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Abstract: We consider the problem of estimating the covariance structure of a

random vector Y ∈ Rd from an independent and identically distributed (i.i.d.)

sample Y1, . . . , Yn. We are interested in the situation in which d is large relative to

n, but the covariance matrix Σ of interest has (exactly or approximately) low rank.

We assume that the given sample is either (a) ε-adversarially corrupted, meaning

that an ε-fraction of the observations can be replaced by arbitrary vectors, or (b)

i.i.d., but the underlying distribution is heavy-tailed, meaning that the norm of Y

possesses only finite fourth moments. We propose estimators that are adaptive to

the potential low-rank structure of the covariance matrix and to the proportion

of contaminated data, and that admit tight deviation guarantees, despite rather

weak underlying assumptions. Finally, we show that the proposed construction

leads to numerically efficient algorithms that require minimal tuning from the

user, and demonstrate the performance of such methods under various models of

contamination.

Key words and phrases: Adversarial contamination, covariance estimation, heavy-

tailed distribution, low-rank recovery, U-statistics.

1. Introduction

We focus on the problem of covariance estimation under various types of

contamination, emphasizing practical methods that admit an efficient implemen-

tation. Assume that we are given independent copies Y1, . . . , Yn of a random

vector Y ∈ Rd that follows an unknown distribution D over Rd, with mean

µ := E[X] and covariance matrix Σ := E[(Y − µ)(Y − µ)T ]. The observations

Y1, . . . , Yn are assumed to be either ε-adversarially corrupted, meaning that an

“adversary” could replace a fraction ε < 0.5 of observations with arbitrary

(possibly random) vectors, or that the underlying distribution D is heavy-tailed,

meaning that the Euclidean norm ∥Y ∥2 is assumed to possess only four finite

moments. Our goal is to construct an estimator of the covariance matrix Σ that

performs well in the present framework.

As attested by, among others, Tukey (1960) and Huber (1964), robust

estimation has a long history. During the past two decades, a growing number

of applications has created high demand for practical tools for recovering high-
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dimensional parameters of interest from corrupted measurements. Robust

covariance estimators, in particular, have been studied extensively. The statistical

properties of the sample covariance matrix of “light-tailed” distributions, such as

sub-Gaussian distributions, are well understood; see, for example, Koltchinskii

and Lounici (2016), Vershynin (2010), and Cai, Zhang and Zhou (2010); Cai,

Ren and Zhou (2016), among many others. Srivastava and Vershynin (2013)

investigate the performance of the sample covariance matrix under weaker

moment assumptions. Some popular robust estimators of scatter, such as the

minimum covariance determinant (MCD) estimator and the minimum volume

ellipsoid (MVE) estimator, are discussed in Hubert, Rousseeuw and van Aelst

(2008). However, rigorous results for these estimators are available only for

elliptically symmetric distributions because, in general, they are biased. For

instance, Butler, Davies and Jhun (1993) discuss asymptotic results for the MCD,

and Davies (1992) do so for the MVE estimator. Other popular constructions,

such as the estimators of scatter of Maronna (1976) and Tyler (1987), are

consistent only for distributions possessing certain symmetry properties. Chen,

Gao and Ren (2018) demonstrate the minimax optimality, with respect to

the proportion of outliers, of a robust estimator based on a so-called “matrix

depth” function inspired by the notion of Tukey’s depth; unfortunately, this

estimator is not computationally tractable. Covariance estimation for heavy-

tailed distributions has attracted significant attention; see, for example, Catoni

(2016), Giulini (2015), Fan, Wang and Zhong (2016), Abdalla and Zhivotovskiy

(2022), Oliveira and Rico (2022), Minsker (2018), and Minsker and Wei (2020).

The survey by Ke et al. (2019) contains a more detailed overview of recent

progress. Contributions by theoretical computer scientists have introduced a

range of new ideas, leading to theoretically optimal estimators in adversarial

contamination frameworks; see, for example, Lai, Rao and Vempala (2016),

Diakonikolas et al. (2021, 2019, 2017), Cheng et al. (2019), and Diakonikolas

and Kane (2019). Furthermore, Abdalla and Zhivotovskiy (2022) and Oliveira

and Rico (2022) describe estimators that achieve the sharpest possible bounds.

Several proposed approaches, including those of the latter two works, result in

optimality with respect to the contamination proportion and the dependence on

the estimators of the dimension factors. However, the corresponding algorithms

are either not computationally feasible or not user friendly, because they are often

sensitive to the choice of “absolute constants” in the tuning parameters, require

a preliminary robust mean estimation, or assume that (typically unknown)

parameters, such as the contamination proportion ε, are given as an input. Other

works focus only on the bounds with respect to the Frobenius norm, whereas we

are interested in the error measured in the operator norm as well. Finally, the

dependence of the resulting probabilistic estimates on the deviation parameter

controlling the probability of the desirable bound is often not made explicit.

This study continues the line of research on robust covariance estimation.
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We design a “Lasso-type” penalized estimator, and show the following: (a) it

admits nearly optimal error bounds in cases of practical interest, namely, when

the so-called “effective rank” of the covariance matrix Σ (defined rigorously later)

is small; (b) it requires minimal tuning, and can be calculated efficiently using

traditional numerical methods; and (c) the dependence of the resulting estimates

on all parameters of interest is stated explicitly. Note that theoretical guarantees

for our estimator are not restricted to data generated from an elliptically

symmetric distribution.

The rest of the paper is organized as follows. Section 2 introduces the main

notation and background material. Sections 3 and 4 discuss the main results

for the cases of adversarially corrupted data and heavy-tailed data, respectively.

Section 5 presents the algorithms for our numerical evaluation of the proposed

estimators, as well as the results of our numerical experiments. Additional

simulation results and proofs are contained in the online Supplementary Material.

2. Preliminaries

In this section, we introduce the main notation and recall several useful facts

that we rely on in the subsequent exposition.

2.1. Notation

Given two real numbers a, b ∈ R, we define a ∨ b := max{a, b}, a ∧ b :=

min{a, b}. For x ∈ R, we denote ⌊x⌋ := max{n ∈ Z : n ≤ x} as the largest integer

less than or equal to x. The absolute constants are typically unspecified, and are

denoted as c, C,C1, C̃, and so on, where the same constant letter might denote

different absolute constants in different expressions. When the constant depends

on certain parameters of the problem, we write it as C(x, y, . . .). Remaining

notation will be introduced as needed.

2.2. Matrix algebra

Assume that A ∈ Rd1×d2 is a d1 × d2 matrix with real-valued entries. Let

AT denote the transpose of A, and define Sd(R) :=
{
A ∈ Rd×d : AT = A

}
as

the set of all symmetric d × d matrices. The eigenvalues of A are denoted as

λ1, . . . , λd, all of which are real numbers. Given a square matrix A ∈ Rd×d, the
trace of A is tr (A) :=

∑d
i=1Ai,i, where Ai,i represents the element of the ith

row and ith column of A. For a rectangular matrix A ∈ Rd1×d2 with singular

values σ1(A) ≥ · · · ≥ σ rank(A)(A) ≥ 0, the operator or spectral norm is defined

as ∥A∥ := σ1(A) =
√
λmax(ATA), the Frobenius norm is defined as ∥A∥F :=√∑ rank(A)

i=1 σ2
i (A) =

√
tr (ATA), and the nuclear norm is defined as ∥A∥1 :=∑ rank(A)

i=1 σi(A) = tr (
√
ATA). The inner product associated with the Frobenius

norm is defined as ⟨A,B⟩ := ⟨A,B⟩F = tr (ATB) = tr (ABT ), where A,B ∈
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Rd1×d2 . Finally, we introduce the functions of matrix-valued arguments.

Definition 1. Given a real-valued function f defined on an interval T ⊆ R and a

real symmetric matrix A ∈ Sd(R), with the spectral decomposition A = UΛUT ,

such that λj(A) ∈ T, for j = 1, . . . , d, define f(A) as f(A) = Uf(Λ)UT , where

f(Λ) = f


λ1

. . .

λd


 =

f(λ1)
. . .

f(λd)

 .

Finally, the effective rank of a matrix A ∈ Sd(R) \ {0} is defined as

rk(A) :=
tr (A)

∥A∥
.

Note that 1 ≤ rk(A) ≤ rank(A) is always true, and it is possible that rk(A) ≪
rank(A) for “approximately low-rank” matrices A.

2.3. Sub-Gaussian distributions

Given a random variable X on a probability space (Ω,A,P), and a convex

nondecreasing function ψ : R+ 7→ R+ with ψ(0) = 0 , we define the ψ-norm of X,

following Vershynin (2018, Sec. 2.7.1), as

∥X∥ψ := inf

{
C > 0 : E

[
ψ

(
|X|
C

)]
≤ 1

}
.

Below, we are interested in ψ1(u) := exp {u} − 1, for u ≥ 0, and ψ2(u) :=

exp {u2} − 1, u ≥ 0, which correspond to the sub-exponential and sub-Gaussian

norms, respectively. A random variable X is sub-Gaussian (sub-exponential) if

∥X∥ψ2
< ∞ (∥X∥ψ1

< ∞). In addition, we define the L2- norm of a random

variable X as ∥X∥L2
:= (E[|X|2])1/2. The sub-Gaussian (or sub-exponential)

random vector is defined as follows.

Definition 2. A random vector Z in Rd with mean µ = E[Z] is called L-sub-

Gaussian if for every v ∈ Rd, there exists an absolute constant L > 0, such

that

∥⟨Z − µ, v⟩∥ψ2
≤ L ∥⟨Z − µ, v⟩∥L2

. (2.1)

Moreover, Z is called L-sub-exponential if ψ2-norm in (2.1) is replaced with ψ1-

norm.

3. Problem Formulation and Main Results

Let Z1, . . . , Zn ∈ Rd be independent and identically distributed (i.i.d.)

copies of an L-sub-Gaussian random vector Z, such that E[Z] = µ and
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E[(Z − µ)(Z − µ)T ] = Σ. Assume that we observe a sequence

Yj = Zj + Vj, j = 1, . . . , n, (3.1)

where Vj are arbitrary (possibly random) vectors, such that only a small portion

of them are not equal to zero. That is, we assume that there exists a set of

indices J ⊆ {1, . . . , n} such that |J | ≪ n and Vj = 0, for j /∈ J . In what follows,

the sample points with j ∈ J are called outliers, and ε := |J |/n denotes the

proportion of such points. In this case,

YjY
T
j = ZjZ

T
j + VjV

T
j + VjZ

T
j + ZjV

T
j︸ ︷︷ ︸

:=
√
nU∗

j

:= Xj +
√
nU∗

j ,

where rank(U∗
j ) ≤ 2, and the

√
n normalization factor is added for the technical

convenience. Our main goal is to construct an estimator for the covariance matrix

Σ in the presence of outliers Vj. In practice, we usually do not know the true

mean µ of Z. We can avoid an explicit estimation of µ if we are interested only

in Σ. To this end, we recall the definition of U-statistics.

Definition 3 (Hoeffding (1948)). Let Y1, . . . , Yn (n ≥ 2) be a sequence of

random variables taking values in a measurable space (S,B). Assume that H :

Sm 7→ Sd(R) (2 ≤ m ≤ n) is an Sm-measurable permutation-symmetric kernel,

that is, H(y1, . . . , ym) = H(yπ1
, . . . , yπm

), for any (y1, . . . , ym) ∈ Sm and any

permutation π. The U-statistic with kernel H is defined as

Un :=
(n−m)!

n!

∑
(i1,...,im)∈Imn

H(Yi1 , . . . , Yim),

where Imn := {(i1, . . . , im) : 1 ≤ ij ≤ n, ij ̸= ik if j ̸= k}.

An example of a U-statistic is the sample covariance matrix

Σ̃s :=
1

n− 1

n∑
j=1

(Yj − Ȳ )(Yj − Ȳ )T , (3.2)

where Ȳ := (1/n)
∑n

j=1 Yj. Indeed, it is easy to verify that

Σ̃s =
1

n(n− 1)

∑
(i,j)∈I2n

(Yi − Yj)(Yi − Yj)
T

2
. (3.3)

Hence, the sample covariance matrix is a U-statistic with kernel

H(x, y) :=
(x− y)(x− y)T

2
, for any x, y ∈ Rd.
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Note that E[(Yi − Yj)/
√
2] = 0 and E[(Yi − Yj)(Yi − Yj)

T
/2] = Σ, for all (i, j) ∈

I2n. That is, by expressing the sample covariance matrix as a U-statistic in (3.3),

we avoid an explicit estimation of the unknown mean µ. Therefore, we consider

the following settings:

Ỹi,j :=
Yi − Yj√

2
, Z̃i,j :=

Zi − Zj√
2

, Ṽi,j :=
Vi − Vj√

2
, for all (i, j) ∈ I2n.

Then,

Ỹi,jỸ
T
i,j = Z̃i,jZ̃

T
i,j + Ṽi,jṼ

T
i,j + Ṽi,jZ̃

T
i,j + Z̃i,jṼ

T
i,j︸ ︷︷ ︸

:=
√
n(n−1)Ũ∗

i,j

:= X̃i,j +
√
n(n− 1)Ũ∗

i,j,

where the n(n− 1) = |I2n| factor is equal to the total number of Ỹi,j, and is added

for technical convenience. The followings facts can be easily verified:

(1) Ỹi,j = Z̃i,j + Ṽi,j, with E[Z̃i,j] = 0 and E[Z̃i,jZ̃Ti,j] = Σ, for any (i, j) ∈ I2n.

Moreover, Z̃i,j, for (i, j) ∈ I2n, has a sub-Gaussian distribution, according to

Corollary 2.

(2) Z̃i,j are identically distributed, but not independent.

(3) Denote J̃ = {(i, j) ∈ I2n : Ṽi,j ̸= 0} as the set of indices such that Ṽi,j = 0,

∀(i, j) /∈ J̃ . Then, |J̃ | represents the number of outliers in {Ỹi,j : (i, j) ∈ I2n},
and we have that

|J̃ | = 2|J |(n− |J |) + |J |(|J | − 1) = |J |(2n− |J | − 1). (3.4)

(4) Rank(Ũ∗
i,j) ≤ 2. This follows from the fact that for any vector v ∈ Rd,

Ũ∗
i,jv ∈ span{Ṽi,j, Z̃i,j}.

In the following, we letUI2n
:=(U1,2, . . . , Un,n−1) represent the n(n−1)-dimensional

sequence with subscripts valued in I2n. Similarly, the notation (S,UI2n
) represents

the (n2−n+1)-dimensional sequence (S,U1,2, . . . , Un,n−1). Now, we are ready to

define our estimator. Given λ1, λ2 > 0, set

(Ŝλ, ÛI2n
) = argmin

S,U1,2,...,Un,n−1

[
1

n(n− 1)

∑
i ̸=j

∥∥∥∥Ỹi,jỸ T
i,j − S −

√
n(n− 1)Ui,j

∥∥∥∥2
F

+λ1 ∥S∥1 + λ2

∑
i ̸=j

∥Ui,j∥1

]
, (3.5)

where the minimization is over S,Ui,j ∈ Sd(R), ∀(i, j) ∈ I2n.

Remark 1. The double penalized least-squares estimator defined in (3.5) is a

solution to the nuclear-norm penalized Huber loss minimization problem. In the
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context of robust linear regression, this fact has been observed by several authors,

including Sardy, Tseng and Bruce (2001), Gannaz (2007), McCann and Welsch

(2007), She and Owen (2011), and Donoho and Montanari (2016). In the setting

of a robust principal component analysis, similar connections are established by

She, Li and Wu (2016). The approach of the latter work is similar in spirit to ours,

but focuses on estimating the leading principal components when the number of

principal components is known. To show the connection between (3.5) and the

penalized Huber loss minimization in our framework, we express the estimator as

(Ŝλ, ÛI2n
) = argmin

S
min
UI2n

[
1

n(n− 1)
tr

[∑
i ̸=j

(
Ỹi,jỸ

T
i,j − S −

√
n(n− 1)Ui,j

)2 ]

+ λ1 ∥S∥1 + λ2

∑
i ̸=j

∥Ui,j∥1

]
, (3.6)

and observe that the minimization with respect to UI2n
in (3.6) can be carried

out explicitly. This yields that

Ŝλ = argmin
S

{
2

n(n− 1)
tr

[∑
i ̸=j

ρ
(
√
n(n−1)λ2)/2

(Ỹi,jỸ
T
i,j − S)

]
+ λ1 ∥S∥1

}
, (3.7)

where

ρλ(u) :=


u2

2
, |u| ≤ λ

λ |u| − λ2

2
, |u| > λ

, for all u ∈ R, λ ∈ R+ (3.8)

is the Huber loss function; the derivation is given in Section S6.1 of the

Supplementary Material.

3.1. Performance guarantees for adversarial contamination

We are ready to state our main results, namely, the error bounds for the

estimator defined in (3.5). We compare the performance of our estimator with

that of the sample covariance matrix Σ̃s defined in (3.2). When there are no

outliers, it is well known that Σ̃s is a consistent estimator of Σ, with an expected

error of at mostO(d/
√
n) in the Frobenius norm, namely, E[∥Σ̃s−Σ∥F ] ≤ Cd/

√
n,

for some absolute constant C > 0 (e.g., see Cai, Zhang and Zhou (2010)).

However, in the presence of outliers, the error for Σ̃s can be large (see Section

S8 in the Supplementary Material for some specific examples). Recall that

X̃i,j = Z̃i,jZ̃
T
i,j. The following bound characterizes the performance of the

estimator (3.5).

Theorem 1. Fix δ > 0, and assume that n ≥ 2 and that |J | ≤ c1(δ)n, where

c1(δ) is a constant depending only on δ. Then, on the event
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E =

{
λ1 ≥

140 ∥Σ∥√
n(n− 1)

√
rk(Σ) + 4

∥∥∥∥∥∥ 1

n(n− 1)

∑
(i,j)∈I2n

X̃i,j − Σ

∥∥∥∥∥∥ ,
λ2 ≥

140 ∥Σ∥
n(n− 1)

√
rk(Σ) +

4√
n(n− 1)

max
(i,j)∈I2n

∥∥∥X̃i,j − Σ
∥∥∥},

the following inequality holds:∥∥∥Ŝλ − Σ
∥∥∥2
F
≤ inf

S: rank(S)≤(c2n2λ2
2)/λ

2
1

{
(1 + δ) ∥S − Σ∥2F + c(δ)

(
λ2
1 rank(S) + λ2

2|J |2
)}
.

A detailed proof of Theorem 1 is presented in section S2 of the Supplementary

Material.

Remark 2. The bound in Theorem 1 contains two terms:

(1) The first term, (1 + δ) ∥S − Σ∥2F + c(δ)λ2
1 rank(S), does not depend on the

number of outliers. When there are no outliers, that is, |J | = 0, the bound

contains only this term. In such a scenario, Lounici (2014) proves that the

optimal bound has the form∥∥∥Ŝλ − Σ
∥∥∥2
F
≤ inf

S

{
∥Σ− S∥2F + C ∥Σ∥2 (rk(Σ) + t)

n
rank(S)

}
,

which holds with probability at least 1−e−t. By choosing the smallest valid

λ1 specified in (3.9), the first term of our bound coincides with this optimal

bound.

(2) The second term, c(δ)λ2
2|J |2, controls the worst possible effect due to

the presence of outliers. When additional conditions are imposed on the

outliers (e.g., independence), this bound can be improved; see the discussion

following equation (4.3). Moreover, Diakonikolas et al. (2017) prove that

when Z is centered Gaussian, there exists an estimator Σ̂ achieving the

theoretically optimal, with respect to ε, bound ∥Σ̂ − Σ∥F ≤ O(ε) ∥Σ∥,
which is independent of the dimension d. In our case, by choosing the

smallest possible λ2, we can show that the error bound scales O((log(n) +

rk(Σ))ε) ∥Σ∥. The additional factor
(
log(n)+ rk(Σ)

)
shows that our bound

is sub-optimal, in general. However, in the class of matrices with rk(Σ)

bounded by a constant, our bound is nearly optimal, up to a logarithmic

factor.

Note that in Theorem 1 the regularization parameters λ1 and λ2 should

be chosen sufficiently large such that the event E happens with high probability.

Under the assumption that Zj, for j = 1, . . . , n, are i.i.d. L-sub-Gaussian vectors,

we can prove the following result, which gives an explicit lower bound on the

choice of λ1.
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Proposition 1. Assume that Z is L-sub-Gaussian with mean µ and covariance

matrix Σ. Let Z1, . . . , Zn be independent copies of Z, and define Z̃i,j :=

(Zi − Zj)/
√
2, for all (i, j) ∈ I2n. Then, Z̃i,j, for (i, j) ∈ I2n, are mean-zero

L-sub-Gaussian random vectors with covariance Σ. Moreover, for any t ≥ 1,

there exists c(L) > 0 depending only on L such that∥∥∥∥∥ 1

n(n− 1)

∑
i̸=j

Z̃i,jZ̃
T
i,j − Σ

∥∥∥∥∥ ≤ c(L) ∥Σ∥
(√

rk(Σ) + t

n
+

rk(Σ) + t

n

)
,

with probability at least 1− 2e−t.

Proposition 1 together with the definition of event E indicates that it suffices

to choose λ1 satisfying

λ1 ≥ c(L) ∥Σ∥
√

rk(Σ) + t

n
, (3.9)

given that n ≥ rk(Σ) + t. The next proposition provides a lower bound for the

choice of λ2.

Proposition 2. Assume that Z is L-sub-Gaussian with mean zero, and

Z1, . . . , Zn are copies of Z (not necessarily independent). Then, there exists

c(L) > 0 depending only on L, such that for any t ≥ 1,

max
j=1,...,n

∥ZjZTj − Σ∥ ≤ c(L) ∥Σ∥ (rk(Σ) + log(n) + t) ,

with probability at least 1− e−t.

Because Proposition 2 does not require independence, it can be applied to

the mean-zero, L-sub-Gaussian vectors Z̃i,j, for (i, j) ∈ I2n, to deduce that

max
i̸=j

∥∥∥Z̃i,jZ̃Ti,j − Σ
∥∥∥ ≤ c(L) ∥Σ∥ [rk(Σ) + log(n(n− 1)) + t] ,

with probability at least 1 − e−t. Combining this bound with the definition of

event E , we conclude that it suffices to choose λ2 satisfying

λ2 ≥ c(L) ∥Σ∥ (rk(Σ) + log(n) + t)

n
. (3.10)

By choosing the smallest possible λ1 and λ2, as indicated in (3.9) and (3.10),

respectively, we deduce the following corollary.

Corollary 1. Let δ > 0 be an absolute constant. Assume that n ≥ rk(Σ)+log(n)

and |J | ≤ c1(δ)n, where c1(δ) is a constant depending only on δ. Then, we have

that∥∥∥Ŝλ − Σ
∥∥∥2
F
≤ inf

S: rank(S)≤c′2n(rk(Σ)+log(n))

{
(1 + δ) ∥S − Σ∥2F (3.11)
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+c(L, δ) ∥Σ∥2
[
rk(Σ) + log(n)

n
rank(S) +

(rk(Σ) + log(n))
2

n2
|J |2

]}
,

with probability at least 1− 3/n.

Note that the term ∥Σ∥2 ((rk(Σ) + log(n))
2
/n2)|J |2 in (3.11) can be equiva-

lently written in terms of ε, the proportion of outliers, as ∥Σ∥2 (rk(Σ) + log(n))
2
ε2.

4. Performance Guarantees for Heavy-Tailed Distributions

In this section, we consider heavy-tailed data, and compare this framework

with the model of adversarial contamination. Let Y ∈ Rd be a random vector

with mean E[Y ] = µ and covariance matrix Σ = E[(Y − µ)(Y − µ)T ], such that

E[∥Y −µ∥42] <∞. Assume that Y1, . . . , Yn are i.i.d. copies of Y , and our goal is to

estimate Σ. As before, we define Ỹi,j = (Yi − Yj)/
√
2, and denote Hi,j := Ỹi,jỸ

T
i,j.

We showed earlier that E[Ỹi,j] = 0 and E[Hi,j] = Σ. Given λ1, λ2 > 0, we propose

the following estimator for Σ:

Ŝλ = argmin
S

{
1

n(n− 1)
tr

[∑
i ̸=j

ρ
(
√
n(n−1)λ2)/2

(Ỹi,jỸ
T
i,j − S)

]
+
λ1

2
∥S∥1

}
, (4.1)

which is the minimizer of the penalized Huber loss function

L(S) =
1

n(n− 1)
tr

[∑
i̸=j

ρ
(
√
n(n−1)λ2)/2

(Ỹi,jỸ
T
i,j − S)

]
+
λ1

2
∥S∥1 . (4.2)

Note that the estimator Ŝλ in (4.1) is equivalent to the double-penalized least-

squares estimator in (3.5) (see Section S6.1 of the Supplementary Material). The

key idea behind deriving the error bounds for Ŝλ is to decompose the heavy-tailed

distribution into a mixture of “well-behaved” components and contaminated

components; a similar approach is used by Prasad, Balakrishnan and Ravikumar

(2019). This decomposition can be viewed as a “bridge” between the heavy-tailed

model and the adversarial contamination model (3.1), allowing us to repeat parts

of the reasoning used to obtain the inequalities in Section 3. Specifically, we

consider the decomposition

Ỹi,j = Ỹi,j1
{∥∥∥Ỹi,j∥∥∥

2
≤ R

}
︸ ︷︷ ︸

:=Z̃i,j

+ Ỹi,j1
{∥∥∥Ỹi,j∥∥∥

2
> R

}
︸ ︷︷ ︸

:=Ṽi,j

, (4.3)

where R > 0 is the truncation level, specified later. We view Ṽi,j as “outliers.”

Note that these outliers cannot be too bad: in particular, they are identically

distributed and mutually independent, as long as the subscripts do not overlap;

therefore, one can expect many cancellations to occur in the sum
∑

i,j Ṽi,j. This,
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in turn, translates into better performance bounds of the proposed estimators.

In the following two subsections, we show that the estimator Ŝλ in (4.1) is close

to Σ, both in the operator and in the Frobenius norms.

4.1. Bounds in the operator norm

Our goal is to show that Ŝλ is close to Σ in the operator norm, with high

probability. We are interested in the effective rank of the “variance matrix”

E[(H1,2 − Σ)2], and denote it as

rH := rk(E
[
(H1,2 − Σ)2

]
) =

tr (E[(H1,2 − Σ)2])

∥E[(H1,2 − Σ)2]∥
.

Minsker and Wei (2020, Lemma 4.1) suggest that under the bounded kurtosis

assumption (see (4.4)), we can upper bound rH by the effective rank of Σ, namely,

rH ≤ Crk(Σ), with some constant C > 0.

Theorem 2. Assume that t ≥ 1 is such that rHt ≤ c3n, for some sufficiently

small constant c3, σ ≥ ∥E[(H1,2 − Σ)2]∥1/2, and n ≥ max
{
64arHt, 4bt

2 ∥Σ∥2/σ2
}
,

for some sufficiently large constants a, b. Then, for λ1 ≤ (σ/4)
√
n/t and λ2 ≥

σ/
√
(n− 1)t, we have that

∥∥∥Ŝλ − Σ
∥∥∥ ≤ 20

39
λ1 +

80

39
σ

√
t

n
+

40

39
λ2t,

with probability at least 1− (8rH/3 + 1) e−t.

It is also easy to see that the bound still holds if λ1 > (σ/4)
√
n/t.

Lemma 1. Assume that t ≥ 0, σ ≥ ∥E[(H1,2 − Σ)2]∥1/2, and

n ≥ max

{
64arHt,

4bt2 ∥Σ∥2

σ2

}
,

where a,b are sufficiently large positive constants. Then, for any λ1 > (σ/4)
√
n/t,

we have that argminS L(S) = 0, with probability at least 1− e−t.

In particular, under the conditions of the previous lemma,
∥∥∥Ŝλ − Σ

∥∥∥ = ∥Σ∥.
The proofs of Lemma 1 and Theorem 2 are presented in Section S4.1 of the

Supplementary Material.

Remark 3. According to Minsker and Wei (2020, Lemma 4.1), the “matrix

variance” parameter σ2 appearing in the statement of Theorem 2 can be bounded

by ∥Σ∥ tr (Σ) = rk(Σ) ∥Σ∥2 under the bounded kurtosis assumption (4.4), stated

formally below. In this case, ∥E[(H1,2 − Σ)2]∥ ≲ rk(Σ) ∥Σ∥2, and σ can be chosen

to be proportional to
√
rk(Σ) ∥Σ∥. Moreover, the assumptions on n and t in

Lemma 1 and Theorem 2 can be reduced to a single assumption that rHt ≤ c′3n,
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for some sufficiently small constant c′3. Note that the magnitude of the deviations

suggested by Theorem 2 is controlled by ∥Σ∥
√
rk(Σ) (indeed, the term involving

the deviations parameter t has the form λ2t), whereas the optimal sub-Gaussian-

type deviations are controlled by ∥Σ∥, as shown by Mendelson and Zhivotovskiy

(2020). Unfortunately, the estimator proposed by Mendelson and Zhivotovskiy

(2020) that achieves such bounds is not computationally tractable.

4.2. Bounds in the Frobenius norm

In this subsection, we show that Ŝλ is close to the covariance matrix of Y in

the Frobenius norm, with high probability, under a slightly stronger assumption

on the fourth moment of Y .

Definition 4. A random vector Y ∈ Rd is said to satisfy an L4 − L2

norm equivalence with constant K (also referred to as the bounded kurtosis

assumption) if there exists a constant K ≥ 1 such that(
E
[
⟨Y − EY, v⟩4

])1/4
≤ K

(
E
[
⟨Y − EY, v⟩2

])1/2
, (4.4)

for any v ∈ Rd.

As discussed in Remark 3, condition (4.4) allows us to connect the matrix

variance parameter σ2 with rk(ΣY ), the effective rank of the covariance matrix

ΣY . We assume that Y satisfies (4.4) with a constant K throughout this

subsection. Recall the decomposition

Ỹi,j = Ỹi,j1
{∥∥∥Ỹi,j∥∥∥

2
≤ R

}
︸ ︷︷ ︸

:=Z̃i,j

+ Ỹi,j1
{∥∥∥Ỹi,j∥∥∥

2
> R

}
︸ ︷︷ ︸

:=Ṽi,j

, (4.5)

where R > 0 is the truncation level, to be specified later. Denote ΣY := E[Ỹ1,2Ỹ
T
1,2]

and ΣZ := E[Z̃1,2Z̃
T
1,2], and recall that our goal is to estimate ΣY . Because

∥Z̃i,j∥2 ≤ R, almost surely, (4.5) represents Ỹi,j as a sum of a bounded vector Z̃i,j
and a “contamination” component Ṽi,j, which is similar to model (3.1). On the

other hand, the truncation level R should be chosen to be neither too large (to

obtain a better behaved truncated distribution) nor too small (to reduce the bias

introduced by the truncation). Mendelson and Zhivotovskiy (2020) suggest that

a reasonable choice is given by

R =

(
tr (ΣY ) ∥ΣY ∥n

log
(
rk(ΣY )

)
+ log(n)

)1/4

. (4.6)

Denote J̃ = {(i, j) ∈ I2n : ∥Ỹi,j∥2 > R} as the set of indices corresponding to

the nonzero outliers (i.e., Ṽi,j ̸= 0), and ε := |J̃ |/
(
n(n− 1)

)
as the proportion of
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such outliers. Under this setup, we have the following result, which provides an

upper bound on ε, with high probability.

Lemma 2. Assume that Y satisfies the L4 − L2 norm equivalence with constant

K, and R is chosen as in (4.6). Then,

ε ≤ c(K)
rk(ΣY )

[
log
(
rk(ΣY )

)
+ log(n)

]
n

, (4.7)

with probability at least 1− 1/n.

The proof of Lemma 2 is presented in Section S4.2 of the Supplementary

Material. Note that the proportion of “outliers” (in the sense of the definition

above) in the heavy-tailed model can be relatively small when the sample size n

is large. The following inequality is the main result of this section.

Theorem 3. Given A ≥ 1, assume that Y ∈ Rd is a random vector with mean

E[Y ] = µ and covariance matrix ΣY = E[(Y − µ)(Y − µ)T ], and satisfying an

L4 −L2 norm equivalence with constant K. Let Y1, . . . , Yn be i.i.d. samples of Y ,

and let Z̃i,j be defined as in (4.5). Assume that n ≥ c4(K)rk(ΣY )
(
log(rk(ΣY )) +

log(n)
)
, and rank(ΣY ) ≤ c2(K)n. Then, for

λ1 = c(K) ∥ΣY ∥
[
rk(ΣY )

(
log(rk(ΣY )) + log(n)

)]1/2
n−1/2

and

λ2 = c(K) ∥ΣY ∥
(
rk(ΣY ) log(n)

)1/2
(An)−1/2,

we have that∥∥∥Ŝλ − ΣY

∥∥∥2
F
≤ c(K) ∥ΣY ∥2

[
rk(ΣY )

(
log
(
rk(ΣY )

)
+ log(n)

)
n

rank(ΣY )

+
Ark(ΣY )

2 log(n)3

n

]
,

with probability at least 1− (8rH/3 + 1)n−A − 4n−1.

The proof of Theorem 3 is given in Section S5 of the Supplementary Material.

Remark 4. Let us compare the result in Theorem 3 with the bound of Corollary

1:

(1) The first term of the bound, c(K) ∥ΣY ∥2 (rk(ΣY )(log(rk(ΣY )) + log(n))/n)

rank(ΣY ), has the same order as in Corollary 1 (up to a logarithmic factor),

under the assumption that ΣY has low rank. This part of the bound is

theoretically optimal, according to Remark 2.

(2) The second part of the bound, c(K) ∥ΣY ∥2 (rk(ΣY )2 log(n)3/n), controls

the error introduced by the outliers. It is smaller than the corresponding
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quantity in Corollary 1, which in the present setup, is of order c(K) ∥ΣY ∥2

(rk(ΣY )
3log(n)3/n) (note the additional rk(ΣY ) factor). As noted earlier,

the improvement is mainly because of the special structure of the heavy-

tailed data, namely, independence among the outliers Ṽi,j, with non-

overlapping subscripts; see the discussion following equation (4.3).

5. Numerical Experiments

In this section, we discuss algorithms for evaluating the proposed estimators,

as well as our numerical experiments. Recall that the loss function is defined as

L̃(S,UI2n
) =

1

n(n− 1)

∑
i ̸=j

∥∥∥∥Ỹi,jỸ T
i,j − S −

√
n(n− 1)Ui,j

∥∥∥∥2
F

+λ1 ∥S∥1 + λ2

∑
i̸=j

∥Ui,j∥1 . (5.1)

We approximate (Ŝλ, ÛI2
n
), the minimizer of (5.1), numerically. Because we are

only interested in Ŝλ, while ÛI2
n

are the nuisance parameters, equation (3.7)

suggests that it suffices to minimize the following function:

L(S) :=
1

n(n− 1)
tr
∑
i ̸=j

ρ
(
√
n(n−1)λ2)/2

(Ỹi,jỸ
T
i,j − S) +

λ1

2
∥S∥1 ,

where ρλ(·) is the Huber loss function defined in (3.8).

5.1. Algorithm for computing the estimator

Our computational approach, formally described in Algorithm 1, is based

on minimizing the loss function L(S) using the batch proximal gradient descent

(PGD) method: suppose we want to minimize the function f(x) = g(x) + h(x),

where (a) g is convex and differentiable, and (b) h is convex, but not necessarily

differentiable. The PGD method for solving the problem starts from an initial

point x(0), and performs updates

x(k) = proxαkh

(
x(k−1) − αk∇g(x(k−1))

)
,

where αk > 0 are the step sizes, and proxh(x), the proximal mapping of a convex

function h at the point x, is defined as

proxh(x) = argmin
u

(
h(u) +

1

2
∥u− x∥22

)
.

When g(x) = (1/n)
∑n

i=1 gi(x), where g1, . . . , gn are convex functions, the update

step of the PGD method requires evaluating n gradients, which is expensive

for large values of n. A natural alternative is to consider the stochastic
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PGD (SPGD) method, where at each iteration k = 1, 2, . . . , we pick an

index ik randomly from {1, 2, . . . , n}, and make the following update: x(k) =

proxαkh

(
x(k−1) − αk∇gik(x(k−1))

)
. A batch SPGD method assumes that we pick

a small random subset of indices at each iteration, balancing the computational

cost and the variance introduced by the random sampling. Additional facts about

the PGD and its variants are presented in Section S7.1 of the Supplementary

Material.

Algorithm 1 .Stochastic proximal gradient descent (SPGD).

Input: number of iterations T , step size ηt, batch size b, tuning parameters λ1 and

λ2, initial estimation S0, sample size n, dimension d.

1: for t = 1, 2, . . . , T do

2: (1) Randomly pick it, jt ∈ {1, 2, . . . , n} without replacement.

3: (2) Compute Gt = −∇gi,j(St) = −ρ′
(
√
n(n−1)λ2)/2

(Ỹi,j Ỹ
T
i,j − St).

4: (3) If b > 1, then repeat (1)(2) b times, and save the average gradient in Gt.

5: (4) (gradient update) T t+1 = St −Gt.

6: (5) (proximal update)

St+1 = argmin
S

{
1

2

∥∥S − T t+1
∥∥2
F
+
λ1
2

∥S∥1

}
= γλ1/2(T

t+1),

where γλ(u) = sign(u)(|u| − λ)+.

7: end for

Output: ST+1

5.1.1. Rank-one update of the spectral decomposition

Note that at each iteration of Algorithm 1, we need to compute the spectral

decomposition of the matrices Ỹi,jỸ
T
i,j − St, which is computationally expensive.

However, because Ỹi,jỸ
T
i,j is a matrix of rank one, and the spectral decomposition

of St is performed in step T − 1, the problem of computing the spectral

decomposition of the matrices Ỹi,jỸ
T
i,j − St can be viewed as a rank-one update

of the spectral decomposition, which has been studied extensively (e.g., Bunch,

Nielsen and Sorensen (1978) and Stange (2008)). It turns out that, with the

help of rank-one update methods, the complexity of a spectral decomposition

can be reduced from O(d3) to O(d2 log2 d). A detailed description of the required

techniques is given in Section S7.2 of the Supplementary Material.

5.2. Simulation results

As a proof of concept, consider the following setup: d = 200, n = 100,

|J | = 3, µ = (0, . . . , 0)T , Σ = diag(10, 1, 0.1, . . . , 0.1). The inputs to the

algorithm are generated as follows: we sample n independent realizations Zj
from the Gaussian distribution N (µ,Σ), and then replace |J | of them (chosen

randomly) with Zj + Vj, where Vj, for j ∈ J , are outliers drawn independently
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(a) Distribution of RelErr(S∗, Frob).
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(b) Distribution of RelErr(Σ̃s, Frob).
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Figure 1. Histograms of the distributions of the relative errors in the Frobenius norm.

from another Gaussian distribution N (µV ,ΣV ), with µV = (0, . . . , 0)T and

ΣV = diag(100, . . . , 100); the results for other types of outliers are given in Section

S8 of the Supplementary Material. The sample Y1, . . . , Yj obtained in this manner

is the input to the SPGD algorithm. Next, we calculate Ỹi,j = (Yi − Yj)/
√
2, for

i ̸= j, and perform our algorithm with K = 500 steps and the diminishing

step size αk = 1/k. The initial value S0 is determined using a one-step full

gradient update, as explained in the last paragraph of Section S7.1 of the

Supplementary Material (S7.1). To analyze the performance of the estimators, we

define RelErr(S,Frob) := ∥S − Σ∥F/∥Σ∥F as the relative error of the estimator

S in the Frobenius norm, and RelErr(S, op) := ∥S − Σ∥/∥Σ∥ as the relative

error of the estimator S in the operator norm. We compare the performance of

the estimator S∗ produced by our algorithm with that of the sample covariance

matrix Σ̃s introduced in (3.2). We performed 200 repetitions of the experiment,

with λ1 = 3 and λ2 = 1, and recorded S∗ and Σ̃s for each run. Histograms of the

distributions of the relative errors in the Frobenius norm are shown in Figures

1(a) and 1(b). The average and maximum (over 200 repetitions) relative errors
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of S∗ are 0.2842 and 0.6346, respectively, with a standard deviation of 0.1108.

The corresponding values for Σ̃s are 34.5880, 39.6758, and 2.1501. The estimator

S∗ clearly outperforms the sample covariance Σ̃s, as expected. Figures 1(c) and

1(d) show that S∗ yields smaller relative errors in the operator norm as well.

The average and maximum relative errors of S∗ in the operator norm are 0.2676

and 0.6290, respectively, with a standard deviation of 0.1148. The corresponding

values for Σ̃s are 22.9255, 28.2328, and 1.8791.

Supplementary Material

The online Supplementary Material includes detailed proofs and additional

simulation results.
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