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Abstract: Our focus is on constructing a multiscale nonparametric prior for densi-

ties. The Bayes density estimation literature is dominated by single scale methods,

with the exception of Polya trees, which favor overly-spiky densities even when the

truth is smooth. We propose a multiscale Bernstein polynomial family of priors,

which produce smooth realizations that do not rely on hard partitioning of the

support. At each level in an infinitely-deep binary tree, we place a beta dictionary

density; within a scale the densities are equivalent to Bernstein polynomials. Using

a stick-breaking characterization, stochastically decreasing weights are allocated

to the finer scale dictionary elements. A slice sampler is used for posterior com-

putation, and properties are described. The method characterizes densities with

locally-varying smoothness, and can produce a sequence of coarse to fine density

estimates. An extension for Bayesian testing of group differences is introduced and

applied to DNA methylation array data.

Key words and phrases: Density estimation, multiresolution, multiscale clustering,

multiscale testing, nonparametric Bayes, Polya tree, stick-breaking, wavelets.

1. Introduction

Multiscale estimators have well-known advantages, including the ability to

characterize abrupt local changes and to provide a compressed estimate to a

desired level of resolution. Such advantages have lead to the enormous popu-

larity of wavelets, which are routinely used in signal and image processing, and

have had attention in the literature on density estimation. Donoho et al. (1996)

developed a wavelet thresholding approach for density estimation, and there is

a literature developing modifications for deconvolution problems (Pensky and

Vidakovic (1999)), censored data (Niu (2012)), time series (Garcia-Trevino and

Barria (2012)) and other settings. Locke and Peter (2013) proposed an approach,

that can better characterize local symmetry and other features commonly ob-

served in practice, using multiwavelets. Chen et al. (2012) instead use geometric

multiresolution analysis methods related to wavelets to obtain estimates of high-

dimensional distributions having low-dimensional support.

http://dx.doi.org/10.5705/ss.202015.0163
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Although there is a rich Bayesian literature on multiscale function estima-
tion (Abramovich, Sapatinas, and Silverman (1998); Clyde, Parmigiani, and Vi-
dakovic (1998); Clyde and George (2000); Wang, Ray, and Mallick (2007)), there
has been limited consideration of Bayesian multiscale density estimation. Popu-
lar methods for Bayes density estimation rely on kernel mixtures. For example,
Dirichlet process mixtures are applied routinely. By using location-scale mix-
tures, one can accommodate varying smoothness, with the density being flat in
certain regions and concentrated in others. However, Dirichlet processes lack
the appealing multiscale structure. Polya trees provide a multiscale alternative
(Mauldin, Sudderth, and Williams (1992); Lavine (1992a,b)), but have practical
disadvantages; they tend to produce highly spiky density estimates even when
the true density is smooth, and have sensitivity to a pre-specified partition se-
quence. This sensitivity can be ameliorated by mixing Polya trees (Hanson and
Johnson (2002)), but at the expense of more difficult computation.

Our focus is on developing a new approach for Bayesian multiscale density
estimation, that inherits many of the advantages of Dirichlet process mixtures
while avoiding the key disadvantages of Polya trees. We want a framework that is
easily computable, has desirable multiscale approximation properties, allows cen-
tering on an initial guess at the density, and can be extended in a straightforward
manner to include covariates and allow embedding within larger models. We ac-
complish this using a multiscale extension of mixtures of Bernstein polynomials
(Petrone (1999a,b)).

2. Multiscale Priors for Densities

2.1. Proposed model

Let x ∈ X ⊂ ℜ be a random variable having density g with respect to
Lebesgue measure. Assume that g0 is a prior guess for g, with G0 and G−1

0 the
corresponding cumulative distribution function and inverse cumulative distribu-
tion function, respectively. We induce a prior g ∼ Π centered on g0 through
a prior for the density f of y = G0(x) ∈ (0, 1). The cumulative distribution
functions F and G corresponding to the densities f and g, respectively, have the
relationship

G(x) = F{G0(x)}, x ∈ X , F (y) = G{G−1
0 (y)}, y ∈ (0, 1). (2.1)

We assume that f is a multiscale mixture of Bernstein polynomials,

f(y) =

∞∑
s=0

2s∑
h=1

πs,hBe(y;h, 2
s − h+ 1), (2.2)

where Be(a, b) denotes the beta density with mean a/(a + b), and {πs,h} are
random weights drawn from a suitable stochastic process. We introduce an in-
finite sequence of scales s = 0, 1, . . . ,∞. At scale s, we include 2s Bernstein
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Figure 1. Binary tree with beta kernels at each node (s, h), where s is the
scale level and h is the index within the scale.

polynomial basis densities. The framework can be represented as a binary tree

in which each layer is indexed by a scale and each node is a suitable beta density.

For example, at the root node, we have the Be(1,1) density which generates two

daughters Be(1,2) and Be(2,1) and so on. In general, let s denote the scale and

h the polynomial within the scale. The node (s, h) in the tree is related to the

Be(h, 2s − h+ 1) density. A cartoon of the binary tree is reported in Figure 1.

A prior measure for the multiscale mixture (2.2) is obtained by specifying a

stochastic process for the infinite dimensional set of weights {πs,h}. To this end

we introduce, for each scale s and node h within the scale, independent random

variables

Ss,h ∼ Be(1, a), Rs,h ∼ Be(b, b), (2.3)

corresponding to the probability of stopping and taking the right path condition-

ally on not stopping, respectively. Define the weights as

πs,h = Ss,h

∏
r<s

(1− Sr,gshr)Tshr, (2.4)

where gshr = ⌈h/2s−r⌉ is the node traveled through at scale r on the way to node

h at scale s, Tshr = Rr,gshr if (r+1, gshr+1) is the right daughter of node (r, gshr),

and Tshr = 1−Rr,gshr if (r+1, gshr+1) is the left daughter of (r, gshr). A cartoon

of the weights construction is reported in Figure 2. For binary trees, there is

a unique path leading from the root node to node (s, h), and T denotes the

infinite deep binary tree of the weights (2.4). We refer to the prior resulting from

(2.2)−(2.4) as a multiscale Bernstein polynomial (msBP) prior and we write

f ∼ msBP(a, b). Choices for the hyperparameters are discussed in the next

section.
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Figure 2. Examples of weights construction.

The infinite tree of probability weights is generated from a generalization of

the stick-breaking process representation of the Dirichlet process (Sethuraman

(1994)). Each time the stick is broken, it is consequently randomly divided in

two parts (one for the probability of going right, the remainder for the probability

of going left) before the next break. An alternative tree stick-breaking process is

proposed by Adams, Ghahramani, and Jordan (2010) where a first stick-breaking

process defines the vertical growth of an infinitely wide tree and a second puts

weights on the infinite number of descendant nodes.

Sampling a random variable y from a random density, which is generated

from a msBP prior, can be described as follows. At node (s, h), generate a random

probability Ss,h ∼ Be(1, a) corresponding to the probability of stopping at that

node given you passed through that node, and Rs,h ∼ Be(b, b) corresponding to

the probability of taking the right path in the tree in moving to the next finer

scale given you did not stop at node (s, h). Conditionally on being at the node

(s, h) we assume that y ∼ Be(y;h, 2s − h+ 1).

2.2. Basic properties

In this section we study basic properties of the proposed prior. A first re-

quirement is that the construction leads to a meaningful sequence of weights.

Lemma 1. If πs,h is an infinite sequence of weights defined as in (2.3)−(2.4),
∞∑
s=0

2s∑
h=1

πs,h = 1 (2.5)

almost surely for any a, b > 0.

The total weight placed on a scale s is controlled by the prior for Ss,h. The

expected probability allocated to node h at scale s can be expressed as

E(πs,h) = E

{
Ss

s−1∏
l=0

(1− Sl)

s∏
l=1

Tl

}
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=

(
1

1 + a

)(
a

1 + a

)s(1

2

)s

=
1

1 + a

(
a

2 + 2a

)s

, (2.6)

where we discard the h subscript on Sl ∼ Be(1, a) and Tl ∼ Be(b, b) for ease in

notation. This does not impact the calculation because any path taken up to

scale s has the same probability a priori and the random variables in (2.3) have

the same distribution regardless of the path that is taken. Similarly

E(π2
s,h) = E

{
S2
s

s−1∏
l=0

(1− Sl)
2

s∏
l=1

T 2
l

}
=

2

(1 + a)(2 + a)

(
a

2 + a

)s{ b+ 1

2(2b+ 1)

}s

.

Hence at scale s = 0 the variance is var(π0,1) = a/{(2 + a)(1 + a)2}, while for

s > 0

var(πs,h) =
2

(1 + a)(2 + a)

(
a

2 + a

)s{ b+ 1

2(2b+ 1)

}s

−
{

1

1 + a

(
a

2 + 2a

)s}2

.

(2.7)

In the Supplementary material, we report the prior expectation and 95% prior

credible intervals of the total weight assigned to each scale for some hyperparam-

eter values.

We can additionally verify that our prior for the cumulative distribution

function G is centered on the chosen G0. Letting F (A) =
∫
A f , we obtain

E{F (A)} = λ(A), where λ(A) is the Lebesgue measure over the set A. Details

are reported in the Appendix. Hence, the prior for the density of y is automat-

ically centered on a uniform density on [0, 1]. This is the desired behavior as

y ∼ Unif(0, 1) with x = G−1
0 (y) implies that x ∼ g0, which is our prior guess for

the observed data density. In addition, from (2.1), E{F (y)} = y implies

E{G(x)} = E[G{G−1
0 (y)}] = y = G0(x),

so that the prior expectation for the cumulative distribution function G is G0 as

desired.

From (2.6) and (2.7), the hyperparameter a controls the decline in prob-

abilities over scales. In general, letting S(i) denote the scale at which the ith

observation falls, we have

E(S(i)) =

∞∑
s=0

s
1

1 + a

(
a

2 + 2a

)s

= a.

Hence, the value of a is the expected scale from which observations are drawn.

For small a, high probability is placed on coarse scales, leading to smoother

densities, with a→ 0 inducing π0,1 = 1 and hence f(y) uniform. As a increases,

finer scale densities will be weighted higher, leading to spikier realizations. To
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illustrate this, in the Supplementary materials we show realizations from the

prior for different a values.

An appealing aspect of the proposed formulation is that individuals sampled

from a distribution that is assigned a msBP prior are allocated to clusters in

a multiscale fashion. In particular, two individuals having similar observations

may have the same cluster allocation up to some scale s, but perhaps are not

clustered on finer scales. Clustering is intrinsically a scale dependent notion, and

our model is the first to our knowledge to formalize multiscale clustering in a

model based probabilistic manner. Under the above structure, the probability

that two individuals i and i′ are assigned to the same scale s cluster is one for

s = 0 and for s > 0, is a priori equal to

2sE

{ s−1∏
l=0

(1−Sl)
2T 2

l

}
= 2s

(
a

a+ 2

)s(1

2

)s( b+ 1

2b+ 1

)s

=

{(
a

a+ 2

)(
b+ 1

2b+ 1

)}s

.

This is derived by calculating the expected probability that two individuals travel

though node h at scale s and multiplying by the number of nodes in scale s. This

form is intuitive. As b → 0, the Be(b, b) density degenerates to 0.5δ0 + 0.5δ1, so

that variability among subjects in the chosen paths through the tree decreases

and all subjects take a common path chosen completely at random via unbiased

coin flips at each node. In such a limiting case, (b + 1)/(2b + 1) → 1 and the

probability of clustering subjects at scale s is simply the probability of surviving

to that scale and not being allocated to a coarser scale component. At the other

extreme, as b→∞ each subject independently flips an unbiased coin in deciding

to go right or left at each node of the tree, and

b+ 1

2b+ 1
→ 1

2
.

Hyperpriors can be chosen for a and b to allow the data to inform about these

tuning parameters; we find that choosing a hyperprior for a is particularly im-

portant, with b = 1 as a default.

Approximations of the msBP process can be obtained fixing an upper bound

s for the depth of the tree. The truncation is applied by pruning T at scale s,

setting Ss,h = 1 for each h = 1, . . . , 2s as done in Ishwaran and James (2001)

and related works in the single scale case. The truncations can be applied if

one considers not scientifically relevant higher levels of resolution or for compu-

tational reasons. See the discussion in the next section. We denote the scale s

approximation as

f s(y) =

s∑
l=0

2l∑
h=1

π̃l,hBe(y;h, 2
l − h+ 1), (2.8)



MULTISCALE BERNSTEIN POLYNOMIALS FOR DENSITIES 1181

with π̃l,h identical to πl,h except that we set all the stopping probabilities at scale
s equal to one, π̃l,h = πl,h for l < s and

π̃s,h =
∏
r<s

(1− Sr,gshr)Tshr.

This is made to ensure that the weights sum to one and that f s(y) is a valid
probability density on Y = [0, 1]. Let T s denote the pruned binary tree of
weights. It is interesting to study the accuracy of the approximation of fs(y) to
f(y) as the scale s changes.

Lemma 2. Let ps(y), p∞(y) be the marginal likelihood for y under the s-truncated
and full msBP mixture model, respectively. Then

||ps(y)− p∞(y)|| = 0,

where ||ps(y)− p∞(y)|| denotes the L1 distance.

In Lemma 2, ps(y) and p∞(y) can be thought of as the expected sampling
density of y under the prior truncated to s levels and under the full msBP prior,
respectively. The L1 distance between these expected densities provides a mea-
sure of prior bias induced by the truncation. Lemma 2 shows that the prior
is calibrated so that this bias is exactly zero; it is somewhat surprising that
this is possible, and we expected to instead obtain a bound on the L1 distance
that decreases exponentially with s similar to Theorem 2 in Ishwaran and James
(2001). Such bounds are obtained in Lemma 3, which instead focuses on the
total variation distance between the truncated and exact random measures P s

and P .

Lemma 3. The expectation and variance of the total variation distance between
P s(B) and P (B) are

E {dTV (Ps, P )} ≤
(

a

a+ 1

)s+1

, var {dTV (Ps, P )} ≤ 2

(
a

a+ 1

)s

.

3. Posterior Computation

In this section we demonstrate that a straightforward Markov chain Monte
Carlo algorithm can be constructed to perform posterior inference under the
msBP prior. The algorithm consists of two primary steps: first, allocate each
observation to a multiscale cluster, conditionally on the current values of the
probabilities {πs,h}, and second, conditionally on the cluster allocations, update
the probabilities.

Suppose subject i is assigned to node (si, hi), with si the scale and hi the
node within scale. Conditionally on {πs,h}, the posterior probability of subject i
belonging to node (s, h) is simply

pr(si = s, hi = h | yi, πs,h) ∝ πs,hBe(y;h, 2
s − h+ 1).
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Consider the total mass assigned at scale s, defined as πs =
∑2s

h=1 πs,h, and let

π̄s,h = πs,h/πs. Under this notation, we can rewrite (2.2) as

f(y) =

∞∑
s=0

πs

2s∑
h=1

π̄s,hBe(y;h, 2
s − h+ 1).

To allocate each subject to a multiscale cluster, we rely on a multiscale modifica-

tion of the slice sampler of Kalli, Griffin, and Walker (2011). Consider the joint

density

f(yi, ui, si) ∝ 1I(ui < πsi)

2si∑
h=1

π̄si,hBe(yi;h, 2
si − h+ 1).

The full conditional posterior distributions are

ui | yi, si ∼ Unif(0, πsi), (3.1)

pr(si = s | ui, yi) ∝ 1I(s : πs > ui)

2s∑
h=1

π̄s,hBe(yi;h, 2
s − h+ 1), (3.2)

pr(hi = h | ui, yi, si) ∝ π̄si,hBe(yi;h, 2
si − h+ 1). (3.3)

Even with an infinite resolution level, (3.2) implies that observations are as-

signed to a finite number of scales and there are a finite number of probabilities

to evaluate. Conditionally on the scale, (3.3) induces a simple multinomial sam-

pling, which allocates a subject to a particular node within that scale. Algorithm

1 summarizes the posterior cluster allocation step. The tree is grown and shrunk

adaptively, up to the needed level of resolution, so that it is not necessary to use

the truncation described at the end of the previous section for computation.

for each scale s

calculate πs =
∑2s

h=1 πs,h;
simulate ui | yi, si ∼ U(0, πsi);
for each scale s
If πs > ui, for h = 1, . . . 2s

π̄s,h ← πs,h/πs

pr(si = s | ui, yi) ∝
∑2s

h=1 π̄s,hBe(yi;h, 2
s − h+ 1)

else
pr(si = s | ui, yi) = 0;

sample si with probability pr(si = s | ui, yi);
sample hi with probability pr(hi = h | yi, si) ∝ π̄si,hBe(yi;h, 2

si − h+ 1).

Algorithm 1: Multiscale cluster posterior allocation for ith subject.
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Conditionally on cluster allocations, we sample all the stopping and descending-

right probabilities from their full conditional posterior distributions:

Ss,h ∼ Be(1+ns,h, a+vs,h−ns,h), Rs,h ∼ Be(b+rs,h, b+vs,h−ns,h−rs,h), (3.4)

where vs,h is the number of subjects passing through node (s, h), ns,h is the

number of subjects stopping at node (s, h), and rs,h is the number of subjects

that continue to the right after passing through node (s, h). Calculation of vs,h
and rs,h can be performed via parallel computing due to the binary tree structure,

improving efficiency.

If hyperpriors for a and b are assumed, additional sampling steps are required.

Assuming a ∼ Ga(β, γ), where Ga(k, θ) is the gamma density with mean k/θ and

variance k/θ2, its full conditional posterior is

a | − ∼ Ga
(
β + 2s

′+1 − 1, γ −
s′∑

s=0

2s∑
h=1

log(1− Ss,h)
)
, (3.5)

where the symbol |− stands for “conditionally on the the rest of the parameters”.

If b ∼ Ga(δ, λ) its full conditional posterior is proportional to

bδ−1

B(b, b)2s
′+1−1

exp
(
b
[ s′∑
s=0

2s∑
h=1

log{Rs,h(1−Rs,h)} − λ
])

, (3.6)

where s′ is the maximum occupied scale and B(p, q) is the Beta function. To

sample from the latter distribution, a Metropolis-Hastings step is required. The

Gibbs sampler iterates the steps outlined in Algorithm 2.

for i = 1, . . . , n
assign observation i to a cluster (si, hi) as in Algorithm 1

for s = 0, . . . , sMAX

for h = 1, . . . , 2s

update Ss,h ∼ Be(1 + ns,h, a+ vs,h − ns,h);
update Rs,h ∼ Be(b+ rs,h, b+ vs,h − ns,h − rs,h);

update a from (3.5);
update b from (3.6).

Algorithm 2: Gibbs sampler steps for posterior computation under msBP prior.

4. Simulation Study

We compared our msBP method to standard Bayesian nonparametric tech-

niques including Dirichlet process location-scale mixtures of Gaussians, Dirichlet

process mixtures of Bernstein polynomials, and mixtures of Polya trees (Hanson
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(2006)), all using a default implementation of the R package DPpackage. In ad-

dition, we implemented a frequentist wavelet density estimator using the package

WaveThresh, and a simple frequentist kernel estimator. Several simulations have

been run under different simulation settings leading to qualitatively similar re-

sults. We report the results for four scenarios. Scenario 1 simulated data from a

mixture of betas, 0.6Be(3, 3) + 0.4Be(21, 5); Scenario 2 used a mixture of Gaus-

sians, 0.5N(0, 4)+0.3N(2, 1)+0.2N(1.5, 0.25); Scenario 3 generated data from a

density supported on the positive real line, a mixture of a gamma and a left trun-

cated normal, 0.9Ga(2, 2)+0.1NLT(4, 0.4); Scenario 4 generated data from a sym-

metric density with two spiky modes, 0.7N(0, 4)+0.1N(0.5, 0.01)+0.2N(1.5, 0.4).

For each case, we generated sample sizes of n = 25, 50, 100, 250. Each of the

approaches were applied to 200 replicated data sets under each scenario. The

methods were compared based on a Monte Carlo approximation to the mean

Kolmogorov-Smirnov distance (KS), L1, and L2 distances.

To implement Algorithm 2, we exploit the binary tree structure of our mod-

elling framework using efficient C++ code embedded into R functions. Code is

freely available on CRAN in the msBP package. In implementing the Gibbs sam-

pler, the first 1,000 iterations were discarded as a burn-in and the next 2,000

samples were used to calculate the posterior mean of the density on a fine grid

of points. To center our prior, using a default empirical Bayes approach, we set

g0 equal to a kernel estimate. For the hyperparameters we fixed b = 1 and let

a ∼ Ga(5, 0.5). We truncated the depth of the binary tree to the sixth scale. The

values of the density for a wide variety of points in the domain were monitored to

gauge rates of convergence and mixing. The trace plots showed excellent mixing

and the Geweke’s diagnostic suggested that convergence is reached within a few

hundred iterations.

The results of the simulation are reported in the Supplementary material.

The proposed method performs better or equally to the best competitor in al-

most all scenarios and sample sizes. The worst performance in each case is

obtained for mixtures of Polya trees, with overly-spiky density estimates leading

to higher distances from the truth. In Scenario 1 the msBP approach beats all

the competitors, except in large sample sizes when single-scale Dirichlet process

mixtures of Bernstein polynomials are comparable. In Scenario 2 the msBP ap-

proach is comparable to the frequentist kernel smoother estimator. In scenario

3 the msBP approach is comparable to Dirichlet process location-scale mixtures

and in Scenario 4 our multiscale approach is clearly performing better than any

other method.

Although it is difficult to compare execution times fairly given differences

in implementation, we report computation times for all methods in Table 3 of

the Supplementary material. In general, our implementation of msBP was com-

parable to but faster than the other Bayesian nonparametric competitors (with
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the exception of Polya trees), averaging only a couple of seconds per simulated

data set to run on a MacBook Pro with 2.8 GHz Intel Quadcore i7 CPU and 16

GB of RAM. Our approach is motivated by settings in which the true density

has both fine and coarse scale features, so that a multiscale density estimator

may be needed. However, we designed the prior and computational algorithm to

also perform well when the density is well approximated by a single scale basis.

This adaptivity was illustrated in the overall good performance in the simula-

tions across cases. We would nonetheless say that in large sample sizes when

the entire goal is to produce a single density estimate, the proposed approach

may have limited motivation relative to simpler methods. However, a substantial

motivation is the ease in which msBP can be generalized, as we discuss in the

next Section.

5. Extensions

An appealing aspect of the proposed method is ease of generalization to in-

clude predictors, hierarchical dependence, time series, spatial structure and so

on. To incorporate additional structure, one can replace model (2.2) for the

stopping and right path probabilities with an appropriate variant. Similar exten-

sions have been proposed for single resolution mixture models by replacing the

beta random variables in a stick-breaking construction with probit regressions

(Chung and Dunson (2009); Rodriguez and Dunson (2011)), logistic regressions

(Ren et al. (2011)) or broader stochastic processes (Pati, Dunson, and Tokdar

(2013)). We focus here on one interesting extension to the under-studied problem

of Bayesian multiscale inferences on differences between groups.

5.1. Multiscale testing of group differences

Motivated by epigenetic data, we propose Bayesian multiscale hypothesis

tests of group differences using multiscale Bernstein polynomials. DNA methy-

lation arrays collect data on epigenetic modifications at a large number of CpG

sites. Let yi = (yi1, . . . , yip)
T denote the DNA methylation data for patient i at p

different sites, with di ∈ {0, 1} denoting the patient’s disease status, either di = 0

for controls or di = 1 for cases. Current standard analyses rely on independent

screening using t-tests to assess differences between cases and control at each

site. However, DNA methylation data are constrained to yij ∈ (0, 1) and tend to

have a complex distribution having local spikes and varying smoothness.

As illustration we focus on nonparametric independent screening; the ap-

proach is easily adapted to accommodate dependence across sites. We center our

prior on the uniform as a default. The density of yij given di = 0 is modeled

as in previous sections. Let H0 : f0 = f1 denote the global null hypothesis of

no difference between groups, with H1 : f0 ̸= f1 denoting the alternative. Using
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a msBP representation, f0 = f1 if the groups share weights over the dictionary
of beta densities. If f0 ̸= f1, we may have the same weights on the dictionary
elements up to a given scale, so that the densities are equivalent up to that scale
but not at finer scales. With this in mind, let Hs

0 : f s
0 = fs

1 denote the null
hypothesis of no differences between groups at scale s, and Hs

1 : f s
0 ̸= fs

1 the
alternative. As H0

0 is true with probability one, we set S0,1 = 0 and concentrate
on Hs

0 for s ≥ 1.
Each of the n subjects in the sample takes a path through the binary tree,

stopping at a finite depth. Let Is = {i : si ≥ s} index the subjects surviving up
to scale s and let N s denote the actions of these subjects at scale s, including
stopping or progressing downward to the left or right for each of the nodes.
Subscripts (d) on Is and N s denote the restriction to subjects having di = d.
Conditionally on Hs

0 , the probabilities for each scale s action are the same in the
two groups and the likelihood of actions N s is

pr(N s | Hs
0) =

∫
T
pr(N s | T )pr(T | a, b)dT

=

{
Γ(a+ 1)

Γ(a)

Γ(2b)

Γ(b)2

}2s ∫
T

2s∏
h=1

S
ns,h

s,h (1− Ss,h)
âs,h−1R

b̂s,h−1
s,h (1−Rs,h)

ĉs,h−1dT

=

{
Γ(a+ 1)Γ(2b)

Γ(a)Γ(b)2

}2s 2s∏
h=1

Γ(1 + ns,h)Γ(âs,h)

Γ(a+ vs,h + 1)

Γ(b̂s,h)Γ(ĉs,h)

Γ(2b+ vs,h − ns,h)
, (5.1)

where âs,h = a + vs,h − ns,h, b̂s,h = b + rs,h, and ĉs,h = b + vs,h − ns,h − rs,h.
Similarly under H1 we have

pr(N s | Hs
1) =pr(N s

(0) | H
s
1)× pr(N s

(1) | H
s
1)

=

{
Γ(a+ 1)Γ(2b)

Γ(a)Γ(b)2

}22s 2s∏
h=1

Γ(1 + n
(0)
s,h)Γ(â

(0)
s,h)

Γ(a+ v
(0)
s,h + 1)

Γ(b̂
(0)
s,h)Γ(ĉ

(0)
s,h)

Γ(2b+ v
(0)
s,h − n

(0)
s,h)

×
2s∏
h=1

Γ(1 + n
(1)
s,h)Γ(â

(1)
s,h)

Γ(a+ v
(1)
s,h + 1)

Γ(b̂
(1)
s,h)Γ(ĉ

(1)
s,h)

Γ(2b+ v
(1)
s,h − n

(1)
s,h)

, (5.2)

where v
(d)
s,h is the number of subjects passing through node (s, h) in group d, n

(d)
s,h

is the number of subjects stopping at node (s, h) in group d, and r
(d)
s,h is the

number of subjects that continue to the right after passing through node (s, h)
in group d, with d = 0, 1.

Combining (5.1)−(5.2) we can obtain a closed form for the posterior proba-
bility of H0 being true at scale s, given N s

(0) and N
s
(1):

pr(Hs
0 | N s

(0),N
s
(1)) =

P s
0pr(N s

(0),N
s
(1) | H

s
0)

P s
0pr(N s

(0),N
s
(1) | H

s
0)+(1−P s

0 )pr(N s
(0),N

s
(1) | H

s
1)
, (5.3)
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where P s
0 is our prior guess for the null being true at scale s. The global null will

be the cumulative product of the pr(Hs
0 | N s

(0),N
s
(1)) for each scale. An interesting

feature of this formulation is to have a multiscale hypothesis testing setup. Indeed

the posterior probability of H0 up to scale s̃ will be
∏

s≤s̃ pr(H
s
0 | N s

(0),N
s
(1)) and

hence the hypothesis that two groups have the same distribution may have high

posterior probability for coarse scales, but can be rejected for a finer scale.

5.2. Posterior computation

The conditional posterior probability for Hs
0 in (5.3) is simple, but not di-

rectly useful due to the dependence on the unknownN s allocations. To marginal-

ize out these allocations, we modify Algorithm 2. For node h at scale s, let π
(0)
s,h

denote the weight under Hs
0 and π

(1,d)
s,h for d = 0, 1 denote the group-specific

weights under Hs
1 . At each iteration, the allocation of subject i of group d will

be made according to the tree of weights given by

π
(d)
s,h = pr(Hs

0 | N s
(0),N

s
(1))π

(0)
s,h + {1− pr(Hs

0 | N s
(0),N

s
(1))}π

(1,d)
s,h . (5.4)

Given the allocation one can calculate all the quantities in (5.1)−(5.2) and then

update the stopping and descending probabilities under H0 and H1 following

(3.4) and the posterior of the null following (5.3) up to a desired upper scale.

6. Application

We illustrate our approach on a methylation array dataset for n = 597 breast

cancer samples registered at p = 21,986 CpG sites (Cancer Genome Atlas Net-

work (2012)). We test for differences between tumors that are identified as basal-

like (n0 = 112) against those that are not (n1 = 485) at each CpG site. This

problem was considered in a single scale manner by Lock and Dunson (2015)

using finite mixtures of truncated Gaussians.

We ran the Gibbs sampler reported in Algorithm 3 in the Appendix, assum-

ing a uniform prior for P s
0 for each scale s. We fixed the maximum scale to 4 as

an upper bound, as finer scale tests were not thought to be interpretable. The

sampler was run for 2,000 iterations after 1,000 burn-in iterations. The chains

mixed well and converged quickly for all sites and all scales.

The posterior distribution of 1 − P s
0 for each scale provides a summary of

the overall proportion of CpG sites for which there was a difference between the

two groups. The estimated posterior means for these probabilities were 0.04,

0.07, 0.05 and 0.03, respectively, for scales 1, . . . , 4. This suggests that DNA

methylation levels were different for a small minority of the CpG sites, which

is as expected. Examining the posterior probabilities of Hs
1 across the 21,986

CpG sites, consistently with the estimates for 1− P s
0 , we find that scale-specific
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Figure 3. Posterior mean probabilities of H1 depending on scale for the
1,696 sites, with some evidence of differences in the two groups, grouped in
subplots by minimal scale showing p̂r(Hs

1 | −) > 0.5 for s = 1, . . . 4. Within
each panel, the thick dashed lines represents the average between the sites
in two clusters showing different patterns.

estimated posterior probabilities are close to zero for most sites. Focusing on

the 1,696 sites for which the overall posterior probability of H1 is greater than

0.5, we calculated the minimal scale showing evidence of a difference, min{s :

p̂r(Hs
1 | −) > 0.5}, with p̂r(Hs

1 | −) = 1 −
∏

l≤s pr(H
l
0 | N l

(0),N
l
(1)) denoting the

estimated posterior mean probability. The proportions of sites having minimal

scale equal to 1, 2, 3, 4 were 47%, 43%, 7%, 3%, respectively.

Figure 3 shows p̂r(Hs
1 | −) for these 1,696 sites. In the top left quadrant we

report those sites having minimal scale equal to 1. Two patterns are evident:

consistently high p̂r(Hs
1 | −), with differences evident at the coarse scale, Site

cg00117172 is among those and its sample distribution is reported in panel (a)

of Figure 4; moderate p̂r(Hs
1 | −) for s = 1, with clear evidence at s = 2.

Averages of the sites in these two groups are shown with thick dashed lines.

The top right panel, representing sites having minimal scale equal to 2, presents

two patterns: no differences at scale one but clear evidence of H1 at scale two,

Site cg00186954 in panel (b) of Figure 4 has this behavior; moderately growing

evidence for H1 for increasing scale level. The bottom two panels show results

for sites having minimal scale equal to 3 and 4, showing again two patterns: a

group with mild or no evidence for H1 up to scale 3 and 4, respectively (e.g.,
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(a) (b)

(c) (d)
Figure 4. Histogram of the methylation for the basal (decreasing 45 degree
angle shading) and non-basal (increasing 45 degree angle shading) samples
for four CpG sites and posterior mean probabilities ofH1 in function of scale.

site cg20603888 reported in panel (c) of Figure 4); another group with increasing

evidence for increasing scale. These scale-specific significant tests are interesting

in that coarser scale differences are more likely to be biologically significant, while

very fine scale differences may represent local changes with minor impact. This

is definitively a pro of our method, if compared to a single scale method. The

latter indeed is not able to discriminate between coarse or finer differences.

7. Discussion

Existing Bayesian nonparametric multiscale tools for density estimation have

unappealing characteristics, such as favouring overly-spiky densities. Our frame-

work overcomes such limitations. We have demonstrated some practically ap-

pealing properties, including simplicity of formulation and ease of computation,
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and proposed an extension for Bayesian multiscale hypothesis testing of group

differences. Multiscale hypothesis testing is of considerable interest in itself, and

provides a new view on the topic of nonparametric testing of group differences,

with many interesting facets. For example, it can be argued that in large samples

there will always be small local differences in the distributions between groups

that may not be scientifically relevant. By allowing scale-specific tests, we ac-

commodate the possibility of focusing inference on the range of relevant scales in

an application, providing additional insight into the nature of the differences. We

also accommodate scale-specific adaptive borrowing of information across groups

in density estimation; extensions to include covariates and hierarchical structure

are straightforward.

Although the focus has been on the univariate case, multivariate extensions

are possible. A simple solution consists in substituting the beta dictionary den-

sities with a suitable multivariate multiscale basis. In high-dimensional appli-

cations, it is not feasible to specify the basis in advance, and fully Bayesian

approaches for learning the basis may be computationally infeasible. Wang,

Canale, and Dunson (2016) modified the proposed msBP method to learn a ba-

sis of multivariate multiscale densities in advance using geometric multiresolution

analysis. This approach had excellent performance in practice relative to com-

petitors. Other multivariate and hierarchical extensions of the proposed msBP

model are of interest in future research.

Supplementary Materials

Supplementary materials contain additional plots and tables for Sections 2

and 4.
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Appendix

Detail on moments of F (A). The expectation of F (A) is simply

E[F (A)] = E

[ ∞∑
s=0

2s∑
h=1

πs,h

∫
A
Be(y;h, 2s − h+ 1)

]
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=

∞∑
s=0

1

1 + a

(
a

1 + a

)s 1

2s

2s∑
h=1

∫
A
Be(y;h, 2s − h+ 1)

=

∞∑
s=0

1

1 + a

(
a

1 + a

)s

λ(A) = λ(A)

∞∑
s=0

1

1 + a

(
a

1 + a

)s

= λ(A),

where the third equality follows from the fact that the average measure over scale

s beta dictionary densities of any region A equals the Lebesgue measure of A.

Proof of Lemma 1. For finite N , if ∆N = 1−
∑N

s=0

∑2s

h=1 πs,h,

∆N =
2N∑
h=1

∏
r≤N

(1− Sr,gNhr
)TNh(r−1) ≤ 2N max

h=1,...,2N

∏
r≤N

(1− Sr,gNhr
)TNh(r−1).

(A.1)

To establish (2.5), it is sufficient to take the limit of ∆N for N → ∞ and show

that it converges to 0 a.s. To this end, take the logarithm of the right hand side

of (A.1),

log(∆N ) ≤ max
h=1,...,2N

∑
r≤N

log
{
2N (1− Sr,gNhr

)TNh(r−1)

}
, (A.2)

and notice that for each h = 1, . . . , 2N we have

E
{
2N (1− Sr,gNhr

)TNh(r−1)

}
= 2N

(
a

a+ 1

)
1

2N
=

a

a+ 1
. (A.3)

Therefore taking N →∞, by Kolmogorov’s Three Series Theorem and Jensen’s

Inequality, the argument of the maximum of (A.2), converges to −∞ a.s. for

each h. Thus ∆N converges to 0 a.s. which concludes the proof.

Proof of Lemma 2. The L1 distance can be written as

||ps(y)− p∞(y)||

=

∫ ∣∣∣ ∞∑
l=0

2l∑
h=1

E (π̃l,h − πl,h) Be(y;h, 2
l − h+ 1)

∣∣∣dy
=

∫ ∣∣∣ 2s∑
h=1

E[π̃s,h − πs,h]Be(y;h, 2
s−h+1)−

∞∑
l=s+1

2l∑
h=1

E[πl,h]Be(y;h, 2
l−h+1)

∣∣∣dy
=

(
a

1 + a

)s+1

−
∞∑

l=s+1

1

1 + a

(
a

1 + a

)l

=

(
a

1 + a

)s+1

−
(

a

1 + a

)s+1

= 0.
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Proof of Lemma 3. First note that twice the total variation distance between

two measures P s and P equals the L1 distance between the densities fs and f .

The L1 distance can be written as

∫ ∣∣∣∣∣∣
s∑

l=0

2l∑
h=1

π̃l,hBe(y;h, 2
l − h+ 1)−

∞∑
l=0

2l∑
h=1

πl,hBe(y;h, 2
l − h+ 1)

∣∣∣∣∣∣ dy
=

∫ ∣∣∣∣∣∣
∞∑
l=0

2l∑
h=1

(π̃l,h − πl,h) Be(y;h, 2
l − h+ 1)

∣∣∣∣∣∣ dy
≤
∫ ∞∑

l=0

2l∑
h=1

∣∣∣(π̃l,h − πl,h) Be(y;h, 2
l − h+ 1)

∣∣∣ dy
=

∞∑
l=0

2l∑
h=1

|(π̃l,h − πl,h)|
∫

Be(y;h, 2l − h+ 1)dy

=
∞∑
l=0

2l∑
h=1

|(π̃l,h − πl,h)| =
2s∑
h=1

(π̃s,h − πs,h) +
∞∑

l=s+1

2l∑
h=1

πl,h,

where the inequality holds since for each y the absolute values of the sum is less

than the sum of the absolute values, and since for each h = 1 . . . , 2s, π̃s,h ≥ πs,h.

Now taking the expectation of the above,

E

[ ∫ ∣∣∣∣f s(y)−f(y)
∣∣∣∣dy] ≤ E

[ 2s∑
h=1

(π̃s,h − πs,h) +
∞∑

l=s+1

2l∑
h=1

πl,h,

]

=
2s∑
h=1

E[π̃s,h − πs,h] +
∞∑

l=s+1

2l∑
h=1

E[πl,h]

=

(
a

1 + a

)s+1

+
∞∑

l=s+1

1

1 + a

(
a

1 + a

)l

=2

(
a

1 + a

)s+1

,

which leads to E {dTV (Ps, P )} ≤ {a/(a+ 1)}s+1. Consider the second moment

E

[{∫
|fs(y)− f(y)| dy

}2
]
≤ E

[( 2s∑
h=1

(π̃s,h − πs,h) +

∞∑
l=s+1

2l∑
h=1

πs,h

)2]

≤ 2E
[( 2s∑

h=1

(π̃s,h − πs,h)
)2

+
( ∞∑

l=s+1

2l∑
h=1

πs,h

)2]
.
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We study separately the expectations of these two summands. Again for each
h = 1 . . . , 2s, π̃s,h ≥ πs,h, thus the first expectation is

E
{( 2s∑

h=1

π̃s,h −
2s∑
h=1

πs,h

)2}
≤ E

{( 2s∑
h=1

π̃s,h

)2
+

( 2s∑
h=1

πs,h

)2}
≤ E

( 2s∑
h=1

π̃s,h +
2s∑
h=1

πs,h

)
=

(
a

1 + a

)s

+
1

1 + a

(
a

1 + a

)s

,

where the first inequality holds removing minus twice the cross product, and the
second since the quantities are strictly less than one. The second expectation is
simply

E
{( ∞∑

l=s+1

2l∑
h=1

πs,h

)2}
≤ E

( ∞∑
l=s+1

2l∑
h=1

πs,h

)
=

(
a

1 + a

)s+1

.

It follows that the second moment of the L1 distance between fs and f is less
than 4{a/(1 + a)}s and thus that var {dTV (Ps, P )} ≤ 2 {a/(a+ 1)}s.

for j = 1, . . . , p
compute the trees for the node allocation according to (5.4);
for i = 1, . . . , n
assign observation i at site j to cluster (si, hi) as in Algo. 1;

compute ns,h, vs,h, and rs,h and n
(j)
s,h, v

(j)
s,h, and r

(j)
s,h for j = 0, 1;

let sMAX the maximum occupied scale;
for s = 0, . . . , sMAX

for h = 1, . . . , 2s

Ss,h ∼ Be(1 + ns,h, a+ vs,h − ns,h), Rs,h ∼ Be(b+ rs,h, b+ vs,h − ns,h − rs,h);

S
(0)
s,h ∼ Be(1 + n

(0)
s,h, a+ v

(0)
s,h − n

(0)
s,h), R

(0)
s,h ∼ Be(b+ r

(0)
s,h, b+ v

(0)
s,h − n

(0)
s,h − r

(0)
s,h);

S
(1)
s,h ∼ Be(1 + n

(1)
s,h, a+ v

(1)
s,h − n

(1)
s,h), R

(1)
s,h ∼ Be(b+ r

(1)
s,h, b+ v

(1)
s,h − n

(1)
s,h − r

(1)
s,h);

compute the trees of weights under H0 and H1 for the two groups
for s = 0, . . . , sMAX

compute P s
m = pr(Hs

0 |N s
(0),N

s
(1)) as in (5.3);

draw P s
0 ∼ Be(1 +

∑p
j=1 P

s
j , 1 + p−

∑p
j=1 P

s
j ).

Algorithm 3:Gibbs sampler steps for posterior computation for multiscale hypothesis
testing of group differences using msBP prior.
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