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Abstract: A binomial approximation theorem for dependent indicators using Stein’s

method and coupling is proved. The approximating binomial distribution B(n′, p′)
is chosen in such a way that its first moment is equal to that of W and its variance

is asymptotically equal to that of W as n′ tends to infinity where W is the sum

of independent indicators and p′ is bounded away from 1. Three examples, one of

which concerns two different approximations for the hypergeometric distribution,

are given to illustrate applications of the theorem obtained.
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1. Introduction and Statement of Main Result

Stein (1972) introduced a powerful and general method for obtaining an
explicit bound for the error in the normal approximation for dependent random
variables. This method was adapted and applied to the Poisson approximation
by Chen (1974, 1975). Since then, Stein’s method has stimulated an area of
intensive research in combinatorics, probability and statistics. The method was
also extended to the binomial distribution by Stein (1986), Ehm (1991) and
Barbour, Holst and Janson (1992), to the compound Poisson distribution by
Arratia, Goldstein and Gordon (1990) and Barbour, Chen and Loh (1992), to the
multinomial distribution by Loh (1992), to the multivariate normal distribution
by Götze (1991), and to the processes by Barbour (1988, 1990), Barbour and
Brown (1992). Excellent accounts can be found in Stein (1986) and Barbour,
Holst and Janson (1992).

The aim of this paper is to obtain a binomial approximation theorem for
dependent indicators using Stein’s method and coupling.

Let X1n, . . . ,Xnn be random indicators with

P (Xin = 1) = pin = 1 − P (Xin = 0),

which are not necessarily independent or identical, and let Wn =
∑n

i=1 Xin. To
simplify the notation, we write pi = pin, Xi = Xin and W = Wn.
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We are interested in the bound of binomial approximation to the distribution
of W , denoted by L(W ), measured in terms of total variation distance. The total
variation distance dTV between two probability measures P and Q is defined by

dTV (P,Q) = sup
E

|P (E) − Q(E)|,

where the supremum is taken over all measurable sets of the real line.
Assuming independence of the indicators Xi, Ehm (1991) gave upper and

lower bounds on dTV (L(W ), B(n, p)), the total variation distance between L(W )
and the binomial distribution B(n, p), where p =

∑n
i=1 pi/n(= 1− q), via Stein’s

method. The bounds are

(1/124){(npq)−1∧1}
n∑

i=1

(pi − p)2 ≤ dTV (L(W ),B(n, p))

≤ (1−pn+1−qn+1){(n+1)pq}−1
n∑

i=1

(pi−p)2.

This result shows that if the pi’s are close together, the approximation of L(W )
by B(n, p) is good. However, it may not be good to approximate L(W ) by B(n, p)
where some of the pi’s are far apart. Let us look at one example. Let p1 = · · · =
p[n/2] = 0 and p[n/2]+1 = · · · = pn = 1/2. The bound for dTV (L(W ), B(n, p))
obtained by using Ehm’s result is (1−2−n)/3 which is quite large. Therefore, it is
natural to ask whether we can improve the situation by approximating L(W ) by
another binomial distribution. In this paper we choose B(n′, p′) to approximate
L(W ), where

n′ =
[
(

n∑
i=1

pi)2/
n∑

i=1

p2
i + 1/2

]
and p′ =

n∑
i=1

pi/n
′.

The bracket [m] represents the integral part of m.
For simplicity, denote λi =

∑n
j=1 pi

j and λ = λ1. Also, let p∗ = λ2/λ. Here,
n′ and p′ are chosen in such a way that the binomial distribution B(n′, p′) has
the same expectation as L(W ) and in the case where X1, . . . ,Xn are independent
and p∗ is bounded away from 1, both distributions will have the same variance
asymptotically when n′ tends to infinity. (Note that n′ → ∞ implies n → ∞).
To see this, we argue as follows: since λ − p∗/2 ≤ n′p∗ ≤ λ + p∗/2, we have
λ/p∗ ≥ n′−1/2. This implies that p∗ = o(λ) as n′ → ∞, so that n′p∗ ∼ λ = n′p′.
Thus, under the case where X1, . . . ,Xn are independent and p∗ is bounded away
from 1,

n′p′(1 − p′) ∼ λ(1 − p∗) = λ − λ2 = Var (W ).

Hence the claim.
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Denote Γ = {1, . . . , n} and set Γi = Γ − {i},
pmax = max

1≤i≤n
pi, pmin = min

1≤i≤n
pi and r = pmax − pmin.

Also, let Cn′p′ = {1 − (p′)n′+1 − (q′)n′+1}{(n′ + 1)p′q′}−1.

The following theorem is the main result in this paper.

Theorem 1.1. For each i ∈ Γ, let the random indicators Xi,Xj , Jji, j ∈ Γi be
defined on the same probability space with

L(Jji; j ∈ Γi) = L(Xj; j ∈ Γi|Xi = 1).

Let Wi =
∑

j �=i Xj , Wij =
∑

l �=i,j Xl, Vi =
∑

j �=i Jji, V i
ij =

∑
l �=i,j Jli.

(a) Then

dTV (L(W ), B(n′, p′)) ≤ Cn′p′
{
2(λ3 − λ2

2/λ) + λ|p′ − p∗| +
∑

i

piE|Wi − Vi|

+2λ−1
∑
i,j

|pi − pj|pipjE|V i
ij − Wij|

+λ−1
∑
i,j

(pi − pj)2|Cov(Xi,Xj)|
}
.

(b) If there exists a partition Γi = Γ+
i ∪ Γ−

i ∪ Γ0
i with Jji ≥ Xj for j ∈ Γ+

i and
Jji ≤ Xj for j ∈ Γ−

i , then for n ≥ 2,

dTV (L(W ), B(n′, p′))

≤ Cn′p′
{
2(λ3 − λ2

2/λ) + λ|p′ − p∗| + (1 + 3r)(
∑

i

∑
j∈Γ+

i ∪Γ−
i

|Cov(Xi,Xj)|

+
∑

i

∑
j∈Γ0

i

(E(XiXj) + pipj))
}
.

The possibility of proving Theorem 1.1 was suggested by Barbour, Holst
and Janson (1992, p.192). The proof of Theorem 1.1 is given in Section 2. It is
similar to the proofs of the Poisson approximation theorems in Barbour, Holst
and Janson (1992, pp.21-29).

The following corollaries are immediate consequences of Theorem 1.1.

Corollary 1.1. Suppose that the random indicators (Xj ; j ∈ Γ) are negatively
related, that is, Γi = Γ−

i . Then, for n ≥ 2,

dTV (L(W ), B(n′, p′))

≤ Cn′p′
{
2(λ3 − λ2

2/λ) + λ|p′ − p∗| − (1 + 3r)
∑

i

∑
j �=i

Cov(Xi,Xj)
}
.
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Corollary 1.2. Suppose that the random indicators (Xj ; j ∈ Γ) are positively
related, that is, Γi = Γ+

i . Then, for n ≥ 2,

dTV (L(W ),B(n′, p′))

≤ Cn′p′
{
2(λ3 − λ2

2/λ) + λ|p′ − p∗| + (1 + 3r)
∑

i

∑
j �=i

Cov(Xi,Xj)
}
.

Since independent indicators are both positively and negatively related,
Corollaries 1.1 and 1.2 yield Corollary 1.3.

Corollary 1.3. If the random indicators are independent, then

dTV (L(W ), B(n′, p′)) ≤ Cn′p′{2(λ3 − λ2
2/λ) + λ|p′ − p∗|}.

Remarks for Corollary 1.3.

1. The error bound has a smaller absolute constant than that obtained in
Theorem 9.E. of Barbour, Holst and Janson (1992, p.190).

2. Note that λ|p′ − p∗| = p′|λ − n′p∗|. Thus, if λ2/λ2 is an integer, then
n′p∗ = λ and the second term in the braces vanishes.

3. Note that λ|p′ − p∗| ≤ λp∗/(2n′) = λ2/(2n′) and is of order o(λ2) as
n′ → ∞. In addition, λ3 ≤ pmaxλ2 = o(λ2) if pmax = o(1) as n′ → ∞.
Therefore, for the case pmax = o(1) as n′ → ∞, the bound in Corollary 1.3
is of a smaller order than that of the bound on dTV (L(W ), Po(λ)) obtained by
Barbour, Holst and Janson (1992). This has also been observed by Barbour,
Holst and Janson (1992, p.190).

4. Applying Corollary 1.3 to the example mentioned earlier in this sec-
tion, since p1 = · · · = p[n/2] = 0 and p[n/2]+1 = · · · = pn = 1/2, we have
dTV (L(W ), B(n′, p′)) = 0, where n′ = [(n + 1)/2] and p′ = 1/2. That means,
W ∼ B(n′, p′) which is the case.

From Corollary 1.3, we have Corollary 1.4.

Corollary 1.4. If the random indicators are independent, then

P (W ≥ n′ + 1) ≤ Cn′p′{2(λ3 − λ2
2/λ) + p′|λ − n′p∗|}.

If pi = p, for all i = 1, . . . , n, then λ3 − (λ2
2/λ) = 0, n′ = n, λ = n′p∗ and

p′ = p. Thus, Theorem 1.1 yields the following corollary.

Corollary 1.5. Suppose that the random indicators (Xj ; j ∈ Γ) are identical
and they are either positively or negatively related, that is, Γi = Γ+

i ∪ Γ−
i . Then,

for n ≥ 2,

dTV (L(W ), B(n′, p′)) = dTV (L(W ), B(n, p)) ≤ Cnp

∑
i

∑
j �=i

|Cov(Xi,Xj)|.
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Remarks for Corollary 1.5.
Using the result obtained by Barbour, Holst and Janson (1992) on the Pois-

son approximation for sums of indicators, we can also obtain a bound for the
total variation distance dTV (L(W ), B(n, p)) through the Poisson approximation
to L(W ) and B(n, p). In particular, when the random indicators Xi are all
identical and they are either positively or negatively related, we have

dTV (L(W ), B(n, p)) ≤ dTV (L(W ), Po(λ)) + dTV (Po(λ), B(n, p))
≤ λ−1(1 − e−λ)

{
2λp +

∑
i

∑
j �=i

|Cov(Xi,Xj)|
}
.

In this way, an extra term 2λp is produced compared to the bound in Corollary
1.5. It is not a good bound when p is large.

2. Proof of Theorem 1.1

Let Z ∼ B(n′, p′), where n′ = [(λ2/λ2) + 1/2] and p′ = λ/n′. Let A be a
subset of integers and A∗ = A ∩ {0, 1, . . . , n′}. We have

dTV (L(W ),L(Z)) = sup
A

(P (Z ∈ A) − P (W ∈ A))

= sup
A∗

(P (Z ∈ A∗) − P (W ∈ A∗)).

The last equality is due to P (Z > n′) = 0. In light of the above remark, we
just need to bound |E(I(W ∈ A∗) − P (Z ∈ A∗))|. By following Barbour, Holst
and Janson (1992, p.188), let f = fA∗ : Z+ ∪ {0,−1} → R satisfy the following
equations

p′(n′ − x)f(x) − q′xf(x − 1) = I(x ∈ A∗) − P (Z ∈ A∗), for 0 ≤ x ≤ n′,

f(−1) = f(0), f(x) = f(n′), for x ≥ n′.
Letting ∆f(x) = f(x) − f(x − 1), Ehm (1991) proved that

‖∆f‖∞ ≤ Cn′p′ . (1)

We shall obtain an upper bound for |P (W ∈ A∗) − P (Z ∈ A∗)| involving ∆f .
For simplicity, let Wi =

∑
j �=i Xj and Wij =

∑
l �=i,j Xl. Now,

E(I(W ∈ A∗) − P (Z ∈ A∗)) = E(p′(n′ − W )f(W )− q′Wf(W − 1))
= E(λf(W ) − Wf(W − 1) − p′W∆f(W )). (2)

We have p′E(W∆f(W )) =
∑n

i=1 p′piE(∆f(Wi + 1)|Xi = 1) and

E(λf(W ) − Wf(W − 1))

=
n∑

i=1

piE(f(W )) −
n∑

i=1

E(Xif(W − 1))

=
n∑

i=1

p2
i E(∆f(Wi+1)|Xi =1) +

n∑
i=1

piqi(E(f(Wi)|Xi =0)−E(f(Wi)|Xi =1)).
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Thus, the right hand side of (2) can be rewritten as
n∑

i=1

pi(pi − p∗)E(∆f(Wi + 1)|Xi = 1)+
n∑

i=1

pi(p∗ − p′)E(∆f(Wi + 1)|Xi = 1)

+
n∑

i=1

piqi(E(f(Wi)|Xi = 0) − E(f(Wi)|Xi = 1)). (3)

Therefore, to obtain a bound on (2), we need to bound the terms in (3).
Let us first look at the last term of (3). Since

qi(P (Wi = k|Xi = 0) − P (Wi = k|Xi = 1)) = P (Wi = k) − P (Wi = k|Xi = 1),

the last term of (3) is equal to
n∑

i=1

pi{E(f(Wi)) − E(f(Wi)|Xi = 1)}. (4)

Following Barbour, Holst and Janson (1992, pp.23-24), let

L(Jji; j ∈ Γ) = L(Xj; j ∈ Γ|Xi = 1),

where Γ = {1, . . . , n}, and set Vi =
∑

j �=i Jji. Then, the expression (4) and also
the last term of (3) is bounded by

‖∆f‖∞
n∑

i=1

piE|Wi − Vi|. (5)

Next, the second term of (3) is bounded by ‖∆f‖∞λ|p′ − p∗| which is equal to

‖∆f‖∞p′|λ − n′p∗|. (6)

Finally, let us look at the first term of (3).
n∑

i=1

pi(pi − p∗)E(∆f(Wi + 1)|Xi = 1) =
n∑

k=1

∆f(k)
n∑

i=1

(pi − p∗)P (Xi = 1,W = k).

(7)
Thus, to get a good bound on the first term of (3), we express the sum

n∑
i=1

(pi − p∗)P (Xi = 1,W = k)

in terms of the positive terms (pi − pj)2. In fact,
n∑

i=1

(pi − p∗)P (Xi = 1,W = k)

= (2λ)−1
{∑

i,j

(pi − pj)2piP (Wij = k − 1) −
∑
i,j

(pi − pj)2P (Xi = 1,W = k)

+
∑
i,j

(pi − pj)piCov(Xi − Xj , I(Wij=k−1))
}
. (8)
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This is obtained by applying the fact that

P (Xi = 1,W = k) − P (Xj = 1,W = k)

= (pi − pj)P (Wij = k − 1) + Cov(Xi − Xj , I(Wij=k−1)),

where Wij =
∑

l �=i,j Xl. Next, express the sums on the right hand side of (8) in
terms of (pi − pj)pipj. For simplicity, let tij = P (Xi = 1,Xj = 0,Wij = k − 1).
Since

piP (Wij = k − 1)

= P (Xi = 1,Wij = k − 1) − Cov(Xi, I(Wij=k−1))

= tij +(pipj+Cov (Xi,Xj))P (W =k+1|Xi =1=Xj)−Cov (Xi, I(Wij=k−1))

and

P (Xi = 1,W = k) = P (Xi = 1,Xj = 0,W = k) + P (Xi = 1,Xj = 1,W = k)

= tij + (pipj + Cov(Xi,Xj))P (W = k|Xi = 1 = Xj),

the right hand side of (8) is equal to

(2λ)−1
{ ∑

i,j

(pi − pj)2pipjPij(k) +
∑
i,j

(pi − pj)2Cov(Xi,Xj)Pij(k)

+ 2
∑
i,j

(pi − pj)pjCov(Xi, I(Wij=k−1))
}
, (9)

where Pij(k) = P (W = k + 1|Xi = 1 = Xj) − P (W = k|Xi = 1 = Xj). Thus,
combining (7), (8) and (9), the first term of (3) is bounded by

(2λ)−1
{ ∣∣∣∑

k

∆f(k)
∑
i,j

(pi − pj)2pipjPij(k)
∣∣∣

+
∣∣∣∑

k

∆f(k)
∑
i,j

(pi − pj)2Cov(Xi,Xj)Pij(k)
∣∣∣

+ 2
∣∣∣∑

k

∆f(k)
∑
i,j

(pi − pj)pjCov(Xi, I(Wij=k−1))
∣∣∣}. (10)

Observe that the first term on the right hand side of (10) is bounded by

2‖∆f‖∞
∑
i,j

(pi − pj)2pipj = 4‖∆f‖∞
(∑

i

p3
i λ − (

∑
i

p2
i )

2
)
,

the second term of (10) is bounded by

2‖∆f‖∞
∑
i,j

(pi − pj)2|Cov(Xi,Xj)|,
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and the last term of (10) is equal to

2
∣∣∣∑

i,j

(pi − pj)pipj(E(∆f(V i
ij + 1)) − E(∆f(Wij + 1)))

∣∣∣,
where V i

ij =
∑

l �=i,j Jli, which is bounded by 4‖∆f‖∞∑i,j |pi−pj|pipjE|V i
ij−Wij|.

Thus, we conclude that (10) is bounded by

2‖∆f‖∞
(∑

i

p3
i − λ−1(

∑
i

p2
i )

2
)

+ λ−1‖∆f‖∞
∑
i,j

(pi − pj)2|Cov(Xi,Xj)|

+2λ−1‖∆f‖∞
∑
i,j

|pi − pj|pipjE|V i
ij − Wij|. (11)

Combining (2), (3), (5), (6), (10) and (11), we have

|E(I(W ∈ A∗) − P (Z ∈ A∗))|
≤ ‖∆f‖∞

(
2(
∑

i

p3
i − λ−1(

∑
i

p2
i )

2) + p′|λ − n′p∗|
)

+‖∆f‖∞λ−1
∑
i,j

(pi − pj)2|Cov(Xi,Xj)|

+‖∆f‖∞
n∑

i=1

piE|Wi − Vi| + 2(λ)−1
∑
i,j

|pi − pj |pipjE|V i
ij − Wij |.

Utilizing (1), (a) of Theorem 1.1 is proved.
To prove (b) of Theorem 1.1, observe that for j ∈ Γ+

i :

0 ≤ piE|Xj − Jji| = piE(Jji − Xj) = E(XiXj) − pipj = Cov(Xi,Xj).

Similarly for j ∈ Γ−
i , 0 ≤ piE|Xj − Jji| = −Cov(Xi,Xj). Thus,

piE|Wi − Vi| = piE
∣∣∣ ∑
j∈Γ+

i

(Xj − Jji) +
∑

j∈Γ−
i

(Xj − Jji) +
∑
j∈Γ0

i

(Xj − Jji)
∣∣∣

≤
∑

j∈Γ+
i ∪Γ−

i

|Cov(Xi,Xj)| +
∑
j∈Γ0

i

(pipj + E(XiXj)).

Similarly,

piE|V i
ij − Wij | ≤

∑
l∈Γ+

i ∪Γ−
i ,l �=j

|Cov(Xi,Xl)| +
∑

l∈Γ0
i ,l �=j

(pipl + E(XiXl)).

In addition, we note that

λ−1
∑
i,j

|pi − pj|pj

∑
l∈Γ+

i ∪Γ−
i ,l �=j

|Cov(Xl,Xi)|

= λ−1
∑
j

pj

∑
i

|pi−pj|
∑

l∈Γ+
i ∪Γ−

i ,l �=j

|Cov(Xl,Xi)|≤r
∑

i

∑
l∈Γ+

i ∪Γ−
i

|Cov(Xl,Xi)|,
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where r = pmax − pmin. Thus, Theorem 1.1(b) follows from Theorem 1.1(a).

3. Some Applications

When applying Theorem 1.1 in a specific situation it is necessary either to
construct an efficient coupling defining the partition of Γi and the J ′s or to know
the existence of a suitable one. Consider the following examples.

Example 1. (Hypergeometric distribution)
Suppose a random sample of size n is taken from a finite population contain-

ing N elements of two different types, of which m are of type A and N −m(�= 0)
are of type B. Let the random variable W be the number of type A elements in
the sample. Clearly W has the hypergeometric distribution H(N,n,m) where,
for max(0, n + m − N) ≤ k ≤ min(n,m),

P (W = k) =

(
m

k

)(
N − m

n − k

)(
N

n

)−1

.

Barbour, Holst and Janson (1992, p.113) remarked that the distribution of W

can be approximated by a binomial distribution via Stein’s method together with
the coupling technique. In this example, we approximate L(W ) by two binomial
distributions using different representations of W . Firstly, W can be represented
as W =

∑n
i=1 Xi where Xi = 1 if the ith element in the sample is of type A and

Xi = 0 otherwise. We then have P (Xi = 1) = mN−1 = p, λ = E(W ) = nmN−1,
E(XiXj) = P (Xi = 1)P (Xj = 1|Xi = 1) = mN−1(m − 1)(N − 1)−1. Consider
the following coupling. If Xk = 1, set Jik = Xi. If Xk = 0, interchange the kth
element in the sample with a randomly chosen element of type A and then, for
i �= k, set Jik = 1 if the ith element in the sample is of type A, Jik = 0 otherwise.
By construction, this coupling satisfies the hypothesis of Corollary 1.5. We have

dTV (L(W ), B(n, p))

≤ Cnpn(n − 1)p(mN−1 − (m − 1)(N − 1)−1)

< q−1(1 − pn+1 − qn+1)(N − m)(n − 1)(N(N − 1))−1

< (n − 1)(N − 1)−1 = o(1), if n = o(N).

On the other hand, W can be represented as W =
∑m

i=1 Yi where Yi = 1 if
the ith element of type A is in the sample and Yi = 0 otherwise. We have

P (Yi =1)=nN−1 =p′, λ=E(W )=(nm)N−1, E(YiYj)=n(n − 1)(N(N − 1))−1.

Consider the following coupling. If Yk = 1, set Jik = Yi. If Yk = 0, interchange
the kth element of type A with a randomly chosen element in the sample and
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then, for i �= k, set Jik = 1 if the ith element of type A is in the sample,
Jik = 0 otherwise. As before, this coupling satisfies the hypothesis of Corollary
1.5. Therefore, we have

dTV (L(W ), B(m, p′))
≤ Cmp′m(m − 1)p′(nN−1 − (n − 1)(N − 1)−1)

< (q′)−1(1 − (p′)m+1 − (q′)m+1)(N − n)(N − 1)−1(m − 1)N−1

< (m − 1)(N − 1)−1 = o(1), if m = o(N).

Hence, the hypergeometric distribution H(N,n,m) is well approximated by
the binomial distributions B(n,m/N) or B(m,n/N) depending on whether n =
o(N) or m = o(N) respectively.

Example 2. (Random graphs problem)
Consider a complete graph Kn with n vertices and n!/[(n − 2)!2!] edges.

Delete each edge with probability 1 − p (= q) independently of the other edges.
Thus, we get the random graph Kn,p. Let W be the number of vertices i whose
degree Di in Kn,p is greater than or equal to m.

Following Barbour, Holst and Janson (1992, p. 97), let Xi = I(Di ≥ m) and
W =

∑n
i=1 Xi. Since {Xi, 1 ≤ i ≤ n} are increasing functions of the independent

edge indicators, they are positively related. Thus, by Corollary 1.5,

dTV (L(W ), B(n, π1)) ≤ Cnπ1

∑
i

∑
j �=i

Cov(Xi,Xj)

≤
∑

i

∑
j �=i

Cov(Xi,Xj) = n(n − 1)pqp2
m−1.

Here, π1 = π1(m) = P (Zn−1 ≥ m), pm−1 = P (Zn−2 = m−1) where Zl ∼ B(l, p),
l = n − 2 or n − 1. (Refer to Barbour, Holst and Janson (1992, pp. 97-98) for
the calculation of Cov(Xi,Xj)).

Note that if m = 1, dTV (L(W ), B(n, π1)) ≤ np(n− 1)q2n−3 < n2pe−2np. For
any ε > 0, if p = p(n) is such that np > (1 + ε) ln n for sufficiently large n, then
n2pe−2np = o(1/nε) as n → ∞. In this case, we have a binomial approxima-
tion but since Var (W ) ∼ 2E(W ), the Poisson approximation cannot be good.
(Barbour, Holst and Janson (1992, p.98).)

Example 3. (The classical occupancy problem)
Let n balls be thrown independently of each other into r boxes, with proba-

bility 1/r falling into the kth box. The random variable W is equal to the number
of empty boxes and can be represented as W =

∑r
i=1 Xi where Xk = 1 if the kth

box is empty and Xk = 0 otherwise. We then have P (Xk = 1) = (1− 1/r)n = p,
λ = E(W ) = r(1 − 1/r)n, E(XiXj) = P (Xi = 1 = Xj) = (1 − 2/r)n. Fol-
lowing Barbour, Holst and Janson (1992, p.123), we introduce the following
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coupling. Throw each of the balls which have fallen into the kth box indepen-
dently into one of the other boxes, in such a way that the probability of a ball
falling into box i(�= k) is 1/(n − 1). Then let Jik = 1 if box i is empty, Jik = 0
otherwise, and Xik = Xi. Evidently, Jik ≤ Xik for i �= k, and for each k,
L(J1k, . . . , Jnk) = L(X1, . . . ,Xn|Xk = 1). By Corollary 1.5., we have

dTV (L(W ), B(n′, p′))=dTV (L(W ), B(r, p))

≤ Crp

∑
i

∑
j �=i

|Cov(Xi,Xj)| ≤ Crp

∑
i

∑
j �=i

((1 − 1/r)2n − (1 − 2/r)n)

≤ np(1 − qr+1)((r + 1)q)−1.

If n = rar, then

dTV (L(W ),B(r, p)) ≤ (r/(r + 1))(ar/(ear − 1))(1 − (1 − e−ar)r+1)

giving a binomial approximation throughout the range ar → ∞.
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