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Abstract: An outstanding issue in robust parameter design is the choice of exper-

imental plans. Single arrays were proposed as an alternative to the inner-outer

arrays advocated by Taguchi. Because factorial effects in parameter design ex-

periments have properties distinctly different from those in traditional fractional

factorial experiments, new principles on the relative importance of effects need to

be considered. Based on them a new criterion is developed to discriminate among

different single arrays. Search methods are proposed to find “optimal” single arrays

with run size 8, 16 and 32.
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1. Introduction

Robust parameter design (or briefly parameter design) is an important
method for variation reduction in industrial processes and products. The quality
of a system (a product or a process) is mainly affected by two types of factors:
control factors are the variables whose values can be adjusted but remain fixed
once they are chosen; noise factors are the variables which are hard to control in
a system’s normal production and use environments. When a parameter design
experiment is conducted, both the control factors and noise factors are varied
systematically. The basic idea of parameter design is to explore the effects of
control factors, noise factors and their interactions on the performance of a sys-
tem, and to exploit these effects, by choosing optimal control factor settings, to
bring the system mean response on target and reduce the performance variation
due to noise factors. For a comprehensive review, see Chap. 10 and Chap. 11 of
Wu and Hamada (2000).

1.1. Planning and modeling techniques

Taguchi (1986) proposed to use cross arrays (or inner-outer arrays in his ter-
minology) for parameter design experiments. Two separate arrays are generated
for control factors and noise factors. They are called the control array (denoted
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by CA) and the noise array (denoted by NA), respectively. A cross array consists
of all the combinations of the settings of CA and the settings of NA. Suppose
CA and NA have run size m1 and m2 correspondingly. Then the run size of
the cross array is m1m2. Let yi,j be the response for the combination of the ith

control setting and the jth noise setting. At any fixed control setting i, there
are m2 responses, {yi,j}1≤j≤m2 across NA. The sample mean and sample vari-
ance, yi = 1/m2

∑m2
j=1 yi,j and s2

i = 1/(m2 − 1)
∑m2

j=1(yi,j−yi)2, are the summary
statistics for the ith control setting. Row-summary modeling is to model these
summary statistics, or some functions depending on them, in terms of the control
factors. Two examples are signal-to-noise ratio modeling and location-dispersion
modeling (Myers and Montgomery (1995) and Wu and Hamada (2000)).

When the number of factors is large, cross arrays become costly. Single
arrays proposed by Welch, Yu, Kang and Sacks (1990) and Shoemaker, Tsui and
Wu (1991), are an economical alternative to cross arrays. Instead of using two
arrays, a single array is employed with some of its columns assigned to control
factors and others to noise factors. With the crossing structure ignored, a cross
array can be viewed as a special case of a single array.

In the row-summary modeling approach, the responses across the noise array
for any fixed control setting are considered as the noise replicates. The response
y, in fact, can be modeled as a function of control and noise factors (Vining and
Myers (1990), Welch et al. (1990) and Shoemaker et al. (1991)). This approach
is called the response modeling approach and the fitted model ŷ the response
model. Based on ŷ, the mean and variance of the response can also be estimated,
so that a two-step procedure can be employed for parameter design optimization.
Unlike the row-summary modeling, the response modeling is especially suitable
for single arrays. It provides flexibility to accommodate effects with different
degrees of importance.

The problem of selecting optimal single arrays has not been properly ad-
dressed in the literature. Our idea, primarily motivated by Shoemaker et al.
(1991) and Wu and Hamada (2000), is to consider all possible general single ar-
rays, investigate their estimation capacity for the purpose of parameter design
and select optimal arrays according to some overall criteria.

An interesting extension of cross array is the compound orthogonal array
proposed by Rosenbaum (1994, 1996). A compound orthogonal array with pa-
rameters N1, N2, k1, k2, t1 and t2 is an N1N2 ⊗ (k1 + k2) orthogonal array
with the following structure: the first k1 columns form N2 identical copies of an
OA(N1, k1, 2, t1) and, for each fixed setting of the first k1 columns, the corre-
sponding settings for the remaining k2 columns form an OA(N2, k2, 2, t2). If the
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first k1 columns are assigned to control factors and the remaining k2 columns
to noise factors, it is said that the strength among the control factors is t1 and
the strength for the noise factors is t2. The strength of the whole compound
array is denoted by t3. See also Hedayat and Stufken (1999) for the construction
of optimal compound orthogonal arrays. In order to estimate all main effects,
control-by-control interactions and control-by-noise interactions, Borkowski and
Lucas (1997) and Box and Jones (1993) suggested using designs with mixed-
resolution. A mixed-resolution design is a second-order design for control effects
and control-by-noise interactions.

1.2. Basics of two-level fractional factorial designs

Suppose there are l factors in an experiment. The factors are denoted by
1, . . . , l, called letters in design theory. The generalized interaction among factors
i1, . . . , ik is denoted by i1...ik called a word. The generalized interactions are also
called factorial effects. A 2l−p fractional factorial design, which has 2r runs with
r = l − p, is determined by r independent factors and p independent defining
words. The defining contrast subgroup G consists of all possible combinations of
the independent defining words. For two fractional factorial designs d1 and d2, if
d2 can be derived from d1 by relabeling letters and/or changing signs, d1 and d2

are said to be isomorphic. The number of letters in a word is the wordlength, and
the vector W = (A1, . . . , Al) is called the wordlength pattern, where Ai denotes
the number of words of length i in G. Resolution is defined as the smallest r such
that Ar ≥ 1. For two designs d1 and d2, d1 is said to have less aberration than d2

if Ai0(d1) < Ai0(d2), where i0 is the smallest value such that Ai0(d1) �= Ai0(d2).
If there is no design with less aberration than d1, then d1 is said to have minimum
aberration (Fries and Hunter (1980)).

Clear effects and eligible effects (Wu and Chen (1992)) are another two im-
portant concepts. A main effect or a two-factor interaction (henceforth abbrevi-
ated as 2fi) is clear if it is not aliased with any other main effects or 2fi’s, and
is eligible if it is not clear but only aliased with some other 2fi. The number of
clear effects can be used as a supplementary criterion to minimum aberration.

The paper is organized as follows. In Section 2, single arrays are formally de-
fined, their basic structure and property discussed, and several examples given. In
Section 3, a new principle about factorial effects in parameter design is proposed.
In Section 4, several criteria for selecting optimal single arrays are proposed. A
search method for single arrays is presented in Section 5. In Section 6, various
single arrays with small run size are discussed in detail. Good single arrays with
run size 8, 16 and 32 are included in Appendices C.1−C.3.
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2. General Single Arrays: Construction and Properties

Control factors are denoted by capital letters A, B and C, etc.; noise factors
by lower case letters a, b and c, etc. The letters C and n are used generically to
represent a control factor and a noise factor, respectively.

Suppose there are kC control factors and kn noise factors, each at two levels.
A general single array is a 2l−p fractional factorial design with kC columns as-
signed to the control factors and kn columns assigned to the noise factors, where
l = kC +kn, and p is the fraction index. Single arrays do not require any a priori
structures such as “crossing” in cross arrays. For a given run size, cross arrays
and compound orthogonal arrays may not exist for certain numbers of control
factors and of noise factors.

Lemma 1. The smallest cross array for kC control factors and kn noise fac-
tors requires 2�log2(kC+1)�+�log2(kn+1)� runs, where �x� denotes the smallest integer
greater than or equal to x.

Proof. Suppose the run size of CA is m1 = 2n1 . A necessary and sufficient
condition that the CA can accommodate kC control factors is 2n1 − 1 ≥ kC , i.e.,
n1 ≥ log2(kC + 1), n1 ≥ �log(kC + 1)�. Therefore, the smallest CA has run size
2�log2(kC+1)�. Similarly, the smallest NA has run size 2�log2(kn+1)�. The lemma
follows by taking the product of these two numbers.

For convenience, S(kC , kn, p) is used to denote a single array with kC control
factors, kn noise factors and 2(kC+kn)−p runs. Suppose S1 and S2 are two single
arrays. If S1 can be derived from S2 by the relabeling of control factors, of
noise factors, or by change of signs, S1 and S2 are said to be isomorphic. If the
control and noise factors are not distinguished, a single array becomes an ordinary
fractional factorial plan. This fractional factorial plan is called the basic frame of
the single array. Since control and noise factors play different roles in parameter
design, different ways to assign the columns of a basic frame to control and
noise factors can generate non-isomorphic single arrays. The distinction between
control and noise factors also induces a partition of the columns of the basic frame
into two subgroups. The columns assigned to the control factors are called the
control columns and those to the noise factors the noise columns. Hence a single
array is determined by its basic frame and the column partition. Obviously, if
two single arrays have non-isomorphic basic frames, they are non-isomorphic.

In the following, the single array S(3, 3, 2) is used to illustrate the structure
and properties of single arrays. The three control factors are denoted by A, B

and C, and the three noise factors by a, b and c. There are altogether four
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nontrivial and non-isomorphic 26−2 basic frames given by the following defining
relations (Chen, Sun and Wu (1993)):

I = 123 = 1456 = 23456, (1)

I = 123 = 456 = 123456, (2)

I = 1234 = 1256 = 3456, (3)

and
I = 123 = 156 = 2356. (4)

According to the minimum aberration criterion, (3) with the wordlength pattern
W=(0, 0, 0, 3, 0, 0) is the best and (4) is the worst with the wordlength pattern
W=(0, 0, 2, 1, 0, 0). Based on (1), there are six different ways to assign the
columns to the control factors and the noise factors. For example, assigning
columns 1, 2 and 3 to A, B and C, and columns 4, 5 and 6 to a, b and c produces
a single array with the defining relation

S1 : I = ABC = Aabc = BCabc. (5)

Assigning 1, 2 and 3 to a, b and c and 4, 5 and 6 to A, B and C leads to a
different (and non-isomorphic) single array with the defining relation

S2 : I = abc = ABCa = ABCbc. (6)

The other single arrays based on (1) are

S3 : I = Aab = BCac = ABCbc, (7)

S4 : I = ABa = ACbc = BCabc, (8)

S5 : I = Aab = ABCc = BCabc, (9)

S6 : I = ABa = Cabc = ABCbc. (10)

Based on the basic frame (2), there are eight non-isomorphic single arrays.
Among them, one is given by

S7 : I = abc = ABC = ABCabc. (11)

It is easy to see that S7 is a 23−1 × 23−1 cross array. The basic frame (3) is the
26−2 minimum aberration design and generates two non-isomorphic single arrays:

S8 : I = ABab = ACac = BCbc, (12)

S9 : I = ABCa = Aabc = BCbc. (13)
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Notice that S2, S4, S5 and S9 all have one defining word which consists of some
control factors and only one noise factor. This implies that when the setting
of the control factors is fixed, the level of the noise factor that appears in the
defining word is also fixed. For instance, in S2, the defining word ABCa implies
the aliasing of a with ABC. If the levels of A, B and C are chosen, so is a’s.
This implies that the corresponding noise array has strength 0, because the level
of the noise factor a does not vary. Hence, S2, S4, S5 and S9 are not compound
orthogonal arrays according to the definition.

Let NC denote the number of clear control main effects, Nn the number of
clear noise main effects, NCC the number of clear control-by-control interactions,
NCn the number of clear control-by-noise interactions (henceforth abbreviated
as Cn effects), and Nnn the number of clear noise-by-noise interactions. The
estimation capacity of single arrays S1 to S9 in terms of the numbers of eligible
effects and clear effects is summarized in Table 1.

Table 1. Comparison of Estimation Capacities for S1 to S9.

Design Eligible effects Clear Effects NC Nn NCC NCn Nnn

S1 A, B, C, Aa, Ab, Ac, ab, ac, bc a, b, c, Ba, Bb, Bc, Ca, Cb, Cc 0 3 0 6 0

S2 a, b, c, AB, AC, BC, Aa, Ba, Ca A, B, C, Ab, Ac, Bb, Bc, Cb, Cc 3 0 0 6 0

S3 A, a, b, Ba, Bc, Ca, Cc, BC, ac B, C, c, AB, AC, Ac, Bb, Cb, bc 2 1 2 3 1

S4 A, B, a, AC, Ab, Ac, Cb, Cc, b, c C, b, c, BC, Bb, Bc, Ca, ac, bc 1 2 1 3 2

S5 A, a, b, AB, AC, BC, Ac, Bc, Cc B, C, c, Ba, Bb, Ca, Cb, ac, bc 2 1 0 4 2

S6 A, B, a, Ca, Cb, Cc, ab, ac, bc C, b, c, AC, BC, Ab, Ac, Bb, Bc 1 2 2 4 0

S7 A, B, C, a, b, c Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb, Cc 0 0 0 9 0

S8 all 2fi’s A, B, C, a, b, c 3 3 0 0 0

S9 all 2fi’s A, B, C, a, b, c 3 3 0 0 0

Define
α = (NC , Nn, NCC , NCn, Nnn) (14)

for a single array and call it the clear estimation index vector. For single arrays
with a given basic frame, the total numbers of clear main effects and of clear 2fi’s
are fixed, i.e., NC +Nn and NCC +NCn+Nnn are constants. But the distribution
across NC , Nn, NCC , NCn and Nnn varies. This is transparent by comparing the
single arrays S1 to S6 which share the basic frame (1). In parameter design, C

and Cn are most important, because they can be used to adjust the responses
on target and to reduce response variation. From Table 1, S2 appears to be the
best among S1 to S6 . If the experimenters can assume that CC’s are negligible,
then the eligible Cn effects, Aa, Ab and Ac, are also estimable. S7 is a cross
array. An important property for cross arrays is that all the Cn effects can be
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clearly estimated (see Theorem 10.1 of Wu and Hamada (2000)). So S7 has all
Cn effects clear, but its main effects are only eligible. If response adjustment
is not important, S7 may be preferred. For S8 and S9, all the main effects are
clear, but none of the 2fi’s are clear. Note that S8 and S9 are based on the basic
frame (3), which has minimum aberration. Hence minimum aberration designs
do not necessarily provide good basic frames for single arrays.

In general, for any fixed kC , kn and run size N , there are many non-
isomorphic single arrays. The choice of optimal single arrays is a challenging
problem. Standard criteria like maximum resolution and minimum aberration
are not suitable for parameter design, because they do not recognize the different
roles played by the control and noise factors. Although a compound orthogonal
array makes a distinction between control and noise factors, its orthogonality
requirement rules out such interesting designs as S2, S4, S5 and S9 in the pre-
vious example. The strengths t1, t2 and t3 are only a rough description of the
structure and properties of a compound orthogonal array. For example, for both
S1 and S7, t1 = 2, t2 = 2 and t3 = 2, but S1 and S7 are still different in terms of
aliasing and estimation capacity. Mixed-resolution is another attempt to address
this question, but a mixed resolution array requires the length of any defining
words involving control factors to be at least 5, and the length of any defining
words not involving control factors to be at least 3. This is a strong condition,
even stronger than the crossing structure. As a result, the required run size is
large. For example, for kC=3, kn = 3 and N = 16, no single arrays satisfy the
mixed resolution criterion. The smallest mixed resolution array for the case is a
32-run 26−1 plan with I=ABCabc (Borkowski and Lucas (1997)).

A systematic approach is developed to address this problem. First, a new
effect ordering principle is proposed. Based on this principle, optimality criteria
are derived.

3. Effect Ordering Principle for Parameter Design

The minimum aberration criterion is based on the hierarchical ordering prin-
ciple (HOP): (i) lower order effects are more important than higher order effects,
(ii) effects of the same order are equally important. The factorial effects in
parameter design have more complicated interpretations than those in ordinary
fractional factorial design, because parameter design has two objectives, response
mean optimization and variation reduction. If a factorial effect consists of i con-

trol factors and j noise factors, it is of type ei,j =

i︷ ︸︸ ︷
C..C

j︷︸︸︷
n..n. Since control factors

are not further distinguished among each other, the hierarchical ordering prin-
ciple can be applied to control effects, that is, lower-order control effects are
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more important than higher-order control effects; control effects of the same or-
der are equally important. The same can be said about noise effects. Notice
that {ei,0}i≥0 is the collection of all types of control effects and {e0,j}j≥0 the
collection of all types of noise effects. According to the HOP, control effects and
noise effects can be rank-ordered as e0,0 > e0,1 > e0,2 > · · · > e0,j > e0,j+1 > · · · ,
and e0,0 > e1,0 > e2,0 > · · · > ei,0 > ei+1,0 > · · · . It is not appropriate to
directly apply the HOP to Cn effects, because HOP would find the four most
important groups of effects to be {C,n}, {CC,Cn, nn}, {CCC,CCn, Cnn, nnn}
and {CCCC,CCCn,CCnn,Cnnn, nnnn}. In parameter design, the Cn effects
are more likely to be present because engineering knowledge and experience may
suggest that the selected noise factors are expected to interact with some control
factors. Since Cn can often be used to achieve robustness without incurring more
cost, priority should be given to these interactions so as not to miss any oppor-
tunities. Hence, C, n and Cn should be considered to be equally important,
wherein C is crucial for mean response adjustment, and n and Cn are useful for
variation reduction. Then the second set consists of CC and nn, wherein CC

affects the response mean, and nn affects the response variation (but its con-
tribution cannot be controlled or changed). Further opportunities for variation
reduction appear in the third group which contains CCn and Cnn. Because Cnn

involves more noise factors than CCn, CCn is considered to be more important
than Cnn. Following a similar argument, all the factorial effects in parameter
design can be rank-ordered. A numerical rule can be used to help define the
ranking. In general, if an effect is of type ei,j , its weight is defined to be

W (ei,j) =




1 if max(i, j) = 1,

i if i > j and i > 1,

j + 1
2 if i ≤ j and j ≥ 2.

For any w in {1, 2, 2.5, 3, 3.5, . . .}, Ew is the set of effects with weight w. Some-
times, Ew can also be viewed as the set of effect types with weight w. The first
seven Ew’s are listed in Table 2. The previous discussion can be summarized by
the following Effect Ordering Principle (EOP):

(i). Effects with smaller weight are more important than effects with larger
weight.

(ii). Effects with same weight are equally important.
High order factorial effects are usually insignificant. In practice, the experi-
menters are seldom interested in effects of order higher than 5. Additional as-
sumptions can also be considered.

(A.1) All effects with order higher than or equal to 4 are negligible.
(A.2) All effects with order higher than or equal to 3 are negligible.
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Table 2. Factorial effects in parameter designs rank-ordered by EOP.

Weight Factorial Effect
1 C, Cn, n

2 CC,CCn

2.5 CCnn, Cnn, nn

3 CCC, CCCn, CCCnn
3.5 CCCnnn, CCnnn, Cnnn, nnn

4 CCCC, CCCCn, CCCCnn, CCCCnnn

4.5 CCCCnnnn, CCCnnnn, CCnnnn, Cnnnn, nnnn

... ..................

Applying (A.1) and the EOP leads to five groups of effects in the descending
order of importance

E1 = {C,Cn, n} > E2 = {CC,CCn} > E2.5 = {Cnn, nn}
> E3 = {CCC} > E3.5 = {nnn}. (15)

Based on a different argument and weight assignment, Bingham and Sitter (2000)
rank-ordered the factorial effects with order less than 4 as follows:

E ′
1 = {C,n} > E ′

1.5 = {Cn} > E ′
2 = {CC,nn}

> E ′
2.5 = {CCn,Cnn} > E ′

3 = {CCC,nnn}. (16)

The major difference concerns the control-by-noise interactions, Cn, CCn and
Cnn, which are ranked higher in our approach. Ours is based on a different
ordering of effects from theirs. We take the further step of using the numbers
of pairs of aliased effects to measure the aliasing severity and to select optimal
arrays. This approach is more flexible and statistically justifiable.

4. Criteria for Selecting Single Arrays

4.1. Optimality criteria for fractional factorial design revisited

For a given run size and fraction index, fractional factorial designs with less
severe effect aliasing are considered to be better. A formal measure of the aliasing
severity is thus needed. Suppose the number of factors is l. The aliasing type
i ∼ j refers to the aliasing between an effect of order i and another effect of order
j, where 1 ≤ i ≤ j ≤ l. The type l ∼ l is not possible. The types 1 ∼ 1, l− 1 ∼ l,
l− 1 ∼ l− 1 and l− 2 ∼ l do not appear in designs with resolution III or higher,
because these types lead to defining words of length one or two. If i1 ∼ j1 is
considered to be more severe than i2 ∼ j2, it is written as i1 ∼ j1 > i2 ∼ j2. It is
helpful to rank all the aliasing types in the order of severity. Clearly 1 ∼ 2 is the
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most severe type, followed by 2 ∼ 2 and 1 ∼ 3. Arguably, 2 ∼ 2 is more severe
than 1 ∼ 3. Two ordering schemes are considered below.
Scheme 1: (i) i1 ∼ j1 > i2 ∼ j2, if i1 + j1 < i2 + j2; (ii) i1 ∼ j1 > i2 ∼ j2,
if i1 + j1 = i2 + j2 and j1 − i1 < j2 − i2. For l = 6, the aliasing types can be
rank-ordered as follows:

1 ∼ 2 > 2 ∼ 2 > 1 ∼ 3 > 2 ∼ 3 > 1 ∼ 4 > 3 ∼ 3 > 2 ∼ 4 > 1 ∼ 5 > 3 ∼ 4

> 2 ∼ 5 > 1 ∼ 6 > 4 ∼ 4 > 3 ∼ 5 > 2 ∼ 6 > 4 ∼ 5 > 3 ∼ 6. (17)

Scheme 2: (i) i1 ∼ j1 > i2 ∼ j2, if j1 < j2; (ii) i1 ∼ j1 > i2 ∼ j2, if j1 = j2 and
i1 < i2. For l = 6, the aliasing types can be rank-ordered as follows:

1 ∼ 2 > 2 ∼ 2 > 1 ∼ 3 > 2 ∼ 3 > 3 ∼ 3 > 1 ∼ 4 > 2 ∼ 4 > 3 ∼ 4 > 4 ∼ 4

> 1 ∼ 5 > 2 ∼ 5 > 3 ∼ 5 > 4 ∼ 5 > 1 ∼ 6 > 2 ∼ 6 > 3 ∼ 6. (18)

Let Ni∼j denote the number of pairs of aliased effects of the type i ∼ j.
Noting that a pair of aliased effects of a given type can be derived from various
defining words in the defining contrast subgroup, Ni∼j is related to wordlength
pattern in the following.

Ni∼j =
∑
k>0

(
[l − (i + j − 2k)]+

k

)
d(i − k, j − k)Ai+j−2k + d(i, j)Ai+j , (19)

where d(i, j) =
(i+j

i

)
for i �= j, = 1/2

(i+j
i

)
for i = j �= 0, and d(0, 0) = 0. A deriva-

tion of (19) is given in Appendix A. Imposing an aliasing severity order by either
scheme will result in a numerical summary of the aliasing severity of the corre-
sponding design. To identify designs with least aliasing severity is equivalent to
sequentially minimizing Ni∼j . Equation (19) shows that the Ni∼j are functions of
the wordlength pattern W = (A1, . . . , Al). Hence, the procedure is to sequentially
minimize certain functions of the wordlength patterns. Applying mathematical
induction, it can be easily shown that sequentially minimizing Ni∼j according to
ordering scheme 1 or 2 is equivalent to sequentially minimizing Ai, which leads
to the minimum aberration criterion. For example, if the total number of fac-
tors is 6, Ni∼j can be calculated from W = (A1, A2, A3, A4, A5, A6) as follows:
N1∼2 = 3A3, N2∼2 = 3A4 N1∼3 = 4A4, N2∼3 = 9A3 + 10A5, N1∼4 = 3A3 + 5A5

N3∼3 = 6A4 + 10A6 and N2∼4 = 8A4 + 15A6. Sequentially minimizing N1∼2,
N2∼2, N1∼3, N2∼3, N1∼4, N3∼3 and N2∼4 based on either scheme leads to the
minimum aberration criterion that sequentially minimizes A3, A4, A5 and A6.

Minimizing the number of aliased pairs does not necessarily result in max-
imizing the number of clear effects, these concepts are very different. Many
supporting examples can be found in Appendix 4A of Wu and Hamada (2000).
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4.2. Criteria for selecting optimal single arrays

The single array S(kC , kn, p) is uniquely determined by its defining contrast
subgroup G. In parameter design, defining words of the same length cannot
be treated equally because they may belong to different types. In general, for
1 ≤ k ≤ kC + kn, a word of length k can be one of the types in {ei,j : i + j =
k, 0 ≤ i ≤ kC , 0 ≤ j ≤ kn}. Let Ai,j be the number of effects of the type ei,j in
G, and A = (Ai,j) a matrix with entries Ai,j , where 0 ≤ i ≤ kC and 0 ≤ j ≤ kn.
A is called the wordtype pattern for S(kC , kn, p). Based on the wordtype pattern
A, general criteria for selecting single arrays will be developed along the lines of
the minimum aberration criterion.

For simplicity, we write (i, j) instead of ei,j. If two effects (i1, j1) and (i2, j2)
are aliased, we write (i1, j1) ∼ (i2, j2). Define N(i1,j1)∼(i2,j2) to be the number of
pairs of aliased effects of the type (i1, j1) ∼ (i2, j2). Straightforward extension of
(19) leads to

N(i1,j1)∼(i2,j2) =
i1∧i2∑
k1=0

j1∧j2∑
k2=0

(
kC + 2k1 − i1 − i2

k1

)(
kn + 2k2 − j1 − j2

k2

)

d(i1 − k1, i2 − k1; j1 − k2, j2 − k2)Ai1+i2−2k1,j1+j2−2k2, (20)

where i ∧ j = min(i, j) for integers i and j, and d(0, 0, 0, 0) = 0, d(x, y;u, v) =
1/2

(x+y
x

)(u+v
u

)
for x = y, u = v, and x2+y2+u2+v2 �= 0; otherwise, d(x, y;u, v) =(x+y

x

)(u+v
u

)
. The group aliasing type i ≈ j is defined to be the aliasing between

an effect in Ei and an effect in Ej where i and j are from {1, 2, 2.5, 3, . . . , l} and
i ≤ j. Two schemes are considered for ordering the group aliasing types:

i1 ≈ j1 > i2 ≈ j2 if i1 + j1 < i2 + j2,

or j1 − i1 < j2 − i2 when i1 + j1 = i2 + j2; (21)

i1 ≈ j1 > i2 ≈ j2 if j1 < j2 or i1 < i2 when j1 = j2. (22)

Let Ni≈j denote the number of aliased pairs of the type i ≈ j. It can be easily
calculated from N(i1,j1)∼(i2,j2), as Ni≈j =

∑
(i1,j1)∈Ei,(i2,j2)∈Ej

N(i1,j1)∼(i2,j2). For
example, since E1 = {C,Cn, n} and E2 = {CC,CCn},

N1≈2 = N(1,0)∼(2,0) + N(1,0)∼(2,1) + N(1,1)∼(2,0) + N(0,1)∼(2,0) + N(0,1)∼(2,1).

Based on (20), Ni≈j can be calculated from the wordtype pattern
(Ai,j)0≤i≤kC ,0≤j≤kn . Applying the ordering scheme in (21) or (22), Ni≈j can
be rank-ordered based on their indices. By sequentially minimizing Ni≈j , we
can obtain single arrays with minimum aliasing severity in terms of the number
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of aliased pairs of effects. Because the Ni≈j are functions of Ai,j, sequentially
minimizing Ni≈j is equivalent to minimizing a sequence of functions of Ai,j.
Therefore, general criteria based on (Ai,j) can be proposed to distinguish different
single arrays. A complete development would take much effort and is left for
future research. Here, a simplified yet practically important case is considered.
Under the assumption (A.2) in Section 3, there are only three groups of effects,

E1 = {C,Cn, n} > E2 = {CC} > E2.5 = {nn}. (23)

According to (21), the group aliasing types involving E1, E2 and E2.5 are rank-
ordered as

1 ≈ 1 > 1 ≈ 2 > 1 ≈ 2.5 > 2 ≈ 2 > 2 ≈ 2.5 > 2.5 ≈ 2.5; (24)

and, according to (22), as

1 ≈ 1 > 1 ≈ 2 > 2 ≈ 2 > 1 ≈ 2.5 > 2 ≈ 2.5 > 2.5 ≈ 2.5. (25)

Notice that (24) and (25) are slightly different. The relative positions of 1 ≈ 2.5
and 2 ≈ 2 are switched in (25). In the following, only (24) will be used. Define
J = (J1, J2, J3, J4, J5, J6) as follows:

J1 = N1≈1 = 4A2,1 + 4A1,2 + 4A2,2, (26)

J2 = N1≈2 = 3A3,0 + 3A3,1 + A2,1, (27)

J3 = N1≈2.5 = A1,2 + 3A1,3 + 3A0,3, (28)

J4 = N2≈2 = 6A4,0, (29)

J5 = N2≈2.5 = A2,2, (30)

J6 = N2.5≈2.5 = 6A0,4. (31)

J is called the aliasing index vector. If two single arrays have the same J , they
are said to be J-equivalent. Based on J , a minimum J-aberration criterion can
be defined.

Definition 1. (Minimum J-aberration) For two non-equivalent single arrays S1

and S2 which are not J-equivalent, let i0 be the smallest i such that Ji(S1) �=
Ji(S2). If Ji0(S1) < Ji0(S2), then S1 is said to have less J-aberration than S2.
If there are no other single arrays with less J-aberration than S1, S1 is said to
have minimum J-aberration.

The simplicity of the aliasing index vector J is due to the assumpiton (A.2).
First, the defining words with length 5 or higher are not considered. Second, the
induced aliasing patterns from the defining words with length less than or equal
to 4 do not need to be considered either. For instance, suppose there is a defining
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word C1C2n1, then all possible basic aliasing pairs are C1 = C2n1, C2 = C1n1

and n1 = C1C2. For any other control factor C3 and noise factor n2, there are
6 induced confounded pairs: C1C3 = C2C3n1, C2C3 = C1C3n1, n1C3 = C1C2C3,
C1n2 = C2n1n2, C2n2 = C1n1n2 and n1n2 = C1C2n2. Each of them involves
effects with order at least 3 and are assumed to be negligible. Therefore, these
induced pairs are not counted.

Because of combinatorial complexity, it is not advisable to employ only one
criterion, especially when no model is specified. The clear estimation index α

defined in (14) can be used as an alternative for the evaluation of a single array.

Definition 2. (α-admissibility). A single array S1 is said to be α-inadmissible
if there exists another single array S2 such that α1(i) ≤ α2(i) for 1 ≤ i ≤ 5, and
at least one of the inequalities is strict. Otherwise S1 is said to be α-admissible.

J-aberration and α-admissibility will be used to measure the goodness of
single arrays.

5. Search for Optimal Arrays

Single arrays with 8, 16, 32 and 64 runs are of practical importance. Overall
good single arrays based on the criteria proposed in Section 4.2 need to be selected
and tabulated. All non-isomorphic single arrays need to be constructed and
compared so as not to miss any good candidate. Recall that a necessary condition
for two single arrays to be isomorphic is that their basic frames are isomorphic
fractional factorial designs. For a given basic frame, the columns can be assigned
to the control factors and the noise factors in

( l
kC

)
different ways, where l =

kC +kn. Therefore the classification of S(kC , kn, p) can be divided into two steps:
(1) construct all non-isomorphic 2l−p designs as non-isomorphic basic frames; (2)
for each basic frame, construct non-isomorphic single arrays from all possible
candidates generated by different column assignments.

The non-isomorphic 8-, 16- and 32-run fractional factorial designs are avail-
able from Chen, Sun and Wu (1993). Only Step 2 needs to be carried out for
these cases. For 64-run fractional factorial designs, Chen, Sun and Wu (1993)
only keep designs with resolution IV or higher. For single arrays, designs with
resolution III may be good basic frames, so Step 1 needs to be carried out. By
definition, single arrays with different wordtype matrices are non-isomorphic, but
single arrays with the same wordtype matrix are not necessarily isomorphic. A
counterexample can be produced by modifying the work in Chen and Lin (1991).
Thus a complete isomorphism check is required to discriminate arrays with the
same wordtype matrix. The algorithm proposed in Chen, Sun and Wu (1991)
was generalized and used to check isomorphism between arrays where control
factors and noise factors must be distinguished.
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6. Highlights on the Tables of Single Arrays

Since noise factors are hard to control, the number of noise factors included
in parameter design experiments is often small. In the paper, we only consider
kn ≤ 3. Applying the procedure discussed in the previous section, complete tables
of non-isomorphic single arrays of 8, 16 and 32 runs are obtained. For fixed kC

and kn, good single arrays based on J and α are included in Appendices C.1−C.3.
In each case, only a few single arrays are selected due to space limitation. Some
64-run single arrays are available on the websites of both authors. More extensive
tables are available in Zhu (2000). In each table, the first three columns are kC ,
kn and p, which correspond to the number of control factors, the number of
noise factors and the fraction index. The column denoted by DC gives the p

independent defining words in terms of their positions in the basic design matrix
in Appendix B; N indicates the noise columns in the basic frame generated by
the independent defining words. For the 8- and 16-run tables, the aliasing index
vector J is included. For most 32-run single arrays, J becomes too large to be
included in the table. By applying the formulae in the definition of J , it can be
calculated from the wordtype matrix. The column A lists part of the wordtype
pattern matrix, (A3,0, A2,1, A1,2, A0,3, A4,0, A3,1, A2,2, A1,3). The last column
of each table reports the clear estimation index, α = (NC , Nn, NCC , NCn, Nnn).
For given kC , kn and p, the corresponding single arrays are listed in the order
of the J-aberration criterion. The first or the first few arrays are minimum J-
aberration single arrays, because different single arrays may share the same J .
According to Lemma 1, for run size 2k, cross arrays do not exsit for all possible
kC and kn. For kn = 1, they exist for kC ≤ 2k−1 − 1; for kn=2 or 3, they exist
for kc ≤ 2k−2 − 1. These conditions explain why cross arrays are not listed in
some part of the tables. Cross arrays are marked by ∗ in the tables.

We use the following example to illustrate the usage of the tables. Suppose
a 32-run single array is needed to study seven control factors and two noise
factors, i.e., kC = 7, kn = 2 and p = 4. There are three corresponding single
arrays listed in the table in Appendix C.3. Suppose the first one is chosen.
Since there are nine factors and 32 runs, the basic frame is a 29−4 design. The
nine columns are denoted by the letters 1, 2, 3, 4, 5, 6, 7, 8, 9. The first five
columns are independent, and the remaining four columns are generated by the
four defining words given in DC, which correspond to the columns 7, 11, 13 and
30 in the basic design matrix in Appendix B. Since the columns are (1, 1, 1, 0, 0)t ,
(1, 1, 0, 1, 0)t , (1, 0, 1, 1, 0)t and (0, 1, 1, 1, 1)t , the defining words for these four
columns are 6=123, 7=124, 8=134 and 9=2345. In the N column, (5,9) indicates
that columns 5 and 9 of the basic frame are assigned to the two noise factors;
α = (7, 2, 0, 14, 1) reports that all the seven control main effects, the two noise
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main effects and the 14 Cn effects are clear, but none of the control-by-control
interactions are clear.

The wordtype matrices and clear estimation indices listed in the tables reflect
the complexity in classifying single arrays. For example, for kC = 6, kn = 3 and
p = 4 , the following non-isomorphic single arrays are given in Appendix C.3:

S1 : 6 = 123, 7 = 124, 8 = 134, 9 = 2345, noise columns: 1, 5, 9;
S2 : 6 = 12, 7 = 13, 8 = 23, 9 = 12345, noise columns: 4, 5, 9;
S3 : 6 = 12, 7 = 13, 8 = 23, 9 = 45, noise columns: 4, 5, 9.

S1 is listed as the first single array according to the aliasing index vector J , which
is (0, 12, 0, 18, 0, 0). All its control and noise main effects are clear. Twelve of
the 18 Cn effects are clear, these are {25, 29, 35, 39, 45, 49, 56, 57, 58, 69, 79,
89}, and the other Cn effects are eligible. The eligible sets that include at least
one Cn effect are

12 = 36 = 47, 13 = 26 = 48, 14 = 27 = 38,

16 = 23 = 78, 17 = 24 = 68, 18 = 34 = 67.

In addition, three noise-by-noise interactions {15, 19, 59} are clear. The aliasing
index J of S2 is also (0, 12, 0, 18, 0, 0), but S2 is quite different from S1 in terms
of α. All its noise main effects, noise-by-noise and control-by-noise interactions
are clear. The six control main effects are only eligible. The eligible sets are

1 = 26 = 37, 16 = 2 = 38, 17 = 28 = 3,

12 = 6 = 78, 13 = 68 = 7, 23 = 67 = 8.

It is easy to show that S3 is a cross array, i.e., S3 = 26−3 ⊗ 23−1. The crossing
structure guarantees that all the Cn effects are clear but in S3, the control and
noise main effects are only eligible. Its vector J is (0, 12, 3, 18, 0, 0). Compared
to S1 and S2, S3 should be viewed as inferior.

Several important issues will be briefly discussed here. As indicated earlier,
minimum aberration designs do not necessarily provide the best basic frames for
single arrays. This is evident for single arrays with large fraction index p or a
large number of noise factors (i.e., close values of kn and kC). For small p and kn,
minimum aberration designs lead to minimum J-aberration single arrays. For ex-
ample, minimum J-aberration 32-run single arrays S(6, 1, 2), S(5, 2, 2), S(4, 3, 2),
S(7, 1, 3), S(6, 2, 3) and S(5, 3, 3) use the corresponding minimum aberration de-
signs as the basic frames. But the minimum J-aberration single arrays S(7, 2, 4),
S(6, 3, 4) and S(8, 2, 5) are not based on the corresponding minimum aberration
designs.

The inconsistency between minimum aberration and the maximum number
of clear effects carries over to the minimum J-aberration single arrays. There are
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many cases in which the minimum J-aberration single arrays are also optimal in
terms of the clear estimation index α. Minimum J-aberration single arrays are
α-admissible in most cases, but there are exceptions. For example, the first and
second arrays for kC = 7, kn = 3 and p = 5 have α1 = (4, 0, 0, 6, 0) and α2 =
(7, 0, 0, 14, 0). Their aliasing index vectors are J1 = (0, 21, 3, 6, 0, 0) and J2 =
(0, 24, 3, 42, 0, 0). Though the first array has minimum J-aberration, obviously
it is α-inadmissible.

Cross arrays are often not good according to the minimum J-aberration
criterion and can also be α-inadmissible. Because cross arrays guarantee that
all the Cn effects are clear, they are usually ranked among the top 10 to 20
based on J , but many better single arrays are available. Two examples are given
for illustration. For kC = 6, kn = 2 and p = 3, the minimum J-aberration
single array, denoted by S1, has α = (6, 2, 0, 12, 1). The cross array S3 has α =
(0, 2, 0, 12, 1). In both arrays, all the Cn effects are clear. All the control and noise
main effects are clear in S1, while they are only eligible in S3. Another example
is for kC = 7, kn = 2 and p = 4. Denote the first and the third reported arrays
by S1 and S3, where S1 has α = (7, 2, 0, 14, 1), and S3 has α = (0, 2, 0, 14, 1).
The former has minimum J-aberration while the latter is a cross array. From
the two α vectors, it is clear that S1 is much better than S3. There are cases
in which cross arrays are winners in terms of the number of clear Cn effects.
When the fraction index p is large, the capacity of a fractional factorial design is
limited and balancing estimation among different effects becomes difficult. The
crossing structure puts one type of effects, namely Cn effects, as the top priority
for estimation. For example, for kC = 11, kn = 1 and p = 7, the listed arrays are
S1, S2 and S3 with α = (0, 1, 1, 0, 0), α = (11, 1, 0, 0, 0) and α = (0, 1, 0, 11, 0),
respectively. S1 is a minimum J-aberration array, S2 is based on the 212−7

minimum aberration design, and S3 is a cross array. Only the cross array can
guarantee that all the Cn effects are clear.

7. Summary

Based on the argument that control-by-noise interactions play a pivotal role
in parameter design experiments, a new effect ordering principle is proposed for
ranking the relative importance of factorial effects. This principle, together with
the concepts of aliasing type and wordtype pattern, leads to the minimum J-
aberration criterion, which is an extension of the minimum aberration criterion
for regular fractional factorial designs. Good single arrays can be chosen based on
the J-aberration criterion and the clear estimation index vector α. The collection
of useful single arrays given in Appendices C.1.−C.3. can aid experimenters in
choosing appropriate experimental plans. In this paper, only two-level regular
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fractions are considered. Extensions to more than two levels and to nonregular
fractions would be of interest.
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Appendix A. Derivation of (19)

Let Ni∼j denote the number of pairs of aliased effects of type i ∼ j. A pair
of aliased effects of type i ∼ j can be derived from different defining words in
the defining contrast subgroup. Let (E1, E2) denote a pair of aliased effects of
type i ∼ j, where E1 has order i, E2 has order j and i ≤ j. Define Θk to be
the collection of (E1, E2) such that E1 and E2 have exactly k factors in common,
where 0 ≤ k ≤ i. For k = 0, suppose (E1, E2) is an arbitrary pair in Θ0. It is
induced from a defining word of length i + j. Every defining word of length i + j
can induce d(i, j) different pairs of aliased effects of type i ∼ j which belong to
Θ0, where

d(i, j) =




(
i + j

i

)
if i �= j;

1
2

(
i + j

i

)
if i = j �= 0.

In addition, define d(0, 0) = 0. If (E1, E2) and (E′
1, E

′
2) are induced from

two different defining words of length i+ j, they must be different. Therefore,
| Θ0 |= d(i, j)Ai+j . For k > 0, Θk contains the pairs of aliased effects which
share exactly k factors. Suppose (E1, E2) ∈ Θk, which is induced from a defining
word of length i + j − 2k. Every defining word of length i + j − 2k can generate([l−(i+j−2k)]+

k

)
d(i−k, j−k) pairs of (E1, E2) ∈ Θk. Different defining words of the

same length i + j − 2k must generate different pairs of aliased effects belonging
to Θk. Therefore,

| Θk |=
(

[l − (i + j − 2k)]+

k

)
d(i − k, j − k)Ai+j−2k.

Since Θ0, . . . ,Θi are mutually exclusive, one has (19).

Appendix B

(Design matrices for 16, 32 and 64-run designs. For 16-run designs, take
the first 4 rows and 15 columns; for 32-run designs, take the first 5 rows and 31
columns; and for 64-run designs, take the whole matrix. Independent columns
are numbered 1, 2, 4, 8, 16 and 32 and in bold face.)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Appendix C

(kC=number of control factors, kn=number of noise factors, p=fraction in-
dex, DC=defining columns, J=aliasing index vector, A=(A3,0, A2,1, A1,2, A0,3,
A4,0, A3,1, A2,2, A1,3), α=clear estimation index; a cross array is indicated by *.)

C.1. 8-run single arrays

kc kn p DC N J A α

∗3 1 1 3 3 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 3 0
3 1 1 7 4 0 3 0 0 0 0 0 0 0 0 0 1 0 0 3 1 0 0 0
3 1 1 3 4 4 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 1 0
2 2 1 7 3 4 4 0 0 0 1 0 0 0 0 0 0 0 1 0 2 2 0 0 0
2 2 1 3 1 2 4 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0
2 2 1 3 3 4 4 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1
4 1 2 3 5 1 4 1 0 6 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
4 1 2 3 5 5 4 4 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0
3 2 2 3 5 1 2 8 4 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
3 2 2 3 5 4 5 12 2 0 0 1 0 0 2 0 0 0 0 1 0 0 0 0 0 0
5 1 3 3 5 6 1 8 14 0 6 0 0 2 2 0 0 1 2 0 0 0 0 0 0 0
4 2 3 3 5 6 1 2 16 11 1 0 1 0 1 2 1 0 0 2 1 0 0 0 0 0 0
4 2 3 3 5 6 3 4 24 4 0 6 2 0 0 4 0 0 1 0 2 0 0 0 0 0 0
3 3 3 3 5 6 1 3 4 20 5 5 0 1 0 0 2 2 0 0 1 1 1 0 0 0 0 0
3 3 3 3 5 6 1 2 4 24 3 3 0 3 0 0 3 0 1 0 0 3 0 0 0 0 0 0
3 3 3 3 5 6 1 2 3 24 3 3 0 3 0 1 0 3 0 0 0 3 0 0 0 0 0 0
6 1 4 3 5 6 7 1 12 25 0 18 0 0 4 3 0 0 3 4 0 0 0 0 0 0 0
5 2 4 3 5 6 7 1 2 28 22 1 6 2 0 2 1 1 0 1 4 2 0 0 0 0 0 0
4 3 4 3 5 6 7 1 2 3 36 15 6 0 3 0 1 3 3 0 0 3 3 1 0 0 0 0 0
4 3 4 3 5 6 7 1 2 4 48 6 3 6 6 0 0 6 0 1 1 0 6 0 0 0 0 0 0
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C.2. 16-run single arrays

kc kn p DC N J A α

4 1 1 15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 6 4 0

3 2 1 15 1 2 0 0 0 0 0 0 0 0 00 0 0 0 0 3 2 3 6 1

∗3 2 1 3 3 4 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 6 1

2 3 1 15 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 6 3

∗2 3 1 3 1 2 5 0 0 3 0 0 0 0 0 0 1 0 0 0 0 2 0 1 6 0

5 1 2 3 13 3 0 6 0 0 0 0 1 0 0 0 0 1 0 0 2 1 4 2 0

∗5 1 2 3 5 4 0 6 0 6 0 0 2 0 0 0 1 0 0 0 0 1 0 5 0

5 1 2 7 11 1 0 6 0 6 0 0 0 0 0 0 1 2 0 0 5 1 0 0 0

5 1 2 3 13 2 4 1 0 6 0 0 0 1 0 0 1 0 0 0 3 0 3 3 0

4 2 2 3 13 2 5 4 0 1 6 0 0 0 0 1 0 1 0 0 0 3 0 0 6 0

4 2 2 7 11 1 3 4 6 0 0 1 0 0 0 0 0 0 2 1 0 4 2 0 0 0

3 3 2 3 13 1 2 5 0 3 3 0 0 0 0 0 0 1 0 1 0 0 3 0 0 6 0

∗3 3 2 3 12 1 2 5 0 3 3 0 0 0 1 0 0 1 0 0 0 0 0 0 0 9 0

3 3 2 7 11 1 2 3 4 3 3 0 1 0 0 0 0 0 0 1 1 1 3 3 0 0 0

6 1 3 3 5 14 4 0 12 0 6 0 0 2 0 0 0 1 2 0 0 1 1 1 1 0

6 1 3 7 11 13 1 0 12 0 18 0 0 0 0 0 0 3 4 0 0 6 1 0 0 0

∗6 1 3 3 5 6 4 0 12 0 18 0 0 4 0 0 0 3 0 0 0 0 1 0 6 0

5 2 3 3 5 14 4 7 8 6 0 6 2 0 2 0 0 0 1 0 2 0 0 2 0 2 0

5 2 3 7 11 13 1 2 8 12 0 6 2 0 0 0 0 0 1 4 2 0 5 2 0 0 0

5 2 3 3 5 6 1 4 8 14 0 6 0 0 2 2 0 0 1 2 0 0 0 1 0 5 1

4 3 3 3 5 14 1 2 5 8 7 3 0 1 0 0 1 0 1 0 2 1 0 2 0 0 2 0

4 3 3 3 5 10 1 3 6 8 7 3 0 1 0 1 1 0 1 0 1 1 0 0 0 0 4 0

4 3 3 7 11 13 1 2 3 12 9 3 0 3 0 0 0 0 0 0 3 3 1 4 3 0 0 0

7 1 4 3 5 9 14 8 0 21 0 18 0 0 3 0 0 0 3 4 0 0 0 1 0 1 0

7 1 4 7 11 13 14 1 0 21 0 42 0 0 0 0 0 0 7 7 0 0 7 1 0 0 0

∗7 1 4 3 5 6 7 4 0 21 0 42 0 0 7 0 0 0 7 0 0 0 0 1 0 7 0

6 2 4 3 5 6 15 4 8 12 12 0 18 3 0 4 0 0 0 3 0 3 0 0 2 0 0 0

6 2 4 7 11 13 14 1 2 12 24 0 18 3 0 0 0 0 0 3 8 3 0 6 2 0 0 0

6 2 4 3 5 6 7 1 4 12 27 0 18 0 0 4 3 0 0 3 4 0 0 0 1 0 6 1

5 3 4 3 5 10 12 1 2 5 16 14 3 0 2 0 1 2 0 1 0 3 2 0 0 0 0 0 0

5 3 4 3 5 6 9 1 4 8 16 14 3 6 2 0 2 2 0 1 1 2 2 0 0 0 0 2 0

8 1 5 3 5 6 9 14 8 4 31 0 30 0 0 5 1 0 0 5 5 0 0 0 0 0 0 0

7 2 5 3 5 6 7 9 4 9 16 21 1 42 3 0 7 0 1 0 7 0 3 0 0 0 0 0 0

6 3 5 3 5 10 12 15 1 2 5 24 27 3 0 3 0 2 3 0 1 0 6 3 0 0 0 0 0 0

9 1 6 3 5 6 9 10 13 7 8 44 0 54 0 0 7 2 0 0 9 7 0 0 0 0 0 0 0

8 2 6 3 5 6 7 9 10 4 9 24 41 1 42 3 0 7 2 1 0 7 6 3 0 0 0 0 0 0

7 3 6 3 5 6 9 14 15 1 2 6 36 43 5 18 3 0 2 4 2 0 3 11 3 1 0 0 0 0 0

10 1 7 3 5 6 9 10 13 14 1 12 60 0 96 0 0 9 3 0 0 16 10 0 0 0 0 0 0 0

9 2 7 3 5 6 7 9 10 12 4 9 32 64 1 60 3 0 8 4 1 0 10 12 3 0 0 0 0 0 0

8 3 7 3 5 6 9 10 13 14 1 3 7 52 63 5 30 5 0 4 6 2 0 5 15 5 1 0 0 0 0 0

11 1 8 3 5 6 9 10 13 14 15 1 16 79 0 156 0 0 12 4 0 0 26 13 0 0 0 0 0 0 0

10 2 8 3 5 6 9 10 13 14 15 1 2 40 93 1 96 3 0 9 6 1 0 16 20 3 0 0 0 0 0 0

9 3 8 3 5 6 7 9 10 11 12 1 3 7 68 91 6 54 7 0 7 7 3 0 9 21 7 1 0 0 0 0 0

12 1 9 3 5 6 7 9 10 11 12 13 2 20 107 0 228 0 0 17 5 0 0 38 17 0 0 0 0 0 0 0

11 2 9 3 5 6 7 9 10 11 12 13 2 3 52 125 1 150 4 0 13 8 1 0 25 26 4 0 0 0 0 0 0

10 3 9 3 5 6 7 9 10 11 12 13 2 3 8 84 129 6 90 9 0 10 9 3 0 15 30 9 1 0 0 0 0 0

13 1 10 3 5 6 7 9 10 11 12 13 14 1 24 138 0 330 0 0 22 6 0 0 55 22 0 0 0 0 0 0 0

12 2 10 3 5 6 7 9 10 11 12 13 14 1 2 64 163 1 228 5 0 17 10 1 0 38 34 5 0 0 0 0 0 0

11 3 10 3 5 6 7 9 10 11 12 13 14 1 2 3 108 168 6 150 12 0 13 12 3 0 25 39 12 1 0 0 0 0 0

14 1 11 3 5 6 7 9 10 11 12 13 14 15 1 28 175 0 462 0 0 28 7 0 0 77 28 0 0 0 0 0 0 0

13 2 11 3 5 6 7 9 10 11 12 13 14 15 1 2 76 210 1 330 6 0 22 12 1 0 55 44 6 0 0 0 0 0 0

12 3 11 3 5 6 7 9 10 11 12 13 14 15 1 2 3 132 219 6 228 15 0 17 15 3 0 38 51 15 1 0 0 0 0 0
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C.3. 32-run single arrays

kC kn p DC N A α

5 1 1 31 1 0 0 0 0 0 0 0 0 5 1 10 5 0
∗5 1 1 15 5 0 0 0 0 0 0 0 0 5 1 10 5 0
4 2 1 31 1 2 0 0 0 0 0 0 0 0 4 2 6 8 1
∗4 2 1 7 4 5 0 0 0 0 1 0 0 0 4 2 0 8 1
3 3 1 31 1 2 3 0 0 0 0 0 0 0 0 3 3 3 9 3
∗3 3 1 3 1 2 6 0 0 0 1 0 0 0 0 3 0 3 9 0
6 1 2 7 27 4 0 0 0 0 1 0 0 0 6 1 9 6 0
∗6 1 2 7 11 5 0 0 0 0 3 0 0 0 6 1 0 6 0
6 1 2 7 27 1 0 0 0 0 0 1 0 0 6 1 12 3 0
5 2 2 7 27 4 5 0 0 0 0 1 0 0 0 5 2 4 10 1
5 2 2 3 29 3 4 1 0 0 0 0 0 0 0 2 2 7 10 1
∗5 2 2 3 5 4 5 2 0 0 0 1 0 0 0 0 2 0 10 1
4 3 2 7 27 4 5 7 0 0 0 0 1 0 0 0 4 3 0 12 3
4 3 2 3 29 1 2 6 0 0 0 1 0 0 0 0 4 0 6 12 0
∗4 3 2 3 28 1 2 6 0 0 0 1 1 0 0 0 4 0 0 12 0
7 1 3 7 11 29 5 0 0 0 0 3 0 0 0 7 1 6 7 0
∗7 1 3 7 11 13 5 0 0 0 0 7 0 0 0 7 1 0 7 0
7 1 3 7 11 29 1 0 0 0 0 1 2 0 0 7 1 11 2 0
6 2 3 7 11 29 5 8 0 0 0 0 3 0 0 0 6 2 0 12 1
6 2 3 7 11 29 1 5 0 0 0 0 1 2 0 0 6 2 5 7 1
∗6 2 3 3 5 6 4 5 4 0 0 0 3 0 0 0 0 2 0 12 1
6 2 3 3 12 21 2 6 1 0 1 0 1 0 0 0 2 0 6 10 0
5 3 3 7 11 29 1 5 8 0 0 0 0 1 2 0 0 5 3 0 10 3
5 3 3 3 5 30 4 5 8 2 0 0 0 1 0 0 0 0 3 0 15 3
∗5 3 3 3 5 24 4 5 8 2 0 0 1 1 0 0 0 0 0 0 15 0
8 1 4 7 11 19 29 9 0 0 0 0 6 0 0 0 8 1 0 8 0
8 1 4 7 11 13 30 5 0 0 0 0 7 0 0 0 8 1 7 8 0
∗8 1 4 7 11 13 14 5 0 0 0 0 14 0 0 0 8 1 0 8 0
7 2 4 7 11 13 30 5 9 0 0 0 0 7 0 0 0 7 2 0 14 1
7 2 4 7 11 13 30 1 5 0 0 0 0 3 4 0 0 7 2 6 8 1
∗7 2 4 3 5 6 7 4 5 7 0 0 0 7 0 0 0 0 2 0 14 1
6 3 4 7 11 13 30 1 5 9 0 0 0 0 3 4 0 0 6 3 0 12 3
6 3 4 3 5 6 31 4 5 9 4 0 0 0 3 0 0 0 0 3 0 18 3
∗6 3 4 3 5 6 24 4 5 9 4 0 0 1 3 0 0 0 0 0 0 18 0
9 1 5 7 11 19 29 30 1 0 0 0 0 6 4 0 0 9 1 0 0 0
9 1 5 3 5 14 22 25 10 2 0 0 0 6 2 0 0 4 1 0 4 0
∗9 1 5 3 5 9 14 15 5 4 0 0 0 14 0 0 0 0 1 0 9 0
8 2 5 3 13 21 25 28 2 6 0 0 1 0 14 0 0 0 7 0 0 14 0
8 2 5 7 11 19 29 30 1 3 0 0 0 0 3 6 1 0 8 2 0 0 0
7 3 5 3 12 21 26 31 1 2 6 1 0 0 1 1 6 0 0 4 0 0 6 0
7 3 5 3 13 21 25 28 1 2 6 0 0 0 1 7 7 0 0 7 0 0 14 0
∗7 3 5 3 5 6 7 24 4 5 10 7 0 0 1 7 0 0 0 0 0 0 21 0
10 1 6 3 5 14 22 24 31 11 4 0 0 0 6 4 0 0 0 1 1 0 0
10 1 6 7 11 13 14 19 21 5 0 0 0 0 18 8 0 0 10 1 0 0 0
∗10 1 6 3 5 6 9 14 15 5 8 0 0 0 18 0 0 0 0 1 0 10 0
9 2 6 3 5 9 14 15 18 5 11 4 0 1 0 14 0 1 0 0 0 0 12 0
9 2 6 3 5 14 22 26 28 1 6 0 1 1 0 14 4 0 0 6 0 0 6 0
8 3 6 3 5 14 22 24 31 1 2 6 2 1 0 1 1 8 1 0 1 0 0 1 0
8 3 6 3 5 14 22 26 29 1 2 6 0 1 0 1 5 10 1 0 6 0 0 6 0
8 3 6 3 5 6 9 14 25 5 9 11 5 1 0 1 5 5 1 0 0 0 0 12 0
11 1 7 3 5 10 12 19 21 30 12 6 0 0 0 10 6 0 0 0 1 1 0 0
11 1 7 7 11 13 14 19 21 25 5 0 0 0 0 26 12 0 0 11 1 0 0 0
∗11 1 7 3 5 6 9 10 13 14 5 12 0 0 0 26 0 0 0 0 1 0 11 0
10 2 7 3 5 6 9 14 15 18 5 12 8 0 1 0 18 0 2 0 0 0 0 10 0
10 2 7 3 5 9 14 22 26 28 1 6 0 2 1 0 18 8 0 0 5 0 0 5 0
9 3 7 3 5 10 12 19 21 30 2 4 8 3 2 0 1 3 11 2 0 1 0 0 1 0
9 3 7 3 5 6 9 22 26 29 1 4 9 3 2 0 1 5 11 2 0 2 0 0 4 0
12 1 8 3 5 10 12 19 21 25 30 13 8 0 0 0 15 8 0 0 0 1 0 0 0
12 1 8 7 11 13 14 19 21 22 25 13 0 0 0 0 39 16 0 0 12 1 0 0 0
∗12 1 8 3 5 6 9 10 13 14 15 5 16 0 0 0 39 0 0 0 0 1 0 12 0
11 2 8 3 5 6 9 10 13 14 31 5 13 12 0 0 0 26 0 4 0 0 2 0 6 0
11 2 8 3 5 6 9 10 13 14 17 5 13 12 0 1 0 26 0 3 0 0 0 0 8 0
11 2 8 3 5 9 14 17 22 26 28 1 6 0 3 1 0 26 12 0 0 4 0 0 4 0
10 3 8 3 5 10 12 19 21 25 30 1 2 6 4 3 0 1 5 15 3 0 1 0 0 0 0
13 1 9 3 5 9 14 18 20 23 24 27 9 10 0 0 0 23 12 0 0 0 1 0 0 0
13 1 9 7 11 13 14 19 21 22 25 26 14 0 0 0 0 55 22 0 0 0 13 1 0 0 0
∗13 1 9 3 5 6 7 9 10 11 12 13 5 22 0 0 0 55 0 0 0 0 1 0 13 0
12 2 9 3 5 6 9 10 13 14 15 17 5 14 16 0 1 0 39 0 4 0 0 0 0 6 0
11 3 9 3 5 9 14 18 20 26 29 31 1 2 6 5 4 0 1 10 20 4 0 0 0 0 0 0
14 1 10 3 5 9 14 18 20 23 24 27 29 9 12 0 0 0 33 16 0 0 0 1 0 0 0
14 1 10 7 11 13 14 19 21 22 25 26 28 1 0 0 0 0 77 28 0 0 14 1 0 0 0
∗14 1 10 3 5 6 7 9 10 11 12 13 14 5 28 0 0 0 77 0 0 0 0 1 0 14 0
13 2 10 3 5 6 7 9 10 11 12 13 30 5 15 22 0 0 0 55 0 6 0 0 2 0 2 0
12 3 10 3 5 6 9 14 18 23 25 29 30 1 4 9 8 5 0 1 14 26 5 0 0 0 0 0 0
15 1 11 3 5 9 14 18 20 23 24 27 29 31 9 15 0 0 0 45 20 0 0 0 1 0 0 0
15 1 11 7 11 13 14 19 21 22 25 26 28 31 1 0 0 0 0 105 35 0 0 15 1 0 0 0
∗15 1 11 3 5 6 7 9 10 11 12 13 14 15 5 35 0 0 0 105 0 0 0 0 1 0 15 0
14 2 11 3 5 6 7 9 10 11 12 13 14 31 5 16 28 0 0 0 77 0 7 0 0 2 0 0 0
13 3 11 3 5 6 9 10 12 17 18 21 30 31 1 15 16 11 6 0 1 22 33 6 0 0 0 0 0 0
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