Statistica Sinica 34 (2024), 1565-1583
doi:https://doi.org/10.5705 /ss.202021.0388

ROBUST ESTIMATION OF COVARIANCE MATRICES:
ADVERSARIAL CONTAMINATION AND BEYOND

Stanislav Minsker* and Lang Wang

University of Southern California

Abstract: We consider the problem of estimating the covariance structure of a
random vector Y € R? from an independent and identically distributed (i.i.d.)
sample Y1,...,Y,. We are interested in the situation in which d is large relative to
n, but the covariance matrix ¥ of interest has (exactly or approximately) low rank.
We assume that the given sample is either (a) e-adversarially corrupted, meaning
that an e-fraction of the observations can be replaced by arbitrary vectors, or (b)
i.i.d., but the underlying distribution is heavy-tailed, meaning that the norm of Y
possesses only finite fourth moments. We propose estimators that are adaptive to
the potential low-rank structure of the covariance matrix and to the proportion
of contaminated data, and that admit tight deviation guarantees, despite rather
weak underlying assumptions. Finally, we show that the proposed construction
leads to numerically efficient algorithms that require minimal tuning from the
user, and demonstrate the performance of such methods under various models of
contamination.

Key words and phrases: Adversarial contamination, covariance estimation, heavy-
tailed distribution, low-rank recovery, U-statistics.

1. Introduction

We focus on the problem of covariance estimation under various types of
contamination, emphasizing practical methods that admit an efficient implemen-
tation. Assume that we are given independent copies Yi,...,Y, of a random
vector Y € R? that follows an unknown distribution D over RY, with mean
p = E[X] and covariance matrix ¥ := E[(Y — p)(Y — u)*]. The observations
Yi,...,Y, are assumed to be either e-adversarially corrupted, meaning that an
“adversary” could replace a fraction ¢ < 0.5 of observations with arbitrary
(possibly random) vectors, or that the underlying distribution D is heavy-tailed,
meaning that the Euclidean norm |Y||; is assumed to possess only four finite
moments. Our goal is to construct an estimator of the covariance matrix ¥ that
performs well in the present framework.

As attested by, among others, [Tukey (1960) and [Huber| (1964), robust
estimation has a long history. During the past two decades, a growing number
of applications has created high demand for practical tools for recovering high-
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dimensional parameters of interest from corrupted measurements. Robust
covariance estimators, in particular, have been studied extensively. The statistical
properties of the sample covariance matrix of “light-tailed” distributions, such as
sub-Gaussian distributions, are well understood; see, for example,
and Lounici (2016), [Vershynin| (2010), and |Cai, Zhang and Zhou| (2010); |Cai,|
Ren and Zhou (2016), among many others. |Srivastava and Vershynin (2013)
investigate the performance of the sample covariance matrix under weaker

moment assumptions. Some popular robust estimators of scatter, such as the
minimum covariance determinant (MCD) estimator and the minimum volume

ellipsoid (MVE) estimator, are discussed in Hubert, Rousseeuw and van Aelst|
. However, rigorous results for these estimators are available only for
elliptically symmetric distributions because, in general, they are biased. For
instance, Butler, Davies and Jhun| (1993) discuss asymptotic results for the MCD,
and do so for the MVE estimator. Other popular constructions,
such as the estimators of scatter of Maronnal (1976) and (1987), are
consistent only for distributions possessing certain symmetry properties. |Chen,
\Gao and Ren| (2018) demonstrate the minimax optimality, with respect to
the proportion of outliers, of a robust estimator based on a so-called “matrix
depth” function inspired by the notion of Tukey’s depth; unfortunately, this
estimator is not computationally tractable. Covariance estimation for heavy-
tailed distributions has attracted significant attention; see, for example,
(2016), |Giulini (2015), [Fan, Wang and Zhong| (2016]), Abdalla and Zhivotovskiy|
(2022)), |Oliveira and Rico| (2022), Minsker| (2018]), and Minsker and Wei| (2020)).
The survey by [Ke et al| (2019) contains a more detailed overview of recent
progress. Contributions by theoretical computer scientists have introduced a

range of new ideas, leading to theoretically optimal estimators in adversarial

contamination frameworks; see, for example, |[Lai, Rao and Vempala (2016]),
Diakonikolas et al.| (2021, 2019, 2017)), |Cheng et al.| (2019), and
and Kane (2019). Furthermore, |Abdalla and Zhivotovskiy| (2022) and
and Rico| (2022)) describe estimators that achieve the sharpest possible bounds.
Several proposed approaches, including those of the latter two works, result in

optimality with respect to the contamination proportion and the dependence on
the estimators of the dimension factors. However, the corresponding algorithms
are either not computationally feasible or not user friendly, because they are often
sensitive to the choice of “absolute constants” in the tuning parameters, require
a preliminary robust mean estimation, or assume that (typically unknown)
parameters, such as the contamination proportion ¢, are given as an input. Other
works focus only on the bounds with respect to the Frobenius norm, whereas we
are interested in the error measured in the operator norm as well. Finally, the
dependence of the resulting probabilistic estimates on the deviation parameter
controlling the probability of the desirable bound is often not made explicit.
This study continues the line of research on robust covariance estimation.
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We design a “Lasso-type” penalized estimator, and show the following: (a) it
admits nearly optimal error bounds in cases of practical interest, namely, when
the so-called “effective rank” of the covariance matrix 3 (defined rigorously later)
is small; (b) it requires minimal tuning, and can be calculated efficiently using
traditional numerical methods; and (c) the dependence of the resulting estimates
on all parameters of interest is stated explicitly. Note that theoretical guarantees
for our estimator are not restricted to data generated from an elliptically
symmetric distribution.

The rest of the paper is organized as follows. Section 2 introduces the main
notation and background material. Sections 3 and 4 discuss the main results
for the cases of adversarially corrupted data and heavy-tailed data, respectively.
Section 5 presents the algorithms for our numerical evaluation of the proposed
estimators, as well as the results of our numerical experiments. Additional
simulation results and proofs are contained in the online Supplementary Material.

2. Preliminaries

In this section, we introduce the main notation and recall several useful facts
that we rely on in the subsequent exposition.

2.1. Notation

Given two real numbers a,b € R, we define a V b := max{a,b}, a A b :=
min{a, b}. For x € R, we denote |z] := max{n € Z : n < x} as the largest integer
less than or equal to z. The absolute constants are typically unspecified, and are
denoted as ¢, C,C,, C, and so on, where the same constant letter might denote
different absolute constants in different expressions. When the constant depends
on certain parameters of the problem, we write it as C(z,y,...). Remaining
notation will be introduced as needed.

2.2. Matrix algebra

Assume that A € R"*% ig a d; x d, matrix with real-valued entries. Let
AT denote the transpose of A, and define S4R) := {4 € R : AT = A} as
the set of all symmetric d x d matrices. The eigenvalues of A are denoted as
A1, ..., Mg, all of which are real numbers. Given a square matrix A € R¥*?, the
trace of A is tr(A) := Y% | A,,;, where A;; represents the element of the ith
row and ith column of A. For a rectangular matrix A € R%*% with singular
values 01(A) > -+ > 0rank(a)(A) > 0, the operator or spectral norm is defined

as ||A|l := 01(A) = /Anaz(ATA), the Frobenius norm is defined as |4, =
VI 52(4) = \/tr (ATA), and the nuclear norm is defined as ||A|, :=

3

Sk 5. (A) = tr (VAT A). The inner product associated with the Frobenius
norm is defined as (4, B) := (A,B), = tr (A"B) = tr (AB"), where A,B €
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R¥ >4z - Finally, we introduce the functions of matrix-valued arguments.

Definition 1. Given a real-valued function f defined on an interval T C R and a
real symmetric matrix A € S%(R), with the spectral decomposition A = UAUT,
such that A\;(A) € T, for j = 1,...,d, define f(A) as f(A) = Uf(A)U”, where

M FON)
sw=r =
y £

Finally, the effective rank of a matrix A € S%(R) \ {0} is defined as

_tr (A)
rk(A) := AL

Note that 1 < rk(A) < rank(A) is always true, and it is possible that rk(A) <
rank(A) for “approximately low-rank” matrices A.

2.3. Sub-Gaussian distributions

Given a random variable X on a probability space (£2,.4,P), and a convex
nondecreasing function ¢ : Ry — R, with ¢(0) = 0, we define the ¢)-norm of X,
following |Vershynin (2018, Sec. 2.7.1), as

Ixl, =it {o>0suly (FD] <1},

Below, we are interested in v (u) := exp{u} — 1, for v > 0, and ¥y(u) :=
exp{u?} — 1,u > 0, which correspond to the sub-exponential and sub-Gaussian
norms, respectively. A random variable X is sub-Gaussian (sub-exponential) if
X1, < oo ([[X]l,, < oo). In addition, we define the Ly- norm of a random

variable X as [|X||, = (]E[\X|2])1/2. The sub-Gaussian (or sub-exponential)
random vector is defined as follows.

Definition 2. A random vector Z in R? with mean p = E[Z] is called L-sub-
Gaussian if for every v € R?, there exists an absolute constant L > 0, such
that

I{Z =, 0)lly, < LIZ = p,0)l, - (2.1)

Moreover, Z is called L-sub-exponential if 1y-norm in ({2.1)) is replaced with -
norm.

3. Problem Formulation and Main Results

Let Z,...,7Z, € R? be independent and identically distributed (i.i.d.)
copies of an L-sub-Gaussian random vector Z, such that E[Z] = p and
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E[(Z — u)(Z — n)T] = . Assume that we observe a sequence
Y, =24V, j=1,....n, (3.1)

where V; are arbitrary (possibly random) vectors, such that only a small portion
of them are not equal to zero. That is, we assume that there exists a set of
indices J C {1,...,n} such that |J| < n and V; =0, for j ¢ J. In what follows,
the sample points with j € J are called outliers, and ¢ := |J|/n denotes the
proportion of such points. In this case,

Y,V = 2,27 + VT +V,ZT + Z,VT = X, + /U,

::\/EU;

where rank(U;) < 2, and the y/n normalization factor is added for the technical
convenience. Our main goal is to construct an estimator for the covariance matrix
Y in the presence of outliers V;. In practice, we usually do not know the true
mean p of Z. We can avoid an explicit estimation of  if we are interested only
in 3. To this end, we recall the definition of U-statistics.

Definition 3 (Hoeffding (1948)). Let Y;,...,Y, (n > 2) be a sequence of
random variables taking values in a measurable space (S,B). Assume that H :
8™ — SYR) (2 < m < n) is an S™-measurable permutation-symmetric kernel,
that is, H(y1,.--,Ym) = H(Yx,s---,Yx,.), for any (yi,...,yn) € 8™ and any
permutation 7. The U-statistic with kernel H is defined as
(n —m)!
Unlzi Z H(}/ila---ayvim)v

|
n (i1 yeeeyim ) ELT

An example of a U-statistic is the sample covariance matrix

= = 308 = F)05 - T, (3.2)

where Y := (1/n) > i1 Y;. Indeed, it is easy to verify that

s _ 1 (Y = ¥ = ¥)"
EREICEN 1PV R

(3.3)

(i,5)€1?
Hence, the sample covariance matrix is a U-statistic with kernel

(z—y)(z—y)"
2

H(x,y):= , for any z,y € R%.
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Note that E[(Y; — Y;)/v2] = 0 and E[(Y; — Y;)(Y; — YJ)T/2] =%, for all (4,j) €
I?. That is, by expressing the sample covariance matrix as a U-statistic in (3.3),
we avoid an explicit estimation of the unknown mean p. Therefore, we consider
the following settings:

s> Y=Y Zi—Z; = ViV,

y Zij = , Vig= 7] for all (i,j) € I2.

S

Y Y = 2,20 + Vi Vil + Vi, 28 + 2,V = Xij + \[n(n — DU},
::1/n(n—1)[7;_7

where the n(n —1) = |I?| factor is equal to the total number of ; ;, and is added
for technical convenience. The followings facts can be easily verified:

(1) ?” = Z; i— 5.j» with E[Z”] = 0 and E[ZJZTJ] =X, for any (i,7) € I2.
Moreover, Z, ;, for (i,j) € I2, has a sub-Gaussian distribution, according to
Corollary 2.

(2) Z,; are identically distributed, but not independent.

(3) Denote j~: {G,5) € I - Vi; # 0} as the set of indices such that Vi; =0,
V(i,j) ¢ J. Then, |J| represents the number of outliers in {Y; ; : (i,7) € I2},
and we have that

1= 21J)(n = ) + [J1(1J] = 1) = | |20 = [J] = 1). (3.4)

(4) Rank(ﬁ;j) < 2. This follows from the fact that for any vector v € R¢,

ﬁ{fjv S span{f/m, Z”}

In the following, we let Uz := (U, 2, ..., U, ,—1) represent the n(n—1)-dimensional
sequence with subscripts valued in I2. Similarly, the notation (S, Uz ) represents
the (n? —n + 1)-dimensional sequence (S,U; o,...,U, ,_1). Now, we are ready to
define our estimator. Given Ay, Ay > 0, set

2

Yl'jf/f; — S —/n(n—-1)U,;

~ o~ 1
(Sx;Uprz) = argmin [ Z

.Uz U | U= 1) F
+A1 HSHHF)QZHULJ'\M}’ (3.5)
i

where the minimization is over S,U; ; € S*(R), V(i,7) € I2.

Remark 1. The double penalized least-squares estimator defined in (3.5)) is a
solution to the nuclear-norm penalized Huber loss minimization problem. In the
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context of robust linear regression, this fact has been observed by several authors,
including Sardy, Tseng and Bruce| (2001), Gannaz (2007)), [McCann and Welsch
(2007), \She and Owen| (2011)), and Donoho and Montanari (2016)). In the setting
of a robust principal component analysis, similar connections are established by
She, Li and Wul (2016)). The approach of the latter work is similar in spirit to ours,
but focuses on estimating the leading principal components when the number of
principal components is known. To show the connection between and the
penalized Huber loss minimization in our framework, we express the estimator as

S5 T3 . . 1 < T 2
(Sx,Upz) = arg min rlljlllél ln(n—l)tr {Z (Y”Y” — S —4/n(n— 1)Ui,j> }

i#j
+AMﬂM+M§]WMML (3.6)
i#j

and observe that the minimization with respect to Uy in (3.6) can be carried
out explicitly. This yields that

& . 2 ~ ~r
Sh= arg;mn {n(n—l)tr [;p(m/\ﬂ/g(}/@j}i,j = S)| + A Sl }7 (3.7)

where )
=, ful <
pa(u) == ¢ 2 )2 , forallu e R,\eRT (3.8)
Alul — oL lu| > A

is the Huber loss function; the derivation is given in Section S6.1 of the
Supplementary Material.

3.1. Performance guarantees for adversarial contamination

We are ready to state our main results, namely, the error bounds for the
estimator defined in . We compare the performance of our estimator with
that of the sample covariance matrix 3, defined in . When there are no
outliers, it is well known that is is a consistent estimator of X, with an expected
error of at most O(d/+/n) in the Frobenius norm, namely, E[||S,—X||z] < Cd//n,
for some absolute constant C' > 0 (e.g., see (Cai, Zhang and Zhou| (2010))).
However, in the presence of outliers, the error for f]s can be large (see Section
S8 in the Supplementary Material for some specific examples). Recall that
Xi,j = Z”ZZT] The following bound characterizes the performance of the
estimator ((3.5)).

Theorem 1. Fiz 6 > 0, and assume that n > 2 and that |J| < ¢1(0)n, where
¢1(9) is a constant depending only on 6. Then, on the event
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_ 140 ||| s
£ = {x Vﬁﬁjrd YR > X, -3,

(6.3)€T
140 || 4 -
Ao > — L k(D) + e X, -3,
22 o) VEE) w(n 1) Gperz I |
the following inequality holds:
—~ 2

_ < : o 2 2 21 712y L
18y =21, < o e LU OIS = Bl 4c(0) (A rank(5) + 23171 }

A detailed proof of Theorem 1 is presented in section S2 of the Supplementary

Material.

Remark 2. The bound in Theorem 1 contains two terms:

(1)

The first term, (1 4+ 6) ||S — 2% 4 ¢(6)A? rank(S), does not depend on the
number of outliers. When there are no outliers, that is, |JJ| = 0, the bound
contains only this term. In such a scenario, |Lounici| (2014) proves that the
optimal bound has the form

=~ 2 k(X) 4+t
835 <m{ gz — 512 4+ ¢y D
F S n

rank(.S) },

which holds with probability at least 1 —e~*. By choosing the smallest valid
A1 specified in (3.9)), the first term of our bound coincides with this optimal
bound.

The second term, c(d)A\3|J|?, controls the worst possible effect due to
the presence of outliers. When additional conditions are imposed on the
outliers (e.g., independence), this bound can be improved; see the discussion
following equation . Moreover, Diakonikolas et al.| (2017)) prove that
when Z is centered Gaussian, there exists an estimator ) achieving the
theoretically optimal, with respect to &, bound || — %|[p < O(e) |2,
which is independent of the dimension d. In our case, by choosing the
smallest possible A\, we can show that the error bound scales O((log(n) +
rk(X))e) ||Z]|. The additional factor (log(n)+rk(X)) shows that our bound
is sub-optimal, in general. However, in the class of matrices with rk(X)
bounded by a constant, our bound is nearly optimal, up to a logarithmic
factor.

Note that in Theorem 1 the regularization parameters A; and A, should

be chosen sufficiently large such that the event £ happens with high probability.
Under the assumption that Z;, for j = 1,...,n, areii.d. L-sub-Gaussian vectors,
we can prove the following result, which gives an explicit lower bound on the
choice of \;.
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Proposition 1. Assume that Z is L-sub-Gaussian with mean p and covariance
matriz X. Let Zy,...,Z, be independent copies of Z, and define Zj =
(Z; — Z;) N2, for all (i,§) € I2. Then, Z;;, for (i,j) € I2, are mean-zero
L-sub-Gaussian random vectors with covariance Y. Moreover, for any t > 1,
there exists ¢(L) > 0 depending only on L such that

n_l ZZ ZT— <c(L)HEH( rk(ETL)—l—t_'_rk(Z)-i-t)’

n
Z#J

with probability at least 1 — 2e™".

Proposition 1 together with the definition of event £ indicates that it suffices
to choose \; satisfying

n 2 s 3:9)

given that n > rk(X) + ¢. The next proposition provides a lower bound for the
choice of \y.

Proposition 2. Assume that Z is L-sub-Gaussian with mean zero, and
Zy, ..., Z, are copies of Z (not necessarily independent). Then, there exists
¢(L) > 0 depending only on L, such that for any t > 1,

max (12,27 = 2| < (L) [|15] (K(E) + log(n) +1)

t

with probability at least 1 — e~

Because Proposition 2 does not require independence, it can be applied to
the mean-zero, L-sub-Gaussian vectors Z; ;, for (i,j) € I2, to deduce that

max
i#]

Zi, 78— 3| < (L) |3] BK(S) + log(n(n — 1) +1],

4,5 4,5

with probability at least 1 — e~*. Combining this bound with the definition of
event £, we conclude that it suffices to choose A, satisfying

rk(X) + log(n) + t).

By choosing the smallest possible A; and )., as indicated in and -,
respectively, we deduce the following corollary.

Ao > e(L) 5]

(3.10)

Corollary 1. Let § > 0 be an absolute constant. Assume that n > rk(X)+log(n)
and |J| < ¢1(6)n, where ¢1(0) is a constant depending only on 6. Then, we have
that

2

s

< inf {<1+5) 1S — 2|7 (3.11)

F ~ S:rank(S)<chn(rk(X)+log(n))
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+e(L,8) |2 W rank(s) + FEE) +log(n)) nyz] }

n2
with probability at least 1 — 3/n.

Note that the term ||X]|> ((rk(X) + log(n))®/n?)|J|? in [B.11)) can be equiva-

lently written in terms of e, the proportion of outliers, as |2 (rk(X) + log(n))® &2.

4. Performance Guarantees for Heavy-Tailed Distributions

In this section, we consider heavy-tailed data, and compare this framework
with the model of adversarial contamination. Let Y € R? be a random vector
with mean E[Y] = g and covariance matrix ¥ = E[(Y — p)(Y — p)?], such that
E[||Y — p]|3] < oo. Assume that Y7, ...,Y,, are i.i.d. copies of Y, and our goal is to
estimate Y. As before, we define Y; ; = (Y; — Y;)/v/2, and denote H, ; := EJ}ZT]
We showed earlier that EDN/”] =0and E[H, ;] = X. Given A\, \; > 0, we propose
the following estimator for X:

S \ = argmin {
s

- A\
Zp(\/n(n—l)/\z)/Z(}/;ij;’,I; - S) + ? HSH1 }7 (41)

1 t
——tr
n(n—1) oy
which is the minimizer of the penalized Huber loss function

1 T

A
L(S) = w1 l;r’)(mwm(y},jzﬂ S)| + =5 ISl (4.2)

Note that the estimator S \ in is equivalent to the double-penalized least-
squares estimator in (see Section S6.1 of the Supplementary Material). The
key idea behind deriving the error bounds for S \ is to decompose the heavy-tailed
distribution into a mixture of “well-behaved” components and contaminated
components; a similar approach is used by [Prasad, Balakrishnan and Ravikumar
(2019). This decomposition can be viewed as a “bridge” between the heavy-tailed
model and the adversarial contamination model , allowing us to repeat parts
of the reasoning used to obtain the inequalities in Section 3. Specifically, we
consider the decomposition

Yi;

}N/i,j = }N/i,j]l {‘ YM

2 SR}_‘_?MH{‘

> R}, (4.3)

::Zi,j ::‘7},]'

where R > 0 is the truncation level, specified later. We view 17” as “outliers.”
Note that these outliers cannot be too bad: in particular, they are identically
distributed and mutually independent, as long as the subscripts do not overlap;
therefore, one can expect many cancellations to occur in the sum 3, 17” This,
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in turn, translates into better performance bounds of the proposed estimators.
In the following two subsections, we show that the estimator Sy in (4.1) is close
to X, both in the operator and in the Frobenius norms.

4.1. Bounds in the operator norm

Our goal is to show that S, is close to ¥ in the operator norm, with high
probability. We are interested in the effective rank of the “variance matrix”
E[(H; 2 — ¥)?], and denote it as

— 2y _ (B[~ B)%)
ri = k(B [(Hhp = 2)7) = S e

Minsker and Wei (2020, Lemma 4.1) suggest that under the bounded kurtosis
assumption (see (4.4])), we can upper bound ry by the effective rank of ¥, namely,
rg < Crk(X), with some constant C' > 0.

Theorem 2. Assume that t > 1 is such that rgt < csn, for some sufficiently
small constant c3, o > ||E[(Hy 2 — )2)1"?, and n > max {64aryt, 4bt* ||| /o?},
for some sufficiently large constants a, b. Then, for A\; < (o/4)\/n/t and Ay >

o/+/(n—1)t, we have that

H§A -~ EH < %Al + ?)ga\/ZJr %Agt,

with probability at least 1 — (8ry/3+ 1) e .
It is also easy to see that the bound still holds if A\; > (o/4)y/n/t.

Lemma 1. Assume thatt >0, o > |[E[(H12 — )21, and

4bt2 1217
0-2

)

n > max {64arHt,

where a,b are sufficiently large positive constants. Then, for any Ay > (o/4)\/n/t,

we have that argming L(S) = 0, with probability at least 1 —e™".

In particular, under the conditions of the previous lemma, H§ N — EH = |IZ].
The proofs of Lemma 1 and Theorem 2 are presented in Section S4.1 of the
Supplementary Material.

Remark 3. According to Minsker and Wei| (2020, Lemma 4.1), the “matrix
variance” parameter o2 appearing in the statement of Theorem 2 can be bounded
by ||Z]| tr (2) = rk(Z) ||%]|* under the bounded kurtosis assumption ([@.4), stated
formally below. In this case, |E[(H12 — %)%]| < rk(2) |Z|%, and o can be chosen
to be proportional to /rk(X)||X||. Moreover, the assumptions on n and ¢ in
Lemma 1 and Theorem 2 can be reduced to a single assumption that ryt < cin,
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for some sufficiently small constant ¢j. Note that the magnitude of the deviations
suggested by Theorem 2 is controlled by ||X||\/rk(X) (indeed, the term involving
the deviations parameter ¢ has the form Ayt), whereas the optimal sub-Gaussian-
type deviations are controlled by |||, as shown by Mendelson and Zhivotovskiy
(2020). Unfortunately, the estimator proposed by Mendelson and Zhivotovskiy
(2020) that achieves such bounds is not computationally tractable.

4.2. Bounds in the Frobenius norm

In this subsection, we show that S \ is close to the covariance matrix of Y in
the Frobenius norm, with high probability, under a slightly stronger assumption
on the fourth moment of Y.

Definition 4. A random vector Y € R? is said to satisfy an L4 — Lo
norm equivalence with constant K (also referred to as the bounded kurtosis
assumption) if there exists a constant K > 1 such that

(E[(Y _EY, W‘DM <K (E[(Y _EY, vﬂ)m , (4.4)

for any v € R%

As discussed in Remark 3, condition allows us to connect the matrix
variance parameter o? with rk(Xy ), the effective rank of the covariance matrix
Yy. We assume that Y satisfies with a constant K throughout this
subsection. Recall the decomposition

Y

) i

> R}, (4.5)

2

where R > 0 is the truncation level, to be specified later. Denote ¥y := E[}N’lgfflTQ]
and Xy = E[21,QZEQ], and recall that our goal is to estimate Xy . Because
1Z: ;|2 < R, almost surely, (&.5) represents Y; ; as a sum of a bounded vector Z; ;
and a “contamination” component ffi,j, which is similar to model . On the
other hand, the truncation level R should be chosen to be neither too large (to
obtain a better behaved truncated distribution) nor too small (to reduce the bias
introduced by the truncation). Mendelson and Zhivotovskiy| (2020) suggest that
a reasonable choice is given by

1/4
o (s (1.6
log (rk(Zy)) + log(n)
Denote J = {(i,j) € Iy ||5~/”||2 > R} as the set of indices corresponding to
the nonzero outliers (i.e., V; ; # 0), and € := |J|/(n(n — 1)) as the proportion of
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such outliers. Under this setup, we have the following result, which provides an
upper bound on ¢, with high probability.

Lemma 2. Assume that Y satisfies the Ly — Ly norm equivalence with constant
K, and R is chosen as in (4.6)). Then,

e < o(K) rk(Zy) [log (rkflEy)) + log(n)] 7 (4.7)

with probability at least 1 — 1/n.

The proof of Lemma 2 is presented in Section S4.2 of the Supplementary
Material. Note that the proportion of “outliers” (in the sense of the definition
above) in the heavy-tailed model can be relatively small when the sample size n
is large. The following inequality is the main result of this section.

Theorem 3. Given A > 1, assume that Y € R? is a random vector with mean
E[Y] = p and covariance matriz Xy = E[(Y — pu)(Y — u)T], and satisfying an
Ly — Ly norm equivalence with constant K. Let Yy,...,Y, be i.i.d. samples of Y,
and let Z; ; be defined as in [(@.5). Assume that n > cy(K)rk(Ey)(log(rk(Zy)) +
log(n)), and rank(Xy) < co(K)n. Then, for

A = o) |9y ] [tk(Ey) (105(k(Ey ) + log(m))] Y2

and
Ay = c(K) || Sy || (tk(Sy) log(n)) " (An) =172,
we have that

rk(Zy) (log (rk(Zy)) + log(n))

5. - zyui < o(K) |5y | rank(Sy)

n

| Ark(Sy)? log(n)?’] |

with probability at least 1 — (8rgy /3 + 1)n=" — 4n~".

The proof of Theorem 3 is given in Section S5 of the Supplementary Material.
Remark 4. Let us compare the result in Theorem 3 with the bound of Corollary
1:

(1) The first term of the bound, ¢(K) ||y |° (rk(Zy ) (log(rk(Ey)) + log(n))/n)
rank(Xy ), has the same order as in Corollary 1 (up to a logarithmic factor),
under the assumption that >y has low rank. This part of the bound is
theoretically optimal, according to Remark 2.

(2) The second part of the bound, ¢(K)||Sy|? (tk(Zy)?log(n)®/n), controls
the error introduced by the outliers. It is smaller than the corresponding
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quantity in Corollary 1, which in the present setup, is of order ¢(K) ||EYH2
(rk(3y)3log(n)3/n) (note the additional rk(Xy) factor). As noted earlier,
the improvement is mainly because of the special structure of the heavy-
tailed data, namely, independence among the outliers f/m-, with non-
overlapping subscripts; see the discussion following equation .

5. Numerical Experiments

In this section, we discuss algorithms for evaluating the proposed estimators,
as well as our numerical experiments. Recall that the loss function is defined as
~ 1
E(8.Ug) = ——— 3"

Y, YT =S — /n(n— 1)U,
n(n —1) vy Yy =5 n(n Wi,

FALISTL + A2 D Ul - (5.1)
i#]

2

F

We approximate (§A, (71121), the minimizer of (5.1)), numerically. Because we are

only interested in S,, while ﬁfﬁ are the nuisance parameters, equation (3.7
suggests that it suffices to minimize the following function:

o 1 ~ S A1
L(S) := mtr ;P(\/WM/Q(EJY}J = 8)+ 5 181

where p,(-) is the Huber loss function defined in (3.8)).

5.1. Algorithm for computing the estimator

Our computational approach, formally described in Algorithm 1, is based
on minimizing the loss function L(S) using the batch proximal gradient descent
(PGD) method: suppose we want to minimize the function f(x) = g(x) + h(x),
where (a) g is convex and differentiable, and (b) h is convex, but not necessarily
differentiable. The PGD method for solving the problem starts from an initial
point z(®), and performs updates

z®) = prox, , (:c(k_l) — oszg(az(k_l))) ,

where «y, > 0 are the step sizes, and prox,,(x), the proximal mapping of a convex
function h at the point z, is defined as

1
prox,(z) = argmin <h(u) + 3 lu — a:Hi) .
When g(x) = (1/n) .7, g;(z), where gi,. .., g, are convex functions, the update

step of the PGD method requires evaluating n gradients, which is expensive
for large values of m. A natural alternative is to consider the stochastic
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PGD (SPGD) method, where at each iteration & = 1,2,..., we pick an
index i, randomly from {1,2,...,n}, and make the following update: x* =
prox, , (z* — a; Vg, (¢*79)). A batch SPGD method assumes that we pick
a small random subset of indices at each iteration, balancing the computational
cost and the variance introduced by the random sampling. Additional facts about
the PGD and its variants are presented in Section S7.1 of the Supplementary
Material.

Algorithm 1 .Stochastic proximal gradient descent (SPGD).

Input: number of iterations T', step size 7, batch size b, tuning parameters A; and
A2, initial estimation S°, sample size n, dimension d.

1: fort=1,2,...,T do

2: (1) Randomly pick 4, j; € {1,2,...,n} without replacement.

. _ C(Qty — v vT _ at
3:  (2) Compute Gy Vg, ;(S?) p(mh)/z(}ﬁdifl’] S*).
4: 3) If b > 1, then repeat (1)(2) b times, and save the average gradient in G;.

(2)

3)

(4) (gradient update) 7! = St — G,.
(5) (proximal update)

1 2 /\1
1 . 1 1
St = argémn {2 HS - T ||F + D} HS”l } = 7A1/2(Tt+ ),
where vy (u) = sign(u)(Ju] — A) 4.

7: end for
Output: S7+!

5.1.1. Rank-one update of the spectral decomposition

Note that at each iteration of Algorithm 1, we need to compute the spectral
decomposition of the matrices 17”175 — S*, which is computationally expensive.
However, because }7”}27;
of S* is performed in step T — 1, the problem of computing the spectral
decomposition of the matrices 17”)7;7; — 5* can be viewed as a rank-one update
of the spectral decomposition, which has been studied extensively (e.g., [Bunch,
Nielsen and Sorensen (1978)) and Stange| (2008)). It turns out that, with the
help of rank-one update methods, the complexity of a spectral decomposition
can be reduced from O(d?) to O(d?log” d). A detailed description of the required

techniques is given in Section S7.2 of the Supplementary Material.

is a matrix of rank one, and the spectral decomposition

5.2. Simulation results

As a proof of concept, consider the following setup: d = 200, n = 100,
|lJ| = 3, u = (0,...,0)", ¥ = diag(10,1,0.1,...,0.1). The inputs to the
algorithm are generated as follows: we sample n independent realizations Z;
from the Gaussian distribution N(u,Y), and then replace |J| of them (chosen
randomly) with Z; + V;, where V;, for j € J, are outliers drawn independently
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Figure 1. Histograms of the distributions of the relative errors in the Frobenius norm.

from another Gaussian distribution N (uy,Xyv ), with py = (0,...,0)7 and
Yy = diag(100,...,100); the results for other types of outliers are given in Section
S8 of the Supplementary Material. The sample Y7, ..., Y; obtained in this manner
is the input to the SPGD algorithm. Next, we calculate Y; ; = (Y; — Y;)/v/2, for
i # j, and perform our algorithm with K = 500 steps and the diminishing
step size o = 1/k. The initial value S° is determined using a one-step full
gradient update, as explained in the last paragraph of Section S7.1 of the
Supplementary Material (S7.1). To analyze the performance of the estimators, we
define RelErr(S, Frob) := [|S — X||./[|2]||» as the relative error of the estimator
S in the Frobenius norm, and RelErr(S,op) := [|S — X||/||2]| as the relative
error of the estimator S in the operator norm. We compare the performance of
the estimator S* produced by our algorithm with that of the sample covariance
matrix is introduced in . We performed 200 repetitions of the experiment,
with Ay = 3 and A\, = 1, and recorded S* and 3, for each run. Histograms of the
distributions of the relative errors in the Frobenius norm are shown in Figures
1(a) and 1(b). The average and maximum (over 200 repetitions) relative errors
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of §* are 0.2842 and 0.6346, respectively, with a standard deviation of 0.1108.
The corresponding values for 3, are 34.5880, 39.6758, and 2.1501. The estimator
S* clearly outperforms the sample covariance is, as expected. Figures 1(c) and
1(d) show that S* yields smaller relative errors in the operator norm as well.
The average and maximum relative errors of S* in the operator norm are 0.2676
and 0.6290, respectively, with a standard deviation of 0.1148. The corresponding
values for is are 22.9255, 28.2328, and 1.8791.

Supplementary Material

The online Supplementary Material includes detailed proofs and additional
simulation results.
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