so, 1.1tg),
Lemma 2 is obvious when (C.5) holds.

Proof of Lemma 3. It is easy to find that R} (t,s) = h/(t)/h(t)+h'(t)/(1 — h(t))
—1/(s)/(h(s)(1 = h(s)) and Rf(t,s) = h'(t)*/(1 = h(t))* + R"(t)/(1 — h(t)) —
[A'(t)2/h(t)? — h"(t)/h(t)]. As shown in Lemma 1, (C.1) implies that lim; .
h(t) = 0, limy— 400 h(t) = 1, limy— 400 A/ (t) = 0, and lim;_, 4o A”(t) = 0. These
results ensure that sup,c; |R/(t)?/(1—h(t))* + h"(t)/(1 —h(t))] < oo and
sup;s g, |1/ (t)%/h(t)2=h" () /h(t)| < co. This and (C.3) imply that |R}(t,s)| < c3
and, accordingly, |R(t,s)| < c3(t — s)? for some constant c3 not depending on ¢
and s.

Now by (C.1) and the Mean Value Theorem,

-~ h(t1) h(t2) ' (s)
R(ti,s) = Rtz,s) = log 1= hl(tl) . hz(tg) T ARy )
R (t) ' (s)

= h(t*)(l — h(t*)) - h(s)(l — h(s)) (tl — t2)

= [Ri(t", 5) — Ri(s, s)](t1 — t2) = R{(t™, s)(t" — 5)(t1 — t2),

where t* is some value in between ¢ and to, and t** is in between t* and s. It is
easy to see that |R(t1,s) — R(te, s)| < c3([t1 — s| + [t2 — s|)[t1 — ta|.
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Proof of Lemma 4. The proof of ([[d]) is an application of Lemma 5. Knowing
that m;y; follows a Bin(m;, mo;) distribution and writing Z;; = m;h’(x! ﬁo)wo_il(l—
Woi)_l(yi—ﬂ'()i)xij, it can be verified that EZ;; = 0, EZZ?]- = [mih (x¢60)?/ (moi(1—
7)) w2 zi, and Yo7 1EZ2 = I,(6o)(4,5) — oo by (C.7). Further, by (C.7) and
(C.8) and the inequality )\1{I (Bo)} < In(50)(4.7) < Mp{In(Bo)}, it can be shown
that

(X ﬁo) xt

m2 I(xt 2
2y < SO a0 ) 5 B 1, )

(L= 7o) ™

211 (Lt
S&%Wﬁ%%%%%%ﬂﬁﬂmé%%ﬁ%ﬁ

)
Miln(Bo)}  1n(Bo) (3 J)
~ Mi{In(Bo)} loglog I,(Bo) (4, 5) "

:O< In(ﬂO)(]a]) >
log log In(f0) (4, 5)
Therefore, {Z;;} satisfies all conditions in Lemma 5 and (I]) follows. Then result

(@) follows from (I and (C.9).

Proof of Lemma 6. By the definitions of H((3) and the Fisher information
I,(), it is easy to see that

62 loglog \p{I,(B0)}

O2H %0
353(5) T opopt Ts + In(9) = T + (In(B) = In(50)) + In(Fo),  (42)
where

%_ZW[P%MMM (x4

B ¢
7Tk 1 — )2 (1 — ﬂ'k):| (Ye — )X

Let x(s) = (1 — 2h(s))h'(5)?/(h(s)*(1 = h(s))?) — h"(s)/(h(s)(L — h(s))) and re-

write Ty as

To = mix(xi8) (Y — wor)xkxj, — > mux(x§,8)[(x},8) — h(xi o) xrx},

k=1 k=1
denotcd T7 . TS ( 43)

Note that
g h,(8)2 B h”(s) h,(8)2 B h”(s)
()‘{ 0 h(s)? ufww»}+h@2 hs)

In the proof of Lemma 1 we have seen that lims_ 1 h'(s) = 0 implies |h/(s)| < ¢5
for some constant ¢z, and that |x(s)| < 2¢; under (C.1) and (C.3). From this,

X
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1), and the definition of {v,}, it follows that for any k < n,

X (xk8) (h(xB) — (x4 B0))| T(B € Bu) < clxi (8 — o) I(B€ By)
< cllxillll8 = BollT(B€ Ba) < emy 026,18 — pollI(B€ Bo)
< en'2¢,02 (n" loglogn)'/? = c€,12 (log log n)'/? = o(1). (44)

By ) and (C.11), it is easy to see that |Ts|I(5€ B,) = o(n).
Now let

n n
.o denoted .o
T7(Zv.]) = E ka(chﬁ)(yk_ﬂ-Ok)l'kzxk] o= E Wkij7 i,jg=1,...,p.
k=1 k=1

It is easy to see that EW},;; = 0 and Engij = mymok(1 —WQk)X(XZﬁ)2(l‘ki:Ekj)2 <
ey (Tgizy;)?. Thus according to Condition (C.12) Dy = > p_; EW,?Z-]- < O(n).
If limy, o0 Drij < 00, we have T7(i,j) = o(ay,) a.s. for any sequence a, T oo,
according to a strong law of large numbers given by Theorem 6.6 of Petrov(1995,
p.209), implying T7(i,7) = O(1) a.s.. If lim, o Dyi; = +00, by Theorem 6.17
of Petrov(1995, p.222), we have T7(i,j) = o(Diﬁ) = o(n?3) as..

The preceding results about 77 and Ty show that T4I(8 € B,) = o(n)
a.s.. Knowing that I,,(3) = 31 [m;h' (x¢8)%/mi(1 — m;)]x;x%, one can show that
|1,(B) — I.(Bo)| = o(n) for 5 € B,,. This is due to (C.11) and the following facts.
First, h'(s)?/h(s)(1 — h(s)) has bounded first order derivative by (C.1), (C.3)
and (C.6). Second, maxj<j<, [x.0 — xL6o|I(8€ By) = o(1) by (Ed).

From the results for Ty and I,,(3) — I,(5), (C.7), (C.9), and ({2, it follows
that 02H (3)/0B03! is positive definite and of order O(n) on 8 € B, and for
almost surely all sample sequences {y1,...,y,} when n is sufficiently large. The
lemma is proved.

Testing Conditions (C.1) to (C.6) for the logistic link. Here gi(7) =
log(m/(1 — 7)) and the inverse link is hq(t) = /(1 + €')~L. Obviously, lim;_, o,
hi(t) = 0, limy— o0 ha(t) = 1, K (t) = e (1 4+ €') 72, W) (t) = et(1 — et)(1 + €') 73,
and h{’(t) = (et — 4e?* + €31)(1 + e!)~*. It is easy to see that |h](t)] < 1 and
|h}'(t)] < 6. Hence (C.1) is satisfied. It is also easy to see that (C.2) is satisfied
for any ¢y > 0. Now it can be shown that

hy (t)? P _m@? k@l e

( o
(1—hi(t)2  1—hi(t) hi(t)2 hi(t) (Q+e)2 hy(t). (45)

From this, supy..,0 [h4 (£)?/(1 = ha (£))? + 11 (£) /(1 = ha ()] = supss gy [P (1)?/
hi(t)? — K (t)/h1(t)] = supssys0 P4 (t) = Ry (to) < co. So (C.3) is satisfied. But
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(C.4) is not satisfied because inf;~¢,~0 ) (t) = infiey,<0 R (t) = 0. Concerning
(C.5), it can be verified that

1 5\ 2 s—t : >
+e> Z{e , if t > s, (46)

1+ et el=s, ift < s.

u(t,s) + vo(t, s) = e (

So u(t,s) + v(t,s) > e 20 if [t — 5| < Ag. Therefore (C.5) is satisfied. Finally,
since R} (s)hf(s)/h1(s)(1 — h1(s)) = hY(s), (C.6) is satisfied.

Testing Conditions (C.1) to (C.6) for the probit link. Here go(m) =
®~1(7) and the inverse probit link is ha(t) = ®(t) = ffoo(27r)_1/2e_32/2ds. It
is easy to see that hh(t) = (2m)"Y2e2 Bi(t) = —(t/v/2m)e 2 and hY/(t) =
(2 = 1)/v2m)e /2. Since [R4(t)| < (27)" /2712 and —(27)"Y/2 < BY(t) <
(2/v/21)e=3/2 it follows that both hj(t) and h4(t) are uniformly continuous,
so (C.1) is satisfied. Condition (C.2) is clearly satisfied for any tog > 0. By
repeatedly applying I’'Hospital’s rule, it can be shown that

- R ()2 hy(t) et o3t t+°° e~ 25 ds .
t—+00 (1 — hg(t))2 1-— hg(t) C t5%oo U:‘OO 6_%82(18]2 -
M2 myw et il et
t——o00 hg(t)2 ho (t) [ U‘ioo e—%82d8]2 N

This suggests that (C.3) and (C.4) hold if ¢( is taken to be sufficiently large. By
applying I'Hospital’s rule, one can show that

hL(t)h! _2
lim 2( )hz(t) — lim t i 2te -
t—+oo h2 (t)(l — h2 (t)) t—+o0 f_oo e~ 25" ds t—l—oo e~ 352 ds

Hence (C.6) holds. Now we proceed to prove that (C.5) does not hold for ho(t).
Let t = s + A. By repeatedly applying I’Hospital’s rule, one can show that

1—ho(s)  hy(s+4A)

li =1 f A 4
sotoo T —ha(s+A) (s or any S (47)
. hy(s+A)°
8211100(1 — ha(s)) - THGE 0 for any A, (48)
: (1—ha(s))® hy(s+A4)
S T TGt A mer L foraw 4, (49)
— if A <0
_ Wy(s+A) 7o LT

0, if A >0.
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From 7)) and ES) we see lims oo u(s + A,s) = 1 for any A. From (Ed) and
Bd) we have

+o0o, f A<O
lim v(s+A,s) =10, fA=0
s 1, ifA>O0.

Therefore, limg_, 4 oo u(s + A, s) +v(s+ A,s) = 0if A > 0. Hence (C.5) does not
hold.

Testing Conditions (C.1) to (C.6) for the complementary log-log link.
Here g3(m) = log{—1log(1 — 7)} and the inverse complementary log-log link is
ha(t) = 1 —e . Also hh(t) = e, B4(t) = (1 — e')et¢" and hY(t) =
(1 — 3e! + e2)e!=¢". Tt is easy to see that limy oo h5(t) = limy_io0 hY(t) =
lim;_ 1o A4’ (t) = 0, implying that (C.1) is satisfied. Condition (C.2) apparently
holds for any ¢y > 0. Applying I’'Hospital’s rule, one can show that

/ " ot 2t—et
o IOMO e
t—+oo hg(t)(l - hg(t)) t—too 1 —e€
which implies (C.6). Note that
Ry (t)? Ry (t
3(t) 3() =e' - 400 ast— +oo (51)

(1—hs(t)*  1—hs(t)
so (C.3) does not hold. By applying I'Hospital’s rule,

1 (1\2 " 2t—2et _ ty t—et
T L (ML 1O QRIS B B e ) QY
t——00 hg(t)2 h3 (t) t——o00 (1 —e € )2 1—e¢
This suggests (C.4) does not hold. But this and (EIl) suggest that (C.3) would

be satisfied if one considers only those ¢ values bounded from above by a finite
value. To see whether (C.5) is satisfied, write t = s + A. It can be shown that

_eS 1-— e_es 2 — 288
’LL(S + A, S) = (1 — € )€2A + WG2A+(1 2 ) s (52)

) _ ,—€e%)\2 s
os 4 A s) = (1— ) (e — ) - LT S cametyans 28y (53)

1 —eet?

o (T—e )1 - e (1=¢%)
= (B — AT )( 65(1)5 e ), (54)

By applying I'Hospital’s rule, one can show from (B2)) that

+oo, if A < —log2
lim u(s+A,s)=1 and lim u(s+A,s) =< 1, if A=—1log2 (55)
, if A>—log2.

§——00 s—+400 2A
e
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Similarly, from (B3)) and (B4), respectively, we have

+oo ifA<O
lim v(s+A,s)=e®—1 and lim v(s+A,s) =<0, if A=0 (56)
e e —e?2if A > 0.

From(BH) and (BB) we have limg_ o {u(s + A, s) +v(s + A, s)} = e® and

400, ifA<O
lim {u(s+A,s)+v(s+A,s)} =1 1, if A=0 (57)
e 0, ifA>o0.

From (&) it is easy to see that (C.5) does not hold for any Ay > 0. On the other
hand, by using the inequality e — 1 — u > 0 one can show that

u(s + A, s) +o(s+ A, s) = (1 —e e %

(1- 6—65)2 eA—s-i—(l—eA)eS [e—eS+A

A —e’\ —s A
m +68+ —1]2(1—66)6 Se=.

Using e* — 1 —u > 0 again, one can see that (1 — e ®)e™ is a decreasing
function. Thus, there exists an so > 0 such that u(s + A,s) +v(s + A,s) >
(1—e¢ "°)e®0F2 when s < —sg. Therefore, inf|;_g>ng,s<—sotult, s) +o(t,s)} >
(1 —e=€ )00 > 0, suggesting that (C.5) would hold if we focus on h3(t) <
1 — ¢’ for certain ¢’ only.

Testing Conditions (C.1) to (C.6) for the log-log link. Here the link
is ga(m) = —log{—logn} and its inverse is h4(t) = e~¢ '. Therefore, h/j(t) =
e RI(E) = (et —1)e ¢ and hY'(t) = (1—3e P +e 2)e ¢ Tt is casy
to see that limy— 1o b} (t) = limy— 10 A () = limy— 100 )/ (t) = 0, implying that
(C.1) is satisfied. Condition (C.2) apparently holds for any ¢y > 0. Applying
I’Hospital’s rule, one can show that

!/ t i —t _ 1 —2t—67t
OO et et
t—foo hy(t)(1 — hy(t)) t—too 1—e¢
which implies (C.6). Note that
Ry(t)? Rt
1t 4():e_t—>+oo as t — —o0, (58)

ha(t)?  hy(t)

so (C.3) does not hold. By applying I'Hospital’s rule,

. Y (t)2 h//(t) . e—2t—2e*t (e—t_l)e—t—e*t
1 4 4 =1 =0.
tii“oo{(l—h4(t))2+1—h4(t) PR e e
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This suggests (C.4) does not hold. But this and (E8]) suggest that (C.3) would
be satisfied if one considers only those ¢ values bounded from below by a finite
value. To see whether (C.5) is satisfied, write t = s + A. It can be shown that

s 1—e € )2 “Aye-s
u(S—i—A,S):(l — e ¢ )6—2A + ﬁe—2A+(l—Qe Ae 7 (59)

(1—ec )
l—e—e?
(1 _ 6_678)(1 . ee*S(l—e*A))

e=s(1—e¢ %) '

U(S+A, 8) :(1_6—6*3)(85—A _6—2A)_ 6675(1—6*A)(68—A _6—2A)(60)

(e—A _ €—2A—s)

(61)

By applying I'Hospital’s rule, one can show from (B9) that

e 22 if A <log?2
liIJ]rn u(s+A,s)=1 and lim u(s+A,s) = z, if A=1log2 (62)

+o00, if A >log2.
Similarly, from (B0) and (G1I), respectively, we have

e 22 if A <O
ligxrl v(s+A, s)=e 2 —1 and lim v(s+A,s)=14 0, ifA=0 (63)
ske e 4o, A0

From(B2) and [B3) we have limg . oo {u(s + A, s) +v(s + A, s)} = e > and

0, if A<0
lim {u(s+A,s)+v(s+A,s)} =11, if A=0 (64)
T +o00, if A>0.

From (&) it is easy to see that (C.5) does not hold for any Ag > 0. On the other
hand, by using the inequality e* —1 —u > 0 one can show that

u(s + A, s)+v(s+4A,s)

s 1— —e7%\2 3 . o
S )ge_A%_E§:Z§?:%§5€_A+u_GAk R i |

>(1—e ¢ )efe A,

Using e“—1—u > 0 again, one can see that (1 —6_673)68 is an increasing function.
Thus, there exists an s > 0 such that u(s+A, s)+v(s+A,s) > (1—e™¢ )eso~4
when s > sg. Therefore, inf},_g>aq s5>501u(t; s) +0(t,8)} > (1 - e™¢ 0)es0R0 >
0, suggesting that (C.5) would hold if we focus on h4(t) > ¢” for certain §” only.

Example. A link function yielding local MLEs. Let ho(t) = @' arctan ¢+
0.5 4+ gt 2sin?t with @ = 3.14159---, ¢ = 0.1, and —co < t < 4o00. Our link
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function is defined as the inverse of hg(t). The function ho(t) and its first three
derivatives are plotted in Figure 2. Later we show that ho(t) defines a strictly
increasing cumulative distribution function and satisfies (C.1), (C.3), (C.5) and
(C.6), but not (C.2) and (C.4). Therefore, the main results of this paper still

apply for ho(t).

loglik
-200 -100
1 1 1 1
| \]
loglik
-20.60
1 1 1 1 1 1

-20.75

1.5

ho(t) 1st loglik derivative
0.0 0.4 0.8 0 20 40 60
1 1 1 1 L 1 1 1 1 1 1
o & &
@ @
o
hg)(t) 1st loglik derivative
0.00 0.15 0.30 -0 0.5
1 1 1 1 1 1 1 1 1 1 1 1

he (t)
0.2 00
1 1 1 1
ho' ()
0.6 -02 02
1 1 1 1 1

T T T T T T T T
-10 -5 0 5 10 -10 -5 0 5 10
t t

Figure 2. In row 1 the left plot is for ¢(3) vs. [ while its enlargement near
the local maxima is given by the right plot. In row 2 the left plot is for £/(3)
vs. 3 while its enlargement near the stationary points is given by the right
plot. The other four plots are for the inverse link function ho(t) and its first
three derivatives.

Now suppose the response variable Y = Z/m is related to a covariate x
through hy () = Bz, and that we have two observations (z1,m, 1) = (6,10, 1)
and (zg,mg, x2) = (47,50, 2). Then the log-likelihood function, ignoring an irrel-
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evant constant, is £(3) = 6log ho(3) + 41log(1 — ho(5)) +471og ho(23) + 3log(1 —
ho(20)); the likelihood equation is d¢/d3 = (10hg(5)/ho(B)(1 — ho(5)))(0.6 —
ho(B)) + (1001 (28) /ho(28)(1 — ho(28)))(0.94 — ho(28)) = 0. By plotting df/dg3
and /() against (3 (see Figure 2) and applying the Newton-Raphson algorithm,
we find there are two local maximizers of £(/3), namely B = 0.923 and 32 = 1.936,
which are the local MLEs of §; there is one local minimizer [?3 = 1.243. The
log-likelihoods at these (8 points are —20.63, —20.49 and —20.67 respectively.

In order to test (C.1) to (C.6) for ho(t), we need the following inequalities
based on Taylor expansions for sint and cost.

1. When ¢t > 0, (la) sint > —1, (1b) sint < ¢, (1c) sint > t — t3/6, (1d)
sint <t —t3/6 +t5/120 and (le) sint >t — ¢3/6 + t5/120 — ¢7 /5040.

2. When ¢t < 0, (2a) sint > —1, (2b) sint > ¢, (2c) sint < t — t3/6, (2d)
sint >t —t3/6 + t5/120 and (2e) sint < t — t3/6 + t5/120 — ¢7 /5040.

3. Foranyt # 0, (3a) |cost| < 1, (3b) cost > 1—1t2/2, (3c) cost < 1—t%/2+1*/24
and (3d) cost > 1 —t2/2 +t*/24 — 5/720.

We see that hf(t) = w1(1+t?)~1 + gt™2sin 2t + gt ~3(cos 2t — 1). We proceed
to prove h{(t) > 0. When t < —+/2.5, using inequalities (2a) and (3a), h{(t) >
w1+ 27— qt72 > 0.44t72(1 +t2)71 > 0. When —/2.5 <t <0, using (2d)
and (3c), hy(t) > w11 +3) 71 — (2/3)qt(1 — (2/5)t?) > 0. When 0 < ¢ < 1.32,
using (1c) and (3d), hy(t) > w11 + t2)~! — (2/3)qt — (4/45)qt® > 0.0076.
When 1.32 < ¢ < 1.62, using (le) and (3d), hy(t) > w11 +t2)~! — (2/3)qt +
(8/315)qt3(7 — t?) > 0.0053. When ¢t > 1.62, using (la) and (3a), hj(t) >
o (1+82) gt 72 —2qt73 > (1+42) "% 2[(w L —q)t2 —2qt — (1+2/1.62)q] > 0,
because (@™t — ¢)t? — 2qt — (14 2/1.62)q has two roots at —0.65 and 1.57. Now
it is easy to see that h((t) is positive.

The second and third derivatives of ho(t) are found to be h{j(t) = —2w~1t(1+
t2)72 — qt~4[3 cos 2t — 3+ 4t sin 2t —2t% cos 2t] and h{(t) = w1 (612 —2)(1+¢2) 3+
qt[12cos 2t — 12 + 18t sin 2t — 12¢2 cos 2t — 4¢3 sin 2t]. By repeatedly applying
I'Hospital’s rule, it can be shown that lim;—, o ho(t) = 0, lim;—, 1 o0 ho(t) = 1 and
limy_q h{(t) = w1, limy_oh{(t) = —2/3q and lim;_o h{'(t) = —2w L. There-
fore, (C.1) is satisfied for ho(t).

Using 1’'Hospital’s rule, one can also show that lim; . o t2(1/2—o ! arctan t)
= +oo and limy_, o, t?(1/2+w larctant) = +oo. Using these results, and those
in the previous paragraph, one can show that

i ho(t)?  hg(t) —0. lim ho(t)? | hg(t) 4w ? 44
t—too (1—ho(t))2 '1—ho(t) =0 (1—ho(t))2 1—ho(t) (1-2¢q)2 3-6q’
Wt () Cm? @ 4o g
t—}l—noo ho(t)2_h0(t)_0 and %E}(l) ho(t) B

2 ho(t)  (1429)% 3+6q
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Therefore (C.3) holds and (C.4) does not hold for hg(t). The condition (C.6) can
also be deduced from the above results.

It is easy to see that hg(t) is positive when cos2t = 1 and ¢ is sufficiently
large. Thus (C.2) does not hold for hg(t).

In order to verify (C.5) for ho(t), write ¢ = s + A and tentatively assume
|A] <0.2. It is easy to show that, uniformly on |A| < 0.2,

im 1 —ho(s) 5(1/2 — w~!arctan s) — gs~'sin’ s 1, (65)
s—too 1—ho(s+A) s(3—w ! arctan(s+A))—gs(s+A)2sin?(s+A) -
ho(s) s(3 +w Larctan s) + gs~!sin® s _1 (66)

sotoo ho(s + A) s(3+w L arctan(s+A))+gs(s+A)~2sin?(s+A)

because lim,_, o0 s(1/2—w arctans) = w1, lim,__o 5(5+w ! arctans) =
w1 and lims_, +o, w ™~ s[arctan(s+A)—arctan s] = 0 uniformly on |A| < 0.2. Tt
can also be shown that s?[arctan(s—0.2)—arctan s] < s?[arctan(s+A)—arctan s] <
s?[arctan(s+0.2) —arctan s], lim,_, 1., s?[arctan(s=+0.2) —arctan s] = +0.2 and
|sin?(s+A) — sin? s| < |A]. Thus, uniformly on |A| < 0.2,

limsup s%|ho(s+A) — ho(s)]

s—+o00

< limsup w~'s?| arctan(s+A)—arctan s|

s—+oo
+ lim sup gs?(s+A) 72| sin?(s+A) —sin® s| + limsup ¢|s*(s+A) "2 —1|sin® s
s—+oo s—+oo
<02w '+ ¢|A| <0.2(w ! +¢q). (67)

Now we can write h(s+A)/hy(s) =1+ (A+ B+ C)/D, where
—w1s2(2sA + A?) - —0.4w Y s]? — 0.04w 1 52

[1+(s+A)2](1+s2) = [14(]s|-0.2)2](1+52) ~
B qs®[sin 2(s+A) —sin 2s] — q[2s A+ A?] sin 2s S —q(0.45%40.4/s]40.04)
(s + A)? - (|s] = 0.2)2 ’
C = —2¢s*(s+A)3sin?(s+A) + 2gs tsin? s > —2¢s%(5—0.2) 73 —2¢|s| !,
D=w1s?(1+5%*) 1 +¢sin2s—2¢s 'sin’?s and l‘lrln inf D =w !—q.
S|—00

From the above properties of A, B,C and D we have

/
lim inf M
|s]—o0 ho(s)

By 3),E4), @), lims— 400 ho(s) = 1, and lims_, o, 1—hg(s) = 1, it follows that

>1—-04q(w ! —¢)~" uniformly on |A| < 0.2. (68)

lim inf u(s4+A, s) > (1-0.4¢(w ' —¢)™!)? = 0.667 uniformly on |A| < 0.2. (69)

|s|—o0
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Now consider h{j(s+A). We have |h](s+A)| < 201 (]s]+0.2)(1+(]s|—0.2)%) "2 +
2q¢(|s]-0.2)72[3(|s]-0.2) 2 +2(|s|-0.2) "' +1]. Thus lim sup 500 s2|hg(s+A)] < 2¢g
uniformly on |A| < 0.2. Accordingly, since s?h{(s) = D and lim inf|g oo D =
w_l_Q7

S| (s+A)] 2
lim su 0 <
s [SPHE)E T (@ 1—q)?

From (€4), (G6)), (67) and (), it can be seen that, uniformly on |A| < 0.2,

uniformly on |A| < 0.2. (70)

limsup [v(s+A, s)|

|s| =00

(1 — ho(s))ho(s) s*|hg (s +A)]

—1i 2 ho (54 A) — ho(s)| 2T D)
S | Gt A ho(s + A | A =T G
1
< 0dg(@™ +q) 0.351. (71)

(w='=q)

By (69) and ([I)), we have lim inf ;| {u(s+A, s) +v(s+A, s)} > 0.316 uniformly
on |A| < 0.2, hence (C.5) holds.
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