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S1 Lemmas and Proofs of Theorems

Lemma 1. EA(·;M′) defined in (2.9) is a convex function of design ξ.

Proof. Since Φp(·;M′) is convex with respect to ξ (Yang and Stufken, 2012)

and exp(·) is a convex and strictly increasing function, the composite func-

tion ξ 7→ exp

(
Φjp(ξ)

Φ
optj
p

)
is a convex function of ξ. As a result, EA(·;M′) is a

convex function of ξ.

Lemma 2. The directional derivative of EA(ξ;M′) in the direction from

ξ to ξ′ is

when p = 0, φ(ξ′, ξ) =
m∑
j=1

Φ̃j
0(ξ)

[
q − tr

(
Fj(ξ)

−1Gj(ξ, ξ
′)
)]
,

when p > 0, φ(ξ′, ξ) =
m∑
j=1

Φ̃j
p(ξ)

[
Φj
p(ξ)− q−1/p (tr (Fj(ξ))

p)
1/p−1

tr
(
(Fj(ξ))

p−1 Gj(ξ, ξ
′)
)]
,
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where

Φ̃j
p(ξ) =

[
Φ

optj
p

]−1

exp

(
Φj
p(ξ)

Φ
optj
p

)
, Bj =

∂f(β)

∂β>

∣∣∣∣
β=βj

,

Fj(ξ) = Bj Ij(ξ)
−1B>j , Gj(ξ, ξ

′) = Bj Ij(ξ)
−1Ij(ξ

′)Ij(ξ)
−1B>j .

Proof. Given ξ̃ = (1−α)ξ +αξ′, we have Ij(ξ̃) = (1−α)Ij(ξ) +αIj(ξ
′). For

any invertible matrix S, whose elements are functions of α, the derivative

of S−1 is ∂S−1

∂α
= −S−1 ∂S

∂α
S−1. So, the derivative of Ij(ξ̃)

−1 with respect to α

can be expressed as,

∂
[
Ij(ξ̃)

−1
]

∂α
= −Ij(ξ̃)−1[Ij(ξ

′)− Ij(ξ)]Ij(ξ̃)
−1. (S1.1)

Thus, for p = 0,

∂Φj
0(ξ̃)

∂α
=
∂ log

∣∣∣Fj(ξ̃)∣∣∣
∂α

= tr

Fj(ξ̃)−1Bj
∂
[
Ij(ξ̃)

−1
]

∂α
B>j


= − tr

[
Fj(ξ̃)

−1Bj Ij(ξ̃)
−1[Ij(ξ

′)− Ij(ξ)]Ij(ξ̃)
−1B>j

]
; (S1.2)

for p > 0,

∂Φj
p(ξ̃)

∂α
=

∂

[(
q−1 tr

(
Fj(ξ̃)

)p)1/p
]

∂α

= −q−1/p
(

tr
(
Fj(ξ̃)

)p)1/p−1

tr

[(
Fj(ξ̃)

)p−1

Bj Ij(ξ̃)
−1[Ij(ξ

′)− Ij(ξ)]Ij(ξ̃)
−1B>j

]
.

(S1.3)
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Based on (S1.2) and (S1.3), the directional derivative of EA(ξ,M′) is

φ(ξ′, ξ) =

∂

[
m∑
j=1

exp

(
Φjp(ξ̃)

Φ
optj
p

)]
∂α

∣∣∣∣∣∣∣∣∣∣
α=0

=
m∑
j=1

Φ̃j
p(ξ)

∂Φj
p(ξ̃)

∂α

∣∣∣∣∣
α=0

=


m∑
j=1

Φ̃j
0(ξ) [q − tr (Fj(ξ)

−1Gj(ξ, ξ
′))] , p = 0;

m∑
j=1

Φ̃j
p(ξ)

[
Φj
p(ξ)− q−1/p (tr (Fj(ξ))

p)
1/p−1

tr
(
(Fj(ξ))

p−1 Gj(ξ, ξ
′)
)]
, p > 0.

Lemma 3. The directional derivative of EA(ξ;M′) in the direction of a

single point x is given as,

φ(x, ξ) =


m∑
j=1

Φ̃j
p(ξ)

[
q − wj(x)g>j (x)Mj(ξ)gj(x)

]
, p = 0;

m∑
j=1

Φ̃j
p(ξ)

[
Φj
p(ξ)− q−1/pwj(x) (tr (Fj(ξ))

p)
1/p−1

g>j (x)Mj(ξ)gj(x)
]
, p > 0,

where Mj(ξ) = Ij(ξ)
−1B>j Fj(ξ)

p−1Bj Ij(ξ)
−1.

Particularly, the directional derivatives of D-, A- and the prediction-

oriented criterion EI-optimality defined in (Li and Deng, 2020) are:

φ(x, ξ) =



m∑
j=1

Φ̃j
p(ξ)

[
l − wj(x)g>j (x)I−1

j (ξ)gj(x)
]
, D-optimality;

m∑
j=1

Φ̃j
p(ξ)

[
tr(I−1

j (ξ))− wj(x)g>j (x)I−2
j (ξ)gj(x)

]
, A-optimality;

m∑
j=1

Φ̃j
p(ξ)

[
tr(I−1

j (ξ)Aj)− wj(x)g>j (x)I−1
j (ξ)Aj I

−1
j (ξ)gj(x)

]
, EI-optimality,

where Aj =
∫

Ω
gj(x)g>j (x)

[
dh−1
j

dηj

]2

dFIMSE(x) for EI-optimality is pre-determined
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and it does not depend on the design ξ. The cdf FIMSE is the user-specified

distribution for the EI-optimality.

Lemma 4. For a design ξλ with fixed design points x1, · · · ,xn, EA(·;M′)

in (2.11) is a convex function with respect to the weight vector λ.

Proof. The proof is similar to that of Lemma 1.

Proof of Theorem 1

Proof. i. (1) → (2): As EA(·;M′) is a convex function in ξ proved in

Lemma 1, the directional derivative φ(x, ξMm
M′ ) ≥ 0 holds for any x ∈ Ω,

and the inequality becomes equality if x is a support point of the design

ξMm
M′ .

ii. (2)→ (1): If φ(x, ξMm
M′ ) ≥ 0 holds for any x ∈ Ω, then ξMm

M′ minimizes

EA(ξ;M′) as EA(·;M′) is a convex function in ξ.

Proof of Theorem 2

We first establish the proof of the following lemma.

Lemma 5. For any design ξ and the Mm-Φp design ξMm
M′ that minimizes

EA(ξ;M′) or equivalently minimizes LEA(ξ;M′), the following inequality
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holds:

min
x∈Ω

φ(x, ξ) ≤ φ(ξMm
M′ , ξ) ≤ EA(ξMm

M′ ;M′)− EA(ξ;M′) ≤ 0,

where φ(x, ξ) and φ(ξMm
M′ , ξ) are the directional derivatives defined in (2.10).

Proof. The lemma is proved for the p > 0 case, and the case p = 0 could be

proved similarly. The directional derivative of EA(ξ;M′) in the direction

of the point x∗ = argmin
x∈Ω

φ(x, ξ) is:

min
x∈Ω

φ(x, ξ) = φ(x∗, ξ)

=
m∑
j=1

Φ̃j(ξ)
[
Φj
p(ξ)− q−1/p (tr (Fj(ξ))

p)
1/p−1

tr
(
(Fj(ξ))

p−1 Bj Ij(ξ
(r))−1Ij(x

∗
r)Ij(ξ)

−1B>j
)]

≤
m∑
j=1

Φ̃j(ξ)
[
Φj
p(ξ)− q−1/p (tr (Fj(ξ))

p)
1/p−1

tr
(
(Fj(ξ))

p−1 Bj Ij(ξ)
−1Ij(z)Ij(ξ)

−1B>j
)]
(S1.4)

for any x ∈ Ω, where Ij(x) denotes the information matrix of the design

with a unit mass on single point x.

Denote the Mm-Φp design ξMm
M′ =


x1, ..., xn

λ∗1, ..., λ∗n

. With (S1.4), we



YIOU LI AND LULU KANG AND XINWEI DENG

have

φ(x∗, ξ)

≤
n∑
i=1

λ∗i

m∑
j=1

Φ̃j(ξ)
[
Φj
p(ξ)− q−1/p (tr (Fj(ξ))

p)
1/p−1

tr
(
(Fj(ξ))

p−1 Bj Ij(ξ)
−1Ij(xi)Ij(ξ)

−1B>j
)]

=
m∑
j=1

Φ̃j(ξ)
[
Φj
p(ξ)− q−1/p (tr (Fj(ξ))

p)
1/p−1

tr
(
(Fj(ξ))

p−1 Bj Ij(ξ)
−1Ij(ξ

Mm
M′ )Ij(ξ)

−1B>j
)]

= φ(ξMm
M′ , ξ) (S1.5)

Furthermore, with the definition of directional derivative in the direc-

tion of the Mm-Φp design ξMm
M′ and convexity of EA(·;M′), we have

φ(ξMm
M′ , ξ) = lim

α→0

EA((1− α)ξ + αξMm
M′ ;M′)− EA(ξ;M′)

α

≤ lim
α→0

(1− α) EA(ξ;M′) + αEA(ξMm
M′ ;M′)− EA(ξ;M′)

α

= EA(ξMm
M′ ;M′)− EA(ξ;M′) (S1.6)

Combining (S1.5) and (S1.6), we complete the proof that

min
x∈Ω

φ(x, ξ) ≤ φ(ξMm
M′ , ξ) ≤ EA(ξMm

M′ ;M′)− EA(ξ;M′) ≤ 0.

Proof. When 1 + 2
min
x∈Ω

φ(x,ξ)

EA(ξ;M′) < 0, EffLEA(ξ, ξMm
M′ ;M′) ≥ 1 + 2

min
x∈Ω

φ(x,ξ)

EA(ξ;M′) holds

automatically.

When 1 + 2
min
x∈Ω

φ(x,ξ)

EA(ξ;M′) ≥ 0, that is,
min
x∈Ω

φ(x,ξ)

EA(ξ;M′) ≥ −0.5, define
EA(ξMm

M′ ;M′)
EA(ξ;M′) =
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a > 0, then it follows immediately from Lemma 5 that

1 ≥ a =
EA(ξMm

M′ ,M′)

EA(ξ;M′)
≥ 1 +

min
x∈Ω

φ(x, ξ)

EA(ξ;M′)
≥ 0.5. (S1.7)

Since the function ln(a)
ln(EA(ξ;M′))+1−a is an increasing function of EA(ξ;M′),

EA(ξ;M′) ≥ e because of its definition and a ≥ 0.5, we have∣∣∣∣EffLEA(ξ, ξMm
M′ ;M′)− EA(ξMm

M′ ;M′)

EA(ξ;M′)

∣∣∣∣ =

∣∣∣∣ ln(aEA(ξ;M′))

ln(EA(ξ;M′))
− aEA(ξ;M′)

EA(ξ;M′)

∣∣∣∣
=

∣∣∣∣ ln(a)

ln(EA(ξ;M′))
+ 1− a

∣∣∣∣ ≤ max(|ln(a) + 1− a| , |1− a|)

= max(− ln(a)− 1 + a, 1− a) = 1− a.

Thus, together with (S1.7), EffLEA(ξ, ξMm
M′ ;M′) ≥ 2a − 1 ≥ 1 + 2

min
x∈Ω

φ(x,ξ)

EA(ξ;M′) .

Proof of Theorem 3

Proof. We show the proof for the scenario p > 0 in the Φp-criterion. The

proof for p = 0 could be done similarly. The proof is established by proof

of contradiction. Suppose that the Algorithm 1 does not converge to the

Mm-Φp design ξ∗, then we have

lim
r→∞

EA(ξ(r);M′) > EA(ξMm
M′ ;M′).

For any iteration r+1 ≥ 1, since X (r) ⊂ X (r+1) and the Optimal-Weight

Procedure returns optimal weight vector that minimizes EA criterion, the
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design ξ(r+1) cannot be worse than the design in the previous iteration ξ(r),

i.e.,

EA(ξ(r+1);M′) ≤ EA(ξ(r);M′).

Thus, for all r ≥ 0, there exists a > 0, such that,

EA(ξ(r);M′) > EA(ξMm
M′ ;M′) + a.

According to Lemma 5,

φ(x∗r, ξ
(r)) ≤ φ(ξMm

M′ , ξ
(r)) ≤ EA(ξMm

M′ ;M′)− EA(ξ(r);M′) < −a,

for any r ≥ 0. Then, the Taylor expansion of EA((1− α)ξ(r) + αx∗r;M′) is

upper bounded by

EA((1− α)ξ(r) + αx∗r;M′) = EA(ξ(r);M′) + φ(x∗r, ξ
(r))α +

u

2
α2

< EA(ξ(r);M′)− aα +
u

2
α2, (S1.8)

where u ≥ 0 is the second-order directional derivative of EA evaluated at a

value between 0 and α.

For Algorithm 1, the criterion EA is minimized, for all 0 ≤ α ≤ 1 we

have

EA(ξ(r+1);M′) ≤ EA((1− α)ξ(r) + αx∗r;M′)

< EA(ξ(r);M′)− aα +
u

2
α2,
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or equivalently,

EA(ξ(r+1);M′)− EA(ξ(r);M′) < −aα +
u

2
α2 =

u

2

(
α− a

u

)2

− a2

2u

<


− a2

2u
< 0, choosing α = a

u
if a ≤ u

u−4a
8

< 0, choosing α = 0.5 if a > u

.

As a result, lim
r→∞

EA(ξ(r);M′) = −∞, which contradicts with the fact that

EA(ξ(r);M′) ≥ 0 for any design ξ(r). Thus,

lim
r→∞

EA(ξ(r);M′) = EA(ξMm
M′ ;M′).

Since ln(·) on [1,∞) is a continuous function,

lim
r→∞

LEA(ξ(r);M′) = LEA(ξMm
M′ ;M′).

S2 Modified Multiplicative Algorithm (Algorithm 2)

to Optimize Weights

Description of Algorithm 2.

There are three user-specified parameters δ, Tol, and MaxIter2 in Al-

gorithm 2. Tol is the tolerance of convergence, and we usually set it to be

Tol = 1e−15. MaxIter2 is the maximum number of iterations and we set it

to be MaxIter2 = 200 in all numerical examples. The parameter δ ∈ (0, 1]
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Algorithm 2 (Optimal-Weight Procedure) A Modified Multiplicative Approach.

1: Assign a uniform initial weight vector λ(0) = [λ
(0)
1 , ..., λ

(0)
n ]>, and k = 0.

2: while change > Tol and k < MaxIter2 do

3: for i = 1, . . . , n do

4: Update the weight of design point xi:

λ
(k+1)
i = λ

(k)
i

(
dp(xi, ξ

λ(k)

)
)δ

n∑
s=1

λ
(k)
s

(
dp(xs, ξλ

(k)
)
)δ ,

=



λ
(k)
i

(
m∑
j=1

Φ̃j0(ξλ
(k)

)wj(xi)g
>
j (xi)Mj(ξ

λ(k)
)gj(xi)

)δ
n∑
s=1

λ
(k)
s

(
m∑
j=1

Φ̃j0(ξλ
(k)

)wj(xi)g>j (xi)Mj(ξλ
(k)

)gj(xi)

)δ , p = 0;

λ
(k)
i

(
m∑
j=1

Φ̃jp(ξλ
(k)

)wj(xi)

(
tr

(
Fj(ξ

λ(k)
)

)p)1/p−1

g>j (xi)Mj(ξ
λ(k)

)gj(xi)

)δ
n∑
s=1

λ
(k)
s

(
m∑
j=1

Φ̃jp(ξλ
(k)

)wj(xi)
(

tr
(
Fj(ξλ

(k)
)
)p)1/p−1

g>j (xi)Mj(ξλ
(k)

)gj(xi)

)δ , p > 0.

(S2.9)

5: change =
∣∣∣EA(λ(k+1);M′)−EA(λ(k);M′)

EA(λ(k);M′)

∣∣∣.
6: k = k + 1.

7: end for

8: end while

plays the same role as in the classical multiplicative algorithm (Silvey et al.,

1978), which is to control the speed of the convergence. According to the

numerical study by Fellman (1974) and Fiacco and Kortanek (1983), δ is

often chosen as 1 for D-optimality, and 0.5 for A- or EI-optimality.

Derivation of (S2.9) is stated as follows. Update the weight of xi in
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iteration k with

λ̃
(k+1)
i = λ

(k)
i

 dp(xi, ξ
λ(k)

)
n∑
t=1

λ
(k)
t dp(xt, ξλ

(k)
)


δ

, (S2.10)

then normalize the weights to ensure the sum 1 condition as

λ
(k+1)
i =

λ̃
(k+1)
i

n∑
s=1

λ̃
(k+1)
s

. (S2.11)

Plugging (S2.10) into (S2.11), we have λ
(k+1)
i = λ

(k)
i

(
dp(xi,ξ

λ(k)
)
)δ

n∑
s=1

λ
(k)
s

(
dp(xs,ξλ

(k)
)
)δ .

It is worth pointing out that, occasionally, Φ̃j
p(ξ

(r)) =
[
Φ

optj
p

]−1

exp

(
Φjp(ξ(r))

Φ
optj
p

)
and Φ̃j

p(ξ
λ(k)

) =
[
Φ

optj
p

]−1

exp

(
Φjp(ξλ

(k)
)

Φ
optj
p

)
in (S2.9) of Algorithm 2 and di-

rectional derivative φ(x, ξ(r)) in Algorithm 1 can get extreme large and

cause overflow, which is a well-recognized issue with the Log-Sum-Exp ap-

proximation in the literature. One remedy is to introduce a constant c,

and exp

(
Φjp(ξ(r))

Φ
optj
p

)
= exp(c) exp

(
Φjp(ξ(r))

Φ
optj
p

− c
)

. This constant scaling fac-

tor exp(c) is eventually canceled in (S2.9) in Algorithm 2 and does not

affect the search for the next design point Algorithm 1. We set c =⌈
max
j

(
Φjp(ξλ

(k)
)

Φ
optj
p

)
− 500

⌉
in Algorithm 2 and c =

⌈
max
j

(
Φjp(ξ(r))

Φ
optj
p

)
− 500

⌉
in Algorithm 1 whenever overflow occurs.

Comparison between the proposed Algorithm 2 and existing con-

vex optimization tools.
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To show the strength of the proposed Algorithm 2, we use a small and

simple example with three design points and two β values. In the following

Example 1, we compare Algorithm 2 with two existing convex optimization

tools, fmincon function in Matlab using interior-point method and the

CVX toolbox in Matlab for convex optimization. To solve an optimiza-

tion problem with the exponential objective function, CVX constructed a

successive approximation heuristic that approximates the local exponential

function with polynomial approximation and solves the approximate model

using symmetric primal/dual solvers (Grant et al., 2009).

Example 1. Consider a univariate logistic regression model with the

experimental domain Ω = [−1, 1], basis function g = [1, x]> and a pa-

rameter space B = {β1,β2} consisting of only two possible regression

coefficients β1 = [−1.4, 2.3]> and β2 = [0.5, 1.2]>. The model space is

M = {M1 = (h, g,β1),M2 = (h, g,β2)}, where h is the link function of lo-

gistic regression. Given design points x ∈ {−1, 0, 1}, all three optimization

methods return the same optimal weights,

λ∗ = {0.3832, 0.2660, 0.3508}.

Table 1 reports the computational times of the three comparison methods.

The results clearly show that Algorithm 2 is far more efficient than both

CVX and fmincon. Furthermore, Algorithm 2 boosts the speed of sequential
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Algorithm 1 dramatically as finding the optimal weights is done in every

iteration of the sequential algorithm.

Table 1: Computational Times (in seconds) of Three Optimization Methods.

CVX fmincon Algorithm 2 (Optimal-Weight Procedure)

1.71 0.12 0.03

S3 Connection to Compromise Design

Woods et al. (2006) proposed a compromise design that optimizes the

weighted average of certain criteria, where each criterion is based on a

potential model from some prior. It means that the compromise design

requires a prior distribution p(M) for the model specifications M ∈ M′.

The prior distribution can be as simple as a uniform distribution or other

informative distributions.

There can be two different ways to define a compromise design. The

first way aims at maximizing a weighted average of the local Φp-efficiencies.

That is

ξeff-com
M′ = argmax

ξ

m∑
j=1

p(Mj) effΦp(ξ, ξ
opt
Mj

;Mj),

and it is henceforth called the eff-compromise design. Clearly, this averaged
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local efficiency is not smaller than the reciprocal of LEA(ξ,M′) since

[LEA(ξ;M′)]−1 ≤ min
M∈M′

effΦp(ξ, ξ
opt
M ;M) ≤

m∑
j=1

p(Mj) effΦp(ξ, ξ
opt
Mj

;Mj).

Thus the compromise design maximizes an upper bound of the worst Φp-

efficiency. This is not as ideal as LEA(ξ;M′). Minimizing LEA(ξ;M′)

simultaneously maximizes a lower and an upper bound of the worst Φp-

efficiency (see (2.7)), even though the two upper bounds [LEA(ξ;M′)− ln(m)]−1

and
∑m

j=1 p(Mj) effΦp(ξ, ξ
opt
Mj

;Mj) can be both attainable, depending on the

prior distributions.

Another type of compromise design is to minimize the weighted average

of local Φp-criterion. That is

ξ
Φp-com
M′ = argmin

ξ

m∑
j=1

p(Mj)Φp(ξ;Mj),

which is henceforth called the Φp-compromise design. Such a design crite-

rion is more consistent with the classic Bayesian optimal design. According

to Woods et al. (2006) and Atkinson and Woods (2015), the Bayesian opti-

mal design can be considered as a special case of the compromise design, as

the former only deals with the uncertainty of the unknown parameters of

the GLMs, whereas the compromise design handles all three kinds of uncer-

tainties that are listed previously, including uncertainty of the parameters.

We would like to point out that the Φp-compromise design can be sensitive
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to the choice of the prior distribution, especially when the optimal criterion

values of different model specifications are very different. On the contrary,

LEA(ξ,M′) does not assume any prior distribution and is robust to all the

choices of the prior distribution of model specifications.

S4 Additional Tables and Figures in Sections 4.2 - 4.4

Example 3 in Section 4.2

Figure 1 and 2 are the constructed designs and LEA criterion values

versus iteration, respectively.
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Figure 1: Mm-Φp Design, Eff-Compromise Design, Centroid Optimal Design and

Bayesian Optimal Design

Potato packaging example in Section 4.3

Table 2 includes the estimates of regression coefficients from a prelimi-

nary study, and Figure 3 shows the design points of the constructed designs.

Example of exponential growth model in Section 4.4
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Figure 2: LEA(ξ(r),M′) of the r-th iteration in Algorithm 1.

Table 2: Model Space M of Potato Packing Example

Term First-Order M1 With interaction M2 Second-order M3

Intercept -0.28 -1.44 -2.93

x1 0 0 0

x2 -0.76 -1.95 -0.52

x3 -1.15 -2.36 -0.79

x1x2 0 0

x1x3 0 0

x2x3 -2.34 -0.66

x2
1 0.94

x2
2 0.79

x2
3 1.82
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Figure 3: Design Points of Mm-Φp Design and Compromise Designs

Table 3 shows the standardized maximin D-optimal designs in (Braess

et al., 2007).
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Table 3: Standardized maximin D-optimal designs.

B 10 40 100

x1 0.142 0.037 0.014

λ1 0.553 0.414 0.336

x2 0.771 0.193 0.064

λ2 0.447 0.272 0.193

x3 0.772 0.156

λ3 0.314 0.093

x4 0.287

λ4 0.137

x5 0.838

λ5 0.241
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