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Abstract: Standard methods of analysis can give misleading results when some

observations are nonignorably missing. Analysts currently assess nonignorability

by performing sensitivity analyses using models with and without a nonignorable

component. Because this approach can involve complicated modeling and arduous

computation, and can yield results that are highly sensitive to untestable model

assumptions, there is a need for a simple screening tool that measures the poten-

tial impact of nonignorability on an analysis. We propose a measure based on a

Taylor-series approximation to the nonignorable likelihood, evaluated at the pa-

rameter estimates under the assumption of ignorability. From this approximate

likelihood, we derive an index of sensitivity to nonignorability , or ISNI . One can

compute ISNI without estimating a nonignorable model or positing specific values

of a nonignorability parameter. We interpret ISNI in terms of an intuitive pa-

rameter that captures the extent of sensitivity. We derive a general expression for

ISNI in the generalized linear model with fully observed predictors and potentially

missing outcomes. We illustrate the method with two regression examples.
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1. Introduction

A common model for data that are subject to incompleteness is the selec-
tion model , which factors the joint distribution of the variables of interest and
missingness indicators into two parts: a complete-data model that describes the
distribution of the underlying complete data, and a missing-data mechanism
that describes the distribution of the missing-data indicators given the underly-
ing complete data. In most cases we hope to ignore the missing observations by
treating them as though we had no intention of collecting them in the first place;
that is, we assume that our achieved sample size is the intended sample size and
proceed with estimation and testing. We also want to ignore the missing-data
mechanism in the sense of avoiding estimating its parameters. We say that the
missing data mechanism is ignorable if the data and model are such that we can
proceed in this way without imperiling the validity of our inferences.
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Rubin (1976) defined a typology of incomplete-data models and related it
to sufficient conditions for ignorability in the major modes of inference. Data
are missing completely at random (MCAR) if the probability of the observed
missingness indicator, conditional on the notional (i.e., intended) complete data,
does not depend on the values of either the observed or missing observations.
MCAR data are ignorable in the sense that frequentist inferences conditional on
the observed pattern of missing data need not include a model for the missing-
data mechanism. A model that generates only MCAR data is called an MCAR
mechanism (Little and Rubin (2002)). Data are missing at random (MAR) if the
probability of the observed missingness indicator, given the notional complete
data, does not depend on the values of the missing observations. If the data
are MAR and the parameters of the complete-data model and the missing-data
mechanism are distinct, then Bayesian and direct-likelihood inferences that ignore
the missing data mechanism are correct — that is, one can ignore any “nuisance”
parameters in the missing data model and simply maximize a likelihood that is a
function of the parameters of the complete-data distribution. A model that gives
rise only to MAR data is said to be an MAR mechanism. The missingness is said
to be nonignorable if inferences that ignore the missing data and its mechanism,
in this sense, are invalid. See Heitjan and Basu (1996) for illustrative examples.

Departures from ignorability can substantially affect inferences, and in ap-
plications it is seldom obvious from the context whether an assumption of ignor-
ability is justified. Currently, data analysts who face missing data can investi-
gate nonignorability directly by positing and estimating nonignorable selection
models (e.g., Schluchter (1992), Diggle and Kenward (1994), Troxel, Harrington
and Lipsitz (1998)). Unfortunately, such models can be difficult to identify and
estimate from real data, because one cannot directly assess the dependence of
the missingness probability on observations that are themselves missing. Any
hypothesis tests of ignorability must be carried out within the context of the
model’s assumptions, which are typically unverifiable from the observed data
alone. Alternatively, one can fit pattern-mixture models (e.g., Little and Wang
(1996); Hogan and Laird (1997)) or frailty models (e.g., Pulkstenis, Ten Have
and Landis (1998)). To accommodate nonignorability, however, these models
also require important structural assumptions that can be difficult to justify.

Another alternative is sensitivity analysis, in which one estimates models
under a range of assumptions about the nonignorability parameters, and then
assesses the impact of these parameters on key inferences. If there is little ef-
fect, the model is robust to specification of the missing data component, and
the simpler, ignorable analysis is valid. Troxel (1998) and Scharfstein, Rotnitzky
and Robins (1999) present analyses of this kind, in the context of selection mod-
els for likelihood-based and semiparametric inference, respectively. Little and
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Wang (1996) and Daniels and Hogan (2000) have developed analogous methods
for pattern-mixture model analysis. Sensitivity analysis avoids some of the un-
certainties of direct nonignorable modeling, but it can still involve strong and
unverifiable assumptions (e.g., assumptions about the complete data distribu-
tion). Moreover, computations can be difficult under some models.

Other authors have considered studying sensitivity only in the neighborhood
of the MAR model. Copas and Li (1997) proposed an approach in which the
complete-data component is a normal linear model whose error term is corre-
lated with the underlying normal error term in a probit selection model for the
missingness probability. Their nonignorability parameter is the correlation of the
two errors, and they examined sensitivity of various inferences to small depar-
tures from MAR. Copas and Eguchi (2001) generalized this approach, defining
a sensitivity parameter as the variance, with respect to the outcome, of the log
odds of selection. Verbeke, et al. (2001) have applied the local influence approach
of Cook (1986) to the problem of potentially nonignorable dropout in normally
distributed longitudinal data. Their approach posits a separate nonignorabil-
ity parameter for each subject, and measures sensitivity by the curvature of the
graph of the nonignorability parameters and the likelihood displacement , which is
the effect of a small perturbation from ignorability on the likelihood. With their
method, one can identify the effects of nonignorability in individual observations,
or collections of observations, on parameter estimates.

In this article, we propose a local sensitivity index that generalizes the ap-
proach of Copas and Li (1997) to encompass a general parametric complete-
data model together with a general parametric selection model. Like theirs, our
method focuses on the behavior of the MLE in the neighborhood of the MAR
model, which we believe is the area of greatest interest in most applications.
Because it is easy to compute — requiring one to fit only the MAR model and
a single binary regression — we envision our index as a tool for screening data,
allowing the analyst to evaluate the potential effects of nonignorability without
actually fitting a nonignorable model. Advantages of our generalization compared
to that of Copas and Eguchi (2001) include greater simplicity and intuitive ap-
peal, as well as the computational ease noted above. Although we focus here on
the important and pervasive problem of missing outcomes in generalized linear
models, our general equations are valid in any parametric selection model.

We describe the model and index in Section 2. In Section 3, we derive
a general expression for our index in the generalized linear model, and show
explicit formulas for some key distributions; formulas for other distributions are
given in Appendix 2. In Section 4, we describe the use and interpretation of
the index. In Section 5 we illustrate the method with a complete data set from
which we delete observations in a variety of patterns. In Section 6 we apply the
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method to an incomplete data set that others have previously analyzed using
nonignorable models. Section 7 concludes with further discussion of the model.

2. Model and Index Development

Consider estimation of a parameter θ of the conditional distribution of an
outcome Y given predictors Z, whose density is f

Yi|Zi

θ (yi|zi), for independent
subjects i = 1, . . . , n. Following the notation of Heitjan (1994), let Gi be the
completeness indicator that takes the value 1 for subjects who are observed and
0 for subjects who are missing, and assume that the probability of being observed
depends on yi and a set of predictors xi (possibly, but not necessarily, overlapping
with zi). We assume that Yi is independent of Xi given Zi, i.e., that Xi serves only
to inform the probability of missingness and contains no additional predictive
information about Yi.

We allow the probability of Yi being observed to depend on the value of Yi

through a parameter γ1, as follows:

Prγ [Gi = 1|Yi = yi,Xi = xi] = h(γ′
0xi + γ1yi), (1)

where h(·) is a specified monotonic link function (for example, the logit or probit).
Thus a value of γ1 = 0 implies that the missing-data mechanism is MAR. This
is a straightforward way to describe dependence on Y and — in the absence of
specific knowledge about the form of that dependence — the most direct. The
log likelihood under this model, L(θ, γ; y, g, z, x), is

L =
n∑

i=1

{
gi

[
ln f

Yi|Zi

θ (yi|zi) + ln h(γ′
0xi + γ1yi)

]

+(1 − gi) ln
∫

f
Yi|Zi

θ (u|zi)
[
1 − h(γ′

0xi + γ1u)
]
du
}
.

In a sensitivity analysis, one evaluates the extent to which an estimate of θ

for fixed γ1, say θ̂(γ1), depends on the value of γ1. Our notion is to execute this
analysis in a neighborhood of the MAR model by determining the rate at which
θ̂(γ1) departs from θ̂0 = θ̂(0) as γ1 changes from zero. Consequently, we base our
index on the derivative of θ̂(γ1) with respect to γ1, evaluated at the ignorable
model γ1 = 0. We show these steps in detail below.

Note here that we do not assume that the model is correctly specified.
Rather, we assume only that a data analyst judges the complete-data model
to be a convenient approximation to reality, but is concerned that conclusions
based on the model (for example, in the form of the MLE) may be substantially
misleading if the missingness mechanism is nonignorable. The purpose of the
sensitivity analysis is to determine whether inferences based on the model in
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question are sensitive, not to determine whether all possible inferences based on
the data are sensitive.

To express the MLE as a function of γ1, we first expand L around θ = θ̂0 (the
MLE of θ assuming ignorability), γ0 = γ̂00 (the MLE of γ0 assuming ignorability)
and γ1 = 0 as follows:

L(θ, γ0, γ1) ≈ L(θ̂0, γ̂00, 0) +
[
(θ − θ̂0)′, (γ0 − γ̂00)′, γ1

]
∇L

+
1
2

[
(θ − θ̂0)′, (γ0 − γ̂00)′, γ1

]
∇2L

[
(θ − θ̂0)′, (γ0 − γ̂00)′, γ1

]′
,

where

∇L =




∂L
∂θ

∂L
∂γ0

∂L
∂γ1



∣∣∣∣∣∣∣∣∣
θ=θ̂0,γ0=γ̂00,γ1=0

,

∇2L =




∂2L
∂θ∂θ′

∂2L
∂θ∂γ′

0

∂2L
∂θ∂γ1

∂2L
∂γ0∂θ′

∂2L
∂γ0∂γ′

0

∂2L
∂γ0∂γ1

∂2L
∂γ1∂θ′

∂2L
∂γ1∂γ′

0

∂2L
∂γ2

1



∣∣∣∣∣∣∣∣∣
θ=θ̂0,γ0=γ̂00,γ1=0

.

We rewrite ∇L as {∇Li}i=1,2,3 and ∇2L as {∇2Lij}i,j=1,2,3 in an obvious nota-
tion. Appendix 1 presents general formulas for the elements of ∇L and ∇2L in
our selection model.

Next we write the log likelihood as a function of θ and γ0 for fixed γ1 and
differentiate, finding the maximum likelihood estimate (θ̂, γ̂0) as a function of
θ̂0, γ̂00, and γ1:(

θ̂(γ1)
γ̂0(γ1)

)
≈
(

θ̂0

γ̂00

)
− γ1

(
∇2L11 ∇2L12

∇2L21 ∇2L22

)−1(∇2L13

∇2L23

)
.

The index of sensitivity to nonignorability (ISNI) is the derivative of θ̂ with
respect to γ1, evaluated at γ1 = 0:

ISNI =
∂θ̂(γ1)
∂γ1

∣∣∣∣∣
γ1=0

= −
(
∇2L11

)−1 ∇2L13.

This quantity describes the rate of change of θ̂ with respect to γ1 — that is, the
amount by which a unit change in the nonignorability parameter displaces the
MLE of θ from its value θ̂0 under the MAR model. Note that the first factor in
ISNI is just the estimated variance-covariance matrix of θ̂ under MAR, and the
second factor is a measure of the orthogonality of θ and γ1.

One can apply this general development to any parametric model by speci-
fying f

Yi|Zi

θ (·|·) and h(·). In the next section we derive some special cases within
the class of generalized linear models.
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3. ISNI in Generalized Linear Models

The generalized linear model (McCullagh and Nelder (1989)) assumes that
the components Yi, i = 1, . . . , n of a random vector Y are independent with
densities

fYi
θ (yi) = exp

{[
yiλi(θ1) − b(λi(θ1))

]
a(θ2) + c(yi, θ2)

}
,

where λ is a vector of canonical parameters; functions b(·) and c(·) determine a
particular family; θ1 is a vector of regression coefficients, denoted θ1 = (θ11, . . .,
θ1p)′, attached to predictors z = (z1, . . . , zp) through a linear predictor η =∑p

j=1 θ1jzj; θ2 is a dispersion parameter; and a(θ2) is commonly of the form
a(θ2) = θ2/w where w is a known weight. A link function relates the linear
predictor η to the expected value µ of Y , i.e., g(µ) = η = θ′1z.

We assume that the complete-data model is of this type and that the prob-
ability of being observed (the selection model) is of the form given above with a
logistic link for h:

Prγ [Gi = 1|Yi = yi,Xi = xi] = h(γ′
0xi + γ1yi) =

exp(γ′
0xi + γ1yi)

1 + exp(γ′
0xi + γ1yi)

. (2)

Note that for the logistic model, h′ = h(1−h) and h′′ = h(1−h)(1−2h). Again,
the selection-model predictors xi need not overlap with the complete-data model
predictors zi.

Following the development in the previous section, a general expression for
ISNI in the generalized linear model with a logistic selection model is

ISNI =



[∑

gi(yi
∂2λi

∂θ2
1
− ∂2b

∂θ2
1
)a(θ2)

]−1∑
(1 − gi)hi

∂2b
∂λi∂θ1

0




θ̂0=(θ̂10,θ̂20)

, (3)

where θ̂10 and θ̂20 are ML estimates of θ1 and θ2 assuming γ1 = 0, and hi equals
h(γ̂00xi) as before. Below and in Appendix 2, we present formulas for ISNI in a
range of specific generalized linear models. Our assumption that h(·) is linear in
Y also implies that Var (Y |G) = Var (Y ) (see Little and Wang (1996)) and the
estimated dispersion parameter therefore requires no adjustment; thus we will
present only the ISNI component for the regression parameter θ1.

3.1. Univariate normal data

We consider first the case of independent, normally distributed observa-
tions with common mean µ and variance τ . Applying (3) with an identity link,
we obtain ISNI = −τ̂0 (

∑
gi)

−1∑(1 − gi)hi, where µ̂0 =
∑n

i=1 giyi/
∑n

i=1 gi and
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τ̂0 =
∑n

i=1 gi(yi − µ̂0)2/
∑n

i=1 gi are the usual observed-data MLEs of the mean
and variance. If there are no predictors in the logistic regression for the miss-
ingness mechanism, then

∑
(1 − gi)hi = nonm/n, where n is the total number of

potential subjects and no and nm are the numbers of subjects with yi observed
and missing, respectively. ISNI then simplifies to ISNI = −(nm/n)τ̂0. That is,
the index for the mean is minus the variance estimate times the proportion of
missing observations, and consequently the sensitivity in this case is proportional
to the fraction of data missing.

3.2. Normal linear model

Assume now that Yi∼N (ziβ, τ). Then the index for β is ISNI=−τ̂0(
∑

gizi

z′i)−1∑(1 − gi)hizi or, equivalently, ISNI = −τ̂0 (Z ′
oZo)

−1 Z ′
mhm, where Zo and

Zm are the matrices of predictors for subjects with gi = 1 and gi = 0, respectively;
hm is the vector of hi values for subjects with gi = 0, that is, the vector of
propensity scores for the missing subjects; and τ̂0 is the variance MLE.

Formulas for ISNI in other GLMs appear in Appendix 2.

3.3. Computing

We have written code in S-Plus (Insightful Corporation; Seattle, WA) for
computing ISNI in a generalized linear model with missing outcome data. Code
and data are available at http://www.cceb.upenn.edu/heitjan/isni.

4. Use and Interpretation of ISNI

Recall that γ1 is the parameter linking the outcome yi to the observation
indicator in the nonignorable model. For ease of interpretation, assume hence-
forth that we are using the logistic selection model, in which case γ1 is the log
odds ratio in the observation probability associated with a one-unit change in
y. If γ1 = 1, then a unit change in yi implies that the odds of being observed
increases by a factor of 2.7. This linkage of interpretation to a unit change in
y makes the scale of y relevant, as noted below. Because ISNI is the deriva-
tive of θ̂ with respect to γ1, we can approximate the value of θ̂ for fixed γ1 by
θ̂(γ1) ≈ θ̂0 + ISNIγ1. Thus, if the nonignorability is such that γ1 = 1, we should
adjust each MAR parameter estimate by the corresponding element of the ISNI
vector. When doing preliminary screening for sensitivity to nonignorability, an
appealing parameter to consider is the ratio of ISNI to the standard error (SE)
of a coefficient of interest. If this ratio exceeds 1, then the model is highly sus-
ceptible to nonignorability. In general, both the sample size and the fraction of
missing information will be important, as can be seen directly from the derivation
of ISNI in Section 3.1 for the univariate normal model.
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In models where there is only a single natural scale for the outcome, such as
the Poisson and binomial, one can interpret ISNI directly in this way. For con-
tinuous outcomes, however, where the outcome may be denominated in various
units, the linkage of the log odds interpretation of γ1 to the units of y makes the
scale of the outcome relevant.

Consider transforming Y to aY , and denote the ISNI on the transformed
scale by ISNIaY and the SE for a parameter of interest by SEaY . For a linear
regression coefficient, it is easy to show that

ISNIaY /SEaY = aISNIY /SEY .

Now suppose we transform from Y to aY/σY , where σY is the standard devia-
tion (SD) of Y . The ISNI calculated on this scale, ISNIaY/σY

, is the sensitivity
when a change of 1/a standard deviations in Y is associated with an odds ra-
tio of 2.7. One way to quantify the sensitivity is to determine for which value
of a in this formulation the ISNI is exactly equal to the SE of the regression
parameter. Therefore we propose to calculate a transformation that we call c,
or the sensitivity transformation, defined to be that transformation for which
ISNIcY/σY

/SEcY/σY
= 1. That is, if a change of 1/c standard deviations of Y

is associated with an odds ratio of 2.7 in the observation probability, then the
analysis is sensitive to nonignorability in the sense that ISNI equals the SE of a
regression coefficient of interest. Solving, we have

c = |σY SEY /ISNIY |;
we take absolute value because the sign of the transformation is irrelevant. Note
that c is scale-independent.

An alternative interpretation is that c is the scale on which the sensitivity
is extreme enough that an odds ratio of 2.7 corresponds to an effect on θ̂ of one
standard error. This can be viewed as the minimal nonignorability that would
lead to sensitivity, in units of 1/SD. With this interpretation, c is similar to
the parameters of sensitivity to confounding bias in observational studies, as de-
scribed by Rosenbaum (1987, 1995). Our sensitivity transformation is measured
in terms of inverse standard deviations, but has a similar interpretation as a scale
on which nonignorability is seen to substantially affect inference, in our case by
causing a substantial change in θ̂.

If c is large, then there is sensitivity only if the nonignorability is extreme,
whereas if c is small, say less than 1, there is potential sensitivity even for modest
nonignorability. For example, c = 10 indicates that the data are sensitive to
nonignorability if a 0.1 SD change in Y substantially changes the odds of being
observed. This is severe nonignorability indeed, and stronger than one would
expect in most practical situations. Compare this to c = 0.2, for which sensitivity
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results when a 5-SD change in Y substantially affects the odds of being observed.
Because such a degree of nonignorability seems plausible in many studies, such
a low value of c would cause concern, and could trigger more detailed sensitivity
analysis or nonignorable modeling.

5. Example 1: Smoking and Mortality Data

In this first example, we show how various configurations of missing obser-
vations, all derived from a single complete data set, can affect ISNI and therefore
our evaluation of sensitivity. We apply ISNI to a data set with actual missing
data and all its attendant complications in Section 6.

Our first example concerns data on smoking and mortality in England and
Wales in the early 1970s (Moore and McCabe (1989), citing Occupational Mor-

tality: The Registrar Generals’ Decennial Supplement for England and Wales,

1970–72, Her Majesty’s Stationery Office, London (1978)). The data summarize
a study of men in 25 occupational groups in England using two indices: the
smoking index is the ratio of the average number of cigarettes smoked per day
by men in the occupational group to the average number of cigarettes smoked
per day by all men; the mortality index is the ratio of the rate of deaths from
lung cancer among men in the occupational group to the rate of deaths from lung
cancer among all men. There are no missing values. Figure 1 shows a scatter
plot of the complete data set along with the regression line relating smoking to
mortality. From the complete data, the intercept is −2.885 (SE of 23.034) and
the slope is 1.088 (SE of 0.221).
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Figure 1. Smoking and mortality data with complete-data regression line.
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For demonstration purposes, we ordered the data according to the values
of the smoking index (the predictor). We sequentially selected outcome data
to be “missing,” first singly and then in groups of five. We then calculated
the parameter estimates and their SEs from a linear regression of mortality on
smoking, using the “observed” data only (the ignorable analysis). Then, we
calculated ISNI as −τ̂0(Z ′

oZo)−1Z ′
mhm. Here hm is the vector of propensity scores,

or predicted probabilities of being observed, for the units who have missing data
on mortality, the outcome variable. Table 1 gives an ISNI analysis of the slope
for the data with one value missing at selected places (point 1, point 2 and point
12) and with five consecutive values missing, also at selected places (points 1-5,
points 3-7, points 10-14 and points 20-24). Because the logistic regression of the
observation probability on x gives an infinite slope when all the missing values
are grouped at one end, the propensity scores for the missing subjects in this
configuration are all 0, and ISNI also equals 0. This makes sense, because when
x is a perfect predictor of observation status there is no scope for outcome to
further modify these predictions.

With single points deleted, the ISNI for the slope is largest when points 2
and 24 (not shown) are missing and is smallest when point 12 is missing. On the
whole, the c values are large and suggest only modest sensitivity. For example
when we omit point 2, c = 4.77, suggesting that the slope would be insensitive
unless a change of 1/4.77 SDs was associated with an odds ratio of 2.7 in the
observation probability, which is very strong nonignorability. Note that missing
values in the middle of the range generally have a smaller potential for sensitivity,
because such points also generally have less influence on the slope. In any case,
missing a single point in this dataset can have little effect on slope estimation.

With five adjacent points deleted, ISNI is largest for points 3−7. The sen-
sitivity transformation in this case is 1.73, which says that we begin to have
sensitivity when a change of 1/1.73 SDs is associated with an odds ratio of 2.7
in the observation probability. This is clearly a stronger sensitivity than we saw
with one point omitted, and it could be enough to give an investigator pause
about trusting an MAR analysis.

We observe that in general ISNI is positive when values from the left side
of the graph are missing and negative when values from the right side of the
graph are missing. The ISNI in this case estimates the change in the slope that
would be associated with a γ1 value of 1, which suggests that the observation
probability increases with increasing Y (see (1)). Therefore, the presence of a
missing value suggests that the actual value is smaller than the MAR prediction
for that observation. Missing values at the left of the graph thus suggest that
the slope is larger than its MAR estimate, and consequently are consistent with
a positive ISNI. Missing values at the right of the graph have the opposite effect,
and consequently give negative ISNI.
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Table 1. Smoking and mortality data with missing points.

Missing Slope Sensitivity
Point(s) Estimate SE τ̂0 ISNI Transformation

1 0.967 0.235 315 0.0000 ∞
2 1.000 0.222 313 1.1435 4.77
12 1.085 0.210 315 0.0390 141.94

1−5 0.655 0.317 315 0.0000 ∞
3−7 1.088 0.265 374 4.1161 1.73

10−14 1.086 0.222 347 0.0685 91.73
20−24 1.036 0.261 324 −3.3479 1.92

6. Example 2: A Survey of Sexual Behavior

Table 2 presents data from a survey of students at the University of Edin-
burgh conducted during school registration in October 1993. The goal of the
study was to estimate the prevalence of HIV infection and its association with
HIV risk factors such as sexual practices, which some participants declined to
divulge (Raab et al. (1995)). Raab and Donnelly (1999) considered the estima-
tion of sexual activity for the whole population, focusing on the answer to the
question “Have you ever had sexual intercourse?”. A simplified data set consisted
of the answer to this question, together with the student’s gender and faculty
as predictors. To enable comparison with Raab and Donnelly (1999), the vari-
able faculty was categorized as medical (medical, dental or veterinary) versus all
others. The last column of Table 2 shows the percent of respondents in each
category. Overall, 3,828 (62.4%) of 6,136 students responded, with the percent
responding about 16% higher among medical students than among non-medical
students.

Assuming ignorable missingness, we fit a logistic model (using responders
only) to predict the outcome by gender, faculty and their interaction. Estimated
regression coefficients appear in Table 3, together with ML estimates from a
nonignorable model fitted by Raab and Donnelly (1999). The estimates show that
for both the ignorable and nonignorable models, students in a medical faculty
were less likely to report having had sexual intercourse. In a model that assumes
that the missingness probability depends on gender, faculty, and outcome, their
ML estimate of the coefficient for outcome is γ̂1 = −∞; the estimated percent who
have had intercourse is 83.3%, compared to only 73.3% among the responders.
We used ISNI to assess the extent to which the logistic regression coefficients are
sensitive to nonignorability, calculating ISNI by the formula for grouped binomial
data (Appendix 2). Results appear in Table 3.

A negative value of γ̂1 implies that a student whose correct answer was “yes”
was more likely to avoid giving an answer. Raab and Donnelly’s estimates are



1232 ANDREA B. TROXEL, GUOGUANG MA AND DANIEL F. HEITJAN

consistent with this prediction, as their estimate γ̂1 is negative, and the observed
fraction responding yes underestimates the MLE under the nonignorable model.
Our values of ISNI for each parameter are of opposite sign to the differences
in parameter estimates under the nonignorable models, confirming that ISNI
accurately detects the direction of the sensitivity. For example, the ISNI for the
Faculty covariate is 0.17, indicating that if γ1 = 1, the MLE for the estimate
should change from -0.73 to -0.56. On the other hand, if γ1 = −1, as is more
plausible here, the estimate would change from -0.73 to -0.9, which is similar
to the change actually observed. The ratio of ISNI to the coefficient standard
error tells us that the intercept and faculty coefficients are most sensitive to
nonignorability, as indeed Raab and Donnelly’s estimates show that they are.
Raab and Donnelly’s estimates also confirm ISNI’s suggestion that neither the
gender coefficient nor the interaction is sensitive.

Raab and Donnelly’s model, like other such nonignorable models, requires
lengthy calculations that can be highly unstable. One could achieve the same
estimates via sensitivity analysis by setting γ1 = −∞, avoiding these difficult
numerical problems. Our index is also simple to compute, and it ably detects
the sign and the rough magnitude of the potential sensitivity to nonignorable
missingness while avoiding some of the pitfalls of the full nonignorable model.

Table 2. Sexual behavior data set.

Response

Percent
Faculty Gender No Yes Nonrespondents Responding

Non-medical Male 433 1277 1189 59.0%
Female 410 1247 978 62.9%

Medical Male 89 126 68 76.0%
Female 94 152 73 77.1%

Table 3. ML estimates of ignorable and nonignorable models and ISNI analysis.

Estimates of Regression Coefficients

Intercept Gender Faculty Faculty*Gender
Ignorable Model 1.08 0.03 −0.73 0.10
SE of Coefficients 0.06 0.08 0.15 0.21
Nonignorable Model 1.74 −0.05 −0.95 0.14
ISNI −0.41 0.04 0.17 −0.03
|ISNI/SE| 7.39 0.50 1.16 0.16
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7. Discussion

We have developed an index of local sensitivity of the MLE to nonignorable
missingness. Our index is simple to compute, involving only the calculation of
the MLE of the complete-data model parameters under MAR, together with a
model for predicting completeness from available predictors. We envision our
index as a screening tool that will allow the data analyst to assess the need for
more elaborate sensitivity analysis or nonignorable modeling.

The distinction between an MAR dataset and an MAR mechanism, noted in
the Introduction, is not academic. For example, suppose that a selection model
in which Y and G are correlated (and θ and γ are distinct) gives rise by chance
to a dataset that has no missing observations. Such a dataset is MAR, and
the likelihood factors into two parts — one depending on θ alone and the other
on γ alone. For such a dataset ISNI = 0, and Bayesian and direct-likelihood
inferences about θ are completely insensitive to nonignorability, in that θ̂(γ1)
does not depend on γ1. As the fraction of missing data increases from zero, we
expect the sensitivity to nonignorability, together with ISNI, to increase as well.
Note that under this same model the data are not MCAR and moreover the
missingness is nonignorable for frequentist inferences even if no data are missing
(Rubin (1976) and Heitjan and Basu (1996)). Thus in this sense ISNI is really a
Bayesian diagnostic, in that it measures sensitivity of summaries of the observed
likelihood function, and not of other possible likelihoods that might have been
observed but were not.

In applied statistics there is always a strong presumption in favor of MAR
models, which are — even when nontrivial — by far easier to fit, understand
and explain than the simplest nonignorable model. Moreover, fully observed
predictor variables can often go far in explaining the probability of dropout, in
which case small values of the nonignorability parameter are most relevant (see
David, Little, Samuhel and Triest (1996)). Thus although a local sensitivity
analysis is admittedly less informative than a global analysis, we believe that the
neighborhood of the MAR model is the area of greatest interest, and should be
the starting point for any analysis of nonignorability.

In principle, the form of the selection model can have considerable influ-
ence on the assessment of sensitivity, and in most cases the selection model that
one uses in an ISNI analysis should be considered only provisional. We con-
jecture, however, that selection models that are monotone in the outcome are
likely to give similar predictions in the vicinity of the MAR model; consequently,
common models such as the logit and probit should yield similar local analy-
ses. When the selection model is non-monotone in the outcome (as in reported
income data, where nonresponse is more common in both tails), a model that,
like ours, assumes monotonicity may give misleading results. Yet there are many
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other examples where a monotone mechanism may be appropriate, as in medical
studies where the probability of a missing observation may be correlated with
the health state being measured (Troxel (1998)).

In this article we have derived detailed equations for likelihood inference
on generalized linear models with missing data on the outcome variable. The
general ISNI equation can easily accommodate essentially any model, and the
idea should be straightforward to carry through, numerically if not analytically,
for more general patterns of missing data and for other forms of incompleteness
such as censoring and rounding (Heitjan and Rubin (1991) and Heitjan (1994,
1997)). The exploration of sensitivity in frequentist inferences involves distinct
concepts (Heitjan and Basu (1996)), but similar mathematical tools will apply.
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Appendix 1. Additional Details

Let h′(u) = dh(u)/du, h′′(u) = d2h(u)/du2, hi = h(γ̂′
00xi), h′

i = h′(γ̂′
00xi)

and h′′
i = h′′(γ̂′

00xi). Letting EYi|Zi

θ̂0
be the conditional mean of Yi given Zi, the

terms in ∇L and ∇2L take the following forms:

∇L1 =
∂L

∂θ

∣∣∣∣
θ̂0,γ̂00,0

=
∑

gi
∂ ln f

Yi|Zi

θ (yi|zi)
∂θ

∣∣∣∣∣
θ̂0

= 0

∇L2 =
∂L

∂γ0

∣∣∣∣
θ̂0,γ̂00,0

=
∑

zigi
h′

i

hi
−
∑

zi
(1 − gi)h′

i

1 − hi

∇L3 =
∂L

∂γ1

∣∣∣∣
θ̂0,γ̂00,0

=
∑

giyi
h′

i

hi
−
∑ (1 − gi)h′

i

1 − hi
EYi|Zi

θ̂0

∇2L11 =
∂2L

∂θ∂θ′

∣∣∣∣∣
θ̂0,γ̂00,0

=
∑

gi

(
∂2 ln f

Yi|Zi

θ (yi|zi)
∂θ∂θ′

)∣∣∣∣∣
θ̂0

∇2L12 =
∂2L

∂θ∂γ′
0

∣∣∣∣∣
θ̂0,γ̂00,0

= 0

∇2L13 =
∂2L

∂θ∂γ1

∣∣∣∣∣
θ̂0,γ̂00,0

= −
∑ (1 − gi)h′

i

1 − hi

∂EYi|Zi

θ

∂θ

∣∣∣∣∣
θ̂0
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∇2L22 =
∂2L

∂γ0∂γ′
0

∣∣∣∣∣
θ̂0,γ̂00,0

=
∑

giziz
′
i

h′′
i hi − h′

i
2

h2
i

−
∑

(1 − gi)ziz
′
i

h′′
i (1 − hi) + h′

i
2

(1 − hi)2

∇2L23 =
∂2L

∂γ0∂γ1

∣∣∣∣∣
θ̂0,γ̂00,0

=
∑

zigiyi
h′′

i hi−h′
i
2

h2
i

−
∑

zi(1−gi)E
Yi|Zi

θ̂0

h′′
i (1−hi)+h′

i
2

(1 − hi)2

∇2L33 =
∂2L

∂γ2
1

∣∣∣∣∣
θ̂0,γ̂00,0

=
∑

giy
2
i

h′′
i hi − h′

i
2

h2
i

−
∑

(1 − gi)

[(
EYi|Zi

θ̂0

)2 h′
i
2

(1 − hi)2
+ EY 2

i |Zi

θ̂0

h′′
i

1 − hi

]
.

Appendix 2. ISNI for Additional Distributions

Binomial Distribution

Suppose that the Yi’s are n independent Bernoulli trials with Pr(Yi = 1) = πi

and Pr(Yi = 0) = 1−πi, i = 1, . . . , n. Assuming a dispersion parameter of 1 and
a logit link, g(πi) = ln πi/(1 − πi) = ηi =

∑p
j=1 θ1jzij , the ISNI for the regression

parameter θ1 is

ISNI = −
[∑

gi
exp(θ̂′10zi)

[1 + exp(θ̂′10zi)]2
zizi

′
]−1∑

(1 − gi)hi
exp(θ̂′10zi)

[1 + exp(θ̂′10zi)]2
zi,

where θ10 is the ML estimate of θ1 assuming γ1 = 0.
Individuals may share the same covariate vectors and form covariate classes,

what McCullagh and Nelder (1989) call grouped data. Suppose the data are
grouped into K covariate classes, with values zk for the complete-data model
predictors and xk for the selection model predictors. Let nok be the number
of respondents in class k and nmk be the number of nonrespondents in class k,
where

∑K
k=1(nok + nmk) = N . Let hk = h(γ̂00xk), for k = 1, . . . ,K. With the

logistic link in the selection model, the index reduces to

ISNI = −
[∑

k

nok
exp(θ̂′10zk)

[1 + exp(θ̂′10zk)]2
zkzk

′
]−1∑

k

nmkhk
exp(θ̂′10zk)

[1 + exp(θ̂′10zk)]2
zk.

Note that with this model the values of xk and zk need not be equal, but the
classes must be the same.

Poisson Distribution

The canonical Poisson model assumes a log link for the mean, g(µi) =
ln(µi) = ηi =

∑p
j=1 θ1jzij , with the variance equal to the mean. Assuming

a(θ2) = 1, the index for θ1 is

ISNI = −
[∑

gi exp(θ̂′10zi)zizi
′]−1∑

(1 − gi)hi exp(θ̂′10zi)zi.
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Gamma Distribution

Assume that Yi follows the gamma distribution with a constant coefficient
of variation, or a constant index ν, and parameter µi. Let θ2 = ν, and a(θ2) =
θ2. The canonical link is the reciprocal transformation g(µi) = µ−1

i = ηi =∑p
j=1 θ1jzij. The index is then

ISNI =
1

θ̂20

[∑
gi(θ̂′10zi)−2zizi

′]−1∑
(1 − gi)hi(θ̂′10zi)−2zi.

An approximate MLE for θ2 is θ̂20 ≈ (6 + 2D)/D(6 + D), where D(y; µ̂) is the
deviance of the model for sensitivity under MAR and D = D(y; µ̂)/no, where no

is the number of observed values (McCullagh and Nelder (1989)).

Inverse Gaussian Distribution

The inverse Gaussian density represents a wide class of distributions for
continuous observations (Chhikara and Folks (1989)). Denote a variable Yi from
the inverse Gaussian distribution as Yi ∼ IG (µi, τ), where τ is the variance.
Let θ2 = τ , and a(θ2) = 1/θ2. Under its canonical link, g(µi) = µ−2

i = ηi =∑p
j=1 θ1jzij, we obtain

ISNI = 2θ̂20

[∑
gi

(
θ̂′10zi

)−3/2
zizi

′]−1∑
(1 − gi)hi

(
θ̂′10zi

)−3/2
zi.

We can estimate θ2 by its MLE,

θ̂20 =
1
no

∑ (yi − ŷi)2

yi ŷ2
i

,

where no is the number of observed subjects, and ŷi the estimated expected
outcome for subject i.
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