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Abstract: Marginal structural mean (MSM) models for longitudinal data can be

used to characterize the causal effect of a time-varying treatment on the mean of

an outcome of interest. Several recent applications of MSM models have demon-

strated their utility for quantifying the causal effect of new antiviral therapies and

treatment regimens in HIV and AIDS. In this paper we describe marginal struc-

tural models for quantiles in which potential outcomes distributions corresponding

to different treatment histories differ by quantile-specific location shifts. The formu-

lation of marginal structural quantile (MSQ) models is similar in spirit to quantile

regression models, and indeed the MSQ model can be estimated using weighted

quantile regression routines under certain circumstances. In this paper we describe

the formulation of MSQ models for longitudinal data, list the assumptions under

which the models can be identified and estimated, and use the methodology to es-

timate the causal effect of combination antiviral regimens on both CD4 count and

HIV viral load using data from an observational cohort study.
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1. Introduction

The problem of estimating treatment effects from observational studies has
broad applicability in public health, economics and social sciences. Robins and
colleagues (e.g., Robins (1999a, b), Robins, Hernán and Brumback (2000) and
Hernán, Brumback and Robins (2002)) have written extensively on the use of
marginal structural models for this purpose, with focus primarily on functions
of the mean for repeated measures (e.g., Robins (1999b) and Hernán, Brumback
and Robins (2002)) and on hazard functions for event histories (e.g., Hernán,
Brumback and Robins (2000, 2001)).

In this paper we describe specification and estimation of structural quantile
models, wherein the causal effect of treatment can be parameterized in terms of a
location shift at one or more specific quantiles of a distribution. For many types
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of data, a single measure of central tendency such as the mean or median may not
be sufficient to convey the full extent of treatment effects. In HIV and AIDS, for
example, CD4 counts are usually positively skewed, increasing the possibility that
the mean may be unduly influenced by a heavy right tail. Transformations are
useful for correcting skewness but can diminish interpretability. HIV viral load
is another important marker with extreme right skewness, and has the added
complication of being left censored: most assays have a lower quantification
limit of 50 copies/ml, below which it is not possible to measure viral burden.
Identifying models of the mean from censored data is not possible without added
assumptions about the full distribution (Hughes (2000)).

Formulating a model in terms of quantiles allows the analyst to study the
effect of treatment on an entire distribution. Furthermore, the model formu-
lation and the parameter interpretations are similar to those used for quantile
regression (Koenker and Bassett (1978)), except that structural models charac-
terize variation in potential outcomes or counterfactuals (Rubin (1974)). Because
causal effects are fundamentally nonidentifiable from observed data (cf., Holland
(1986)), estimation of structural models rests on a number of unverifiable as-
sumptions.

For purposes of estimation, we adopt a sequential ignorability assumption
that implies treatment is randomly received, conditional on a set of observed
confounders. This is a longitudinal version of Rosenbaum and Rubin’s (1983)
weak ignorability assumption (see also Robins, Greenland and Hu (1999)). Un-
der sequential ignorability, a weighted version of the estimating equations used to
fit quantile regression models can be used to estimate parameters of a structural
quantile model. The weights are inversely proportional to probability of treat-
ment received and, in this sense, we are applying the theoretical results about
inverse weighting used in missing data and causal inference problems in mean
models (e.g., Robins, Rotnitzky and Zhao (1995) and Robins (1999b)) to struc-
tural models of quantiles. Lipsitz, Fitzmaurice, Molenberghs and Zhao (1997)
apply similar technology, but not in a causal framework, for estimation of quan-
tile regression models from longitudinal data with monotone missingness under
MAR, and Scharfstein, Rotnitzky and Robins (1999, Section 7.1), use inverse
weighting techniques to make group comparisons of medians under both MAR
and nonignorable dropout mechanisms (using sensitivity analysis for the latter).

Within the field of public health and epidemiology, causal methods are gain-
ing in importance for research in HIV and AIDS. This is due in large part to the
growing amount and availability of natural history data. A prototypical study
is the HIV Epidemiology Research Study (HERS) (Smith et al. (1997)), wherein
1,310 women (871 HIV-positive) are followed prospectively for up to seven years
on a variety of clinical, behavioral and demographic outcomes related to HIV
progression. Like many recent and ongoing natural history studies, the follow-up
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period for HERS saw the advent of an important new treatment strategy known
as highly-active antiviral therapy, or HAART, which involves the use of multiple
antiviral treatments simultaneously (see Carpenter et al. (2000) for details). Al-
though HAART regimens have been tested in the controlled environment of clin-
ical trials, an observational cohort study provides important information about
whether the therapy is working in the field. See Ko, Hogan and Mayer (2003) and
Hernán, Brumback and Robins (2002) for detailed analyses designed to estimate
the causal effects of antiviral treatment on mean CD4 cell counts, and Hernán,
Brumback and Robins (2000, 2001) for causal analysis of event histories using
proportional hazards models.

The remainder of our paper is organized as follows. The next section defines
relevant potential outcomes and describes structural quantile models. Section 3
focuses on parameter identification and estimation under sequential ignorability,
and Section 4 illustrates use and interpretation of the models in practice with
longitudinal CD4 and viral load data from the HER Study. The objective is to
characterize the causal effect of taking HAART on the distribution of CD4 count
and viral load. Section 5 concludes.

2. Structural Model for Quantiles

2.1. Potential outcomes

A structural model is by definition a model of potential outcomes (Rubin
(1974), Pratt and Schlaifer (1984) and Robins (1999b)). The measurement times
are common across individuals, and labeled t = 1, . . . , T . Treatment during
the interval [t − 1, t) is indexed by at ∈ {0, 1}, which indicates whether or not
HAART was received during the six-month interval leading up to t. Treatment
history is denoted by the sequence at = {a1, . . . , at}, which is a member of the set
At = {0, 1}⊗t. We assume treatment history can be summarized using a known
function g : At → R

1 that maps treatment sequences to a scalar value. Common
examples include g(at) = at and g(at) =

∑
t at (cf., Hernán et al. (2002) and Ko

et al. (2003)).
For individual i (= 1, . . . , n) at time t, potential outcomes comprise the

set {Yit(at) : at ∈ At}, where by definition the response of subject i to the
treatment sequence at is Yit(at). From this set, only one response is observable,
namely that corresponding to treatment sequence actually received, denoted by
Ait = {Ai1, . . . , Ait}. The consistency relation (Wasserman (1999)) connects the
observed response to the potential responses via

Yit =
∑

at∈At

I(Ait = at) Yit(at). (1)

2.2. Structural quantile model
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Our interest is to identify and estimate parameters indexing a model of
the the marginal cumulative distribution function (cdf) FYt(at)(y) of potential
outcomes. We adopt a formulation similar to quantile regression for the general
location-shift model (Koenker and Bassett (1978)). Valid causal interpretation of
estimated parameters will depend on a number of key assumptions, some of which
cannot be verified from data. After laying out the model here, we demonstrate
in Section 3 how to use the machinery employed in quantile regression problems
to estimate parameters of the structural model.

In general we allow the distribution of potential outcomes to depend on
observed covariates. Let xit = (x1it, . . . , xKit) denote a K-vector of exogenous
covariates (defined below) observed up to time t, and let x∗

it(at) represent a 1×P
vector that is a known function of xit and g(at). For example, if interest is in
estimating causal effects conditional on age at time t, we might set xit = (1, ageit)
and x∗

it = (1, ageit, g(at) ). For a continuously-valued random variable Y ,
let Qθ(Y ) denote the θ-th quantile of its distribution, where 0 < θ < 1; i.e.,
pr{Y ≤ Qθ(Y )} = θ. For t = 1, . . . , T , we assume the potential outcomes are
related to treatment at and covariates xit via the marginal structural quantile
(MSQ) model

Qθ{Yit(at) | xit} = x∗
it(at)βθt, (2)

where βθt is a P × 1 vector of unknown parameters. Alternately we can write

Yit(at) = x∗
it(at)βθt + Uθit(at), (3)

where Uθit(at) is an error term having unspecified distribution but satisfying
Qθ{Uθit(at)} = 0 for all at ∈ At. Hence the MSQ model can be represented as
the location model

pr{Yit(at) ≤ y | xit} = FUθt(at)(y − x∗
it(at)βθt)

(Basset and Koenker (1982) and Buchinsky (1998)). Covariates xit are said to
be exogenous if, for every t and for each at ∈ At, xit is independent of Uθit(at).

Because (2) models features of the potential outcomes, the components of
βθt related to treatment have a causal interpretation, and in particular they can
be used to contrast, for two different treatment regimes at and a′t, the marginal
population quantiles Qθ{Yt(at)} and Qθ{Yt(a′t)}. Importantly, treatment effect
in a MSQ model is not the θth quantile of individual treatment differences. A
simple example illustrates more clearly. Let g(at) = at ∈ {0, 1}, an indicator of
whether treatment was received in the previous interval, and assume θ = 0.5. A
simple MSQ model (here a marginal structural median model) is

Q0.5{Yit(at)} = α(0.5)t + atβ0.5 t = 1, . . . , T,
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where the {α(0.5)t} are time-specific intercepts, and β0.5 is the difference in the
median of two potential-outcomes distributions: one that corresponds to no one
receiving treatment (at = 0) and the other corresponding to everyone receiving
treatment (at = 1).

3. Parameter Identification and Estimation

In this section we describe procedures for estimating the parameters βθ in
(2) from observed data. Because βθ is a causal parameter, it cannot be identified
from observable data without reliance on unverifiable assumptions. We rely on
the assumption of treatment ignorability (Rosenbaum and Rubin (1983)), which
characterizes the mechanism by which individuals receive treatment at each time
point. Other approaches include instrumental variables (for quantile models, see
Abadie, Angrist and Imbens (1998)) and principal stratification (Frangakis and
Rubin (2002)).

3.1. Sequential treatment ignorability

Consider first the cross-sectional case with binary treatment, and suppose
inference is conditional on covariates xi. The ignorability assumption states that
receipt of treatment is independent of potential outcomes, i.e., Ai ⊥⊥Yi(a) | xi, for
a = 0, 1. Here and throughout we maintain weak ignorability assumptions; strong
ignorability states that the potential outcomes are jointly independent of treat-
ment receipt (see Rosenbaum and Rubin (1983) for details). The longitudinal-
data analogue of the ignorability assumption is as follows (recall that At is treat-
ment history up to but not including t):

A0: Sequential Ignorability. Receipt of treatment at time t is sequentially
ignorable given xit if for all t and for all at ∈ At, Ait ⊥⊥Yit(at) | xit.

(Robins (1986), Robins et al. (1999), see also Rubin (1976)). Assumption
(A0) can be interpreted to mean that receipt of treatment is sequentially random-
ized, conditional on model covariates xit. It implies that Ait is exogenous given
xit, and therefore standard estimation methods that assume exogenous treat-
ment (such as those used in quantile regression software) can be used to estimate
the causal parameter βθ; however, (A0) cannot generally be expected to hold
for observational studies. In HIV/AIDS for example, the decision to administer
treatment may depend on variables other than xit, including previous realiza-
tions of the outcome of interest (e.g., CD4 and viral load). Furthermore, receipt
of treatment may even depend on the potential outcomes themselves, as would
be the case when doctors preferentially treat patients who would be sicker under
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no treatment (whereby Ait depends on Yit(0)), or patients who are expected to
respond favorably (whereby Ait depends on Yit(1) − Yit(0)).

Although (A0) will not generally hold for observational studies, it may be
possible to identify a covariate process {cit} that fully or partially explains the
conditional dependence between the potential outcomes and treatment receipt,
given xit. A covariate that partially explains this dependence is a confounder.
(See Greenland, Robins and Pearl (1999) and Geng, Guo and Fung (2002) for a
detailed treatment.) We are assuming here that primary interest lies in modeling
the conditional distribution of Yt(at) given xt, and that there may exist impor-
tant confounders that are not part of xt.) Let cit represent the accumulated
history, up to and including t, of {cit}. If treatment is sequentially ignorable
conditional on cit (and xit), then cit is said to be sufficient for control of con-
founding (Greenland, Robins and Pearl (1999)). In practice, it will not be possi-
ble to know whether a given set of confounders is sufficient to induce ignorability,
but in many settings the determinants of treatment administration and clinical
outcomes are reasonably well understood. In HIV/AIDS for example, if we are
interested in estimating the effect of time-varying treatment on CD4 count or vi-
ral load, candidate confounders may include previous measures of CD4 and viral
load, previous treatment history, whether progression to AIDS has occurred, and
duration of HIV infection. The availability of confounders leads to specialization
of Assumption (A0) (see Hernán et al. (2002) for example).

A1: Sequential Ignorability given confounders. Receipt of treatment at
time t is sequentially ignorable given confounders cit and past treatment
history Ai,t−1 if, for all t and for all at ∈ At, Yit(at)⊥⊥Ait | (Ai,t−1,xit, cit).

This assumption also is referred to as the ‘no unmeasured confounders’ as-
sumption (e.g., Robins, Greenland and Hu (1999) and Hernán et al. (2002))
because it states that within levels of xt, the confounders and the past treat-
ment history contain all relevant information about Yt(at) that leads to observed
treatment At.

3.2. Estimation of structural quantile models

Estimation of model parameters from observed data can be most clearly
motivated as a missing data problem, where responses under treatments other
than the actual treatment received are viewed as missing data (Rubin (1976)).
In missing data problems, it is useful to cast the estimation problem in terms
of a model for the full data − in this case the structural model of all potential
outcomes − and then to impose assumptions or constraints that allow estimation
of the full-data parameters from the partially observed data.
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Against this backdrop, we begin by considering estimation in the full-data
setting. Recall that at each time point t, the full data for individual i comprise
potential outcomes {Yit(at) : at ∈ At}, exogenous covariates xit, treatment his-
tory Ai,t−1, and confounder history cit. Our objective is consistent estimation of
βθ in (2). For treatment history at and for a fixed θ ∈ (0, 1), define the P × 1
moment function

ψ(xit, Yit(at),βθ) = x∗
it(at)T [ I{Yit(at) ≥ x∗

it(at)βθ} − θ ].

For simplicity we write ψ(xit, Yit(at),βθ) = ψit(at,βθ). Under a correctly
specified model for Qθ{Yit(at)} and assuming suitable regularity conditions,
E{ψit(at,βθ)} = 0 (Buchinsky (1998)). Hence, if the full data were available,
the solution β̂θ to the P × 1 system of estimating equations

U(βθ) =
n∑

i=1

T∑
t=1

∑
at∈At

ψit(at,βθ) = 0

would be consistent for βθ and asymptotically normal. The moment-based esti-
mator can also be characterized as the solution to a linear programming prob-
lem and β̂θ can be computed using appropriate techniques (Basset and Koenker
(1982)).

In reality, the potential outcomes are not all observable. Receipt of specific
levels of treatment can be viewed as a selection process that acts on the potential
outcomes and yields the observed outcome Yit via (1). If all confounders are
observed in the sense that (A1) holds, and if the probability of treatment receipt
as a function of confounders is known or can be consistently estimated, then
consistent estimates of βθ can be obtained from a system of weighted estimating
equations, where the weight for the contribution of subject i at time t is inversely
proportional to the (estimated) probability of receiving the observed treatment
Ait. The probability of receiving treatment sequence at, given cit and xit, is

πit(at | cit,xit) =
t∏

j=1

pr(Aij = aj | Ai,j−1 = aj−1, cij,xij), (4)

where we define Ai0 = 0 for all i. For binary treatment, πit(at | cit,xit) can
be consistently estimated if we assume the conditional probability terms under
the product sign have a known functional form. For example, let λit(at−1) =
pr(Ait = 1 | Ai,t−1 = at−1, cit,xit) and assume

logit{λit(at−1,γ)} = f(at−1, cit,xit;γ), (5)
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where f is a known linear function of γ and the covariates, and γ is an unknown,
finite-dimensional parameter. We can then fit the model logit{λit(Ai,t−1,γ)} =
f(At−1, cit,xit;γ) to observed treatment data in order to estimate γ. From this
point forward, we assume that πit(at | cit,xit) = πit(at | cit,xit;γ) is known up
to γ and furthermore that it can be consistently estimated.

For consistent estimation of βθ, we also require that at time t, each individ-
ual must have strictly positive probability of receiving treatment (the positivity
assumption; see Hernán, Brumback and Robins (2002, p.1694)). At the true
value of γ, the root β̂θ of the estimating function

U(βθ) =
n∑

i=1

T∑
t=1

∑
at∈At

I(Ait = at)
πit(at | cit,xit;γ)

ψit(at,βθ)

=
n∑

i=1

T∑
t=1

{πit(Ait | cit,xit;γ)}−1 ψit(Ait,βθ) (6)

is consistent for βθ (see Appendix for details). This remains true when πit(Ait |
cit,xit;γ) is replaced by πit(Ait | cit,xit; γ̂), so long as it is an n1/4-consistent
estimator (Robins and Rotnitzky (1995)). Based on (4) and (5), we use

π̂it(Ait | cit,xit, γ̂) =
t∏

j=1

[Aitλit(Ai,t−1, γ̂) + (1 −Ait){1 − λit(Ai,t−1, γ̂)}]. (7)

The form of Var (β̂θ) depends on the specific density function for the error terms
in (3); however, to avoid making assumptions about the density, we use boot-
strap resampling, which provides reliable finite-sample estimators of Var (β̂θ) in
quantile regression models (Buchinksy (1995)).

The practical implication for estimation of MSQ models is the same as
for estimation of marginal structural mean models: under specific assumptions,
weighted estimating equations applied to observed data, namely (6), can be used
to estimate the structural (causal) model parameter βθ. The fundamental as-
sumptions include these: (i) the cdf’s of potential outcomes distributions indexed
by at can differ only by a location shift parameterized through a known function
of at; (ii) treatment receipt is sequentially ignorable, given confounders (no un-
measured confounders); (iii) the probability of receiving treatment as a function
of confounders is known up to a finite dimensional parameter and can be con-
sistently estimated; (iv) each individual has a positive probability of receiving
treatment at each time point. Assumption (iii) can be critiqued using standard
lack of fit diagnostics. Neither (i) nor (ii) can be empirically verified. Sensitivity
analyses are available for checking violations of (ii) while maintaining (i), (iii) and
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(iv); see Ko et al. (2003), Robins (1999b) and Scharfstein et al. (1999, Section 7).
Our ability to understand sensitivity to violations of (i) (model mis-specification)
is far more limited. We can never know the true potential outcomes models, but
we can examine sensitivity to inferences over a wide range of models. We have
also made, for convenience, the assumption that treatment history can be sum-
marized as a scalar g(at). The foregoing results on consistent estimation of βθ are
not dependent on this; see Ko et al. (2003) for illustration of other functionals.

4. Estimating Treatment Effects from a Natural History Study

In this section we illustrate the models and estimation procedures using two
examples from the HIV Epidemiology Research Study (HERS), an observational
cohort study of the natural history of HIV in women (Smith et al. (1997) and
Mayer et al. (2003)). The objective is to estimate the causal effect of highly-
active antiviral therapy (HAART) on changes in two important markers, viral
load (copies of HIV-1 RNA per ml) and CD4 cell count (×1000 cells/ml). See Ko
et al. (2003) for the specific definition of HAART used in HERS. Both viral load
and CD4 count are measured at enrollment and then every six months thereafter,
for up to six years (twelve visits total). For these analyses, we use data from visits
7 onward (treating visit 7 as a baseline) because HERS enrollment began in 1993
but HAART was not in widespread use until 1996, meaning that HAART was
generally unavailable to participants prior to their seventh visit.

4.1. Selection of confounders and estimation of weights

Because both viral load and CD4 count are markers of HIV progression, we
use the same set of candidate confounders for both analyses; they are listed in
Table 1. These variables were selected because they are believed to affect, either
directly or indirectly, both the probability of receiving HAART and the clinical
potential outcomes. For cases where a time-varying covariate is not available
at the specific measurement time, the last value is carried forward and used
to represent the true value of the missing outcome. Viral loads that are used
as covariates are in the log10 scale. In constructing the weight model, viral
load covariate values that fall below the lower detection limit of 50 copies/ml
are replaced by a randomly-generated value from the uniform distribution on
the interval [0, log10 50). The weights were estimated by fitting (5), assuming
f(Ai,t−1, cit,xit;γ) is a linear function of visit indicators (i.e., time-specific in-
tercepts) and the covariates listed in Table 1. Because data are available prior
to our visit 7 baseline, it is possible to make use of confounding variables prior
to baseline.
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Following Hernán et al. (2002), we also make use of a stabilizing factor to
reduce variability in the weights. The stabilizing factor can be a function of
model covariates xit and of observed treatment history Ai,t−1. Its main purpose
is to reduce variability introduced by very large weights (i.e., from individuals
with very small π̂it) and therefore reduce variability in β̂θ. The stabilizing factors
form the numerators of the weights, and are computed similarly to the π̂it. We
fit a model

logit{λ∗it(γ∗)} = vitγ
∗
0 +Ai,t−1γ

∗
1 +Ai,t−2γ

∗
2 +Ai,t−1 ∗Ai,t−2γ

∗
3 ,

where λ∗it(γ∗) = pr(Ait = 1 | Ai,t−1,xit;γ∗), and vit ⊂ xit is a 1 × T vector of
visit indicators with elements vitj = I(t = j). The stabilizing factor, denoted
π∗it, is then computed similarly to πit, as shown in (7). Our estimation of the
structural quantile models uses estimated stabilized weights ŵit = π̂∗it/π̂it.

Table 1. Confounding variables used for analysis of HERS data. Note ART
= antiviral therapy, and denotes a treatment regimen that is not HAART,
and typically consists of single antiviral agent.

Variable Unit or category Timing
HAART status yes/no t− 1, t− 2
ART status yes/no enrollment, t− 1
AIDS status yes/no t− 1
HIV symptom scale 0–10 t− 1
ln CD4 ln cells/mm3 enrollment, t− 1
log10 HIV RNA log10 copies/mm3 enrollment, t− 1
ln CD4 × log10 HIV RNA t− 1
HAART × ln CD4 t− 1
HAART × log10 HIV RNA t− 1
recent IV drug use yes/no enrollment only
lifetime IV drug use yes/no enrollment only
Race Black, White, Other enrollment only
Years aware of HIV status 0, 1–5, 6+ years enrollment only

4.2. Fitting structural models to CD4 and viral load data

4.2.1. Descriptive statistics and exploratory analyses

Treating visit 7 as baseline, we use outcome data on 478 women from visits
8 through 12. A total of 2105 CD4 counts and 1990 viral loads are available;
443 (or 22 percent) of the viral loads are left-censored at 50 copies/ml, the lower
limit of detection for assays being used.
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Because the effect of HAART can depend on underlying HIV progression
status (Carpenter et al. (2000), Hernán et al. (2000) and Ko et al. (2003)), we
assume that treatment effect depends on baseline CD4 count, categorized as
< 200, 200−500, and > 500. Prior to fitting our model, we estimated treatment-
specific cdf’s for both markers at each visit and within each category of baseline
CD4. We assume for these empirical summaries, and for the structural models
in the next subsection, that g(at) = at. For the empirical summaries within
a baseline CD4 count stratum, this implies that the family of marginal c.d.f.’s
{FYt(at)(y) : at ∈ At} has only two members, FYt(1) and FYt(0). Their crude
estimators are

F̂Yt(0)(y) =
∑nt

i=1(1 − ŵit)(1 −Ait)I(Yit ≤ y)∑nt
i=1(1 − ŵit)(1 −Ait)

,

F̂Yt(1)(y) =
∑nt

i=1 ŵitAitI(Yit ≤ y)∑nt
i=1 ŵitAit

,

where nt is the number of available measures at t and ŵit is the estimated stabi-
lized weight described above. Under (A0), ŵit = 1 and under (A1) the estimated
weights are used. Figure 1 shows, for visit 9 (t = 2), F̂Yt(0)(y) and F̂Yt(1)(y) for
both CD4 and log10 viral load, estimated using data from those with baseline
CD4< 200. Each is estimated under both (A0) and (A1), and the pattern is
typical to other visits and baseline CD4 groups. For both markers, the location
shift due to treatment is wider under (A1), suggesting a that confounders may
be accounting for nonrandom treatment receipt such that sicker patients, and/or
those more likely to benefit, are preferentially receiving HAART. The plots of
viral load highlight the problem with censoring, namely that an appreciable pro-
portion of women have viral loads below 50. For quantile regression, this implies
that without making modeling assumptions to extrapolate in the left tail, we can
only consider modeling quantiles above a certain proportion. Koenker and Basset
(1978, Remark to Theorem 3.4) establish the minimum number of observations
needed to identify a linear model of a fixed quantile θ.

4.2.2. Specification and estimation of structural quantile models

For purposes of illustrating the models, we take g(at) = at, i.e., receipt of
HAART during the previous six months. We model quantiles θ ∈ {0.10, 0.25,
0.50, 0.75, 0.90} of CD4 counts and θ ∈ {0.50, 0.75, 0.90} of log10 viral loads. The
log scale is chosen for viral load because treatment effects typically are multiplica-
tive with respect to viral load, and consequently most clinicians gauge treatment
effects on the log10 scale. Standard errors are computed using the bootstrap
(Efron and Tibshirani (1986)), where resampling is done at the individual level.
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Normal quantile plots of bootstrapped model coefficients suggest that their sam-
pling distributions are normally distributed (not shown). This was not true for
models fit to absolute viral load, which suggests that for finite sample sizes similar
to ours, direct construction of bootstrap confidence intervals is recommended.

CDF of viral load & CD4 at visit9 for CD4<200
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Figure 1. For women with baseline CD4 count less than 200, unweighted and
weighted empirical c.d.f.’s for viral load (top row) and CD4 count (bottom
row) at visit 9.

As described above, we treat visit 7 as the baseline because prior to this, very
few women received HAART. The treatment effects are stratified by baseline CD4
(< 200, 200−500, > 500), and underlying temporal variations are accounted for
using visit indicators as covariates. Let Yi0 denote baseline CD4, and define
xit = (ui,vit) as follows: ui = [I(Yi0 < 200), I(200 ≤ Yi0 ≤ 500), I(Yi0 > 500)]
indicates CD4 category, and vit = (vi1, . . . , viT ) is the 1 × T vector of visit
indicators (actual visit numbers run from 8 to 12, so T = 5), with elements
{vij = I(j = t) : j = 1, . . . , T}. For a given θ, the structural quantile model is

Qθ{Yit(at) | vit,ui} = vitβθ0 + uiβθ1 + atuiβθ2,
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where βθ0 is a 5× 1 vector of visit-specific intercepts, βθ1 (3× 1) captures shifts
attributable to baseline CD4 count, and βθ2 (3 × 1) captures (causal) shifts
due to treatment within each baseline CD4 category. An important assumption
underlying this model is that location shifts of quantile θ due to treatment are
constant across visits, within baseline CD4 category. This assumption is made
based on visit- and group-specific plots of weighted and unweighted cdf’s (similar
to Figure 1, not shown).

The model is fitted using the SAS/IML program regquant, available from
the SAS Sample Library, which implements the estimation routine given in
Koenker and Bassett (1978) and Bassett and Koenker (1982). Weighted esti-
mation under (A1) is implemented by replacing observations {Yit,vit,ui, Aitui}
with with their weighted counterparts {ŵitYit, ŵitvit, ŵitui, ŵitAitui} (Lipsitz et
al. (1997)). Estimation under (A1) cannot be implemented with the current ver-
sion of the ‘qreg’ function in Stata because it forces inclusion of an unweighted
intercept term. Standard errors were calculated via bootstrap (Efron and Tib-
shirani (1986)), using 100 bootstrap samples of individual records. Weights were
calculated in advance and were not recalculated within each bootstrap sample.

Estimates of the causal contrasts βθ2 are presented in Table 2. Positive
shifts in CD4 (increased immune function) and negative shifts in viral load (de-
creased viral burden) indicate beneficial treatment effect. For all categories of
baseline CD4, HAART exhibits a beneficial (or at least non harmful) effect on
both markers. Turning first to those with baseline CD4< 200, the adjustment
for confounding increases the treatment effect on the entire distribution of CD4,
with the most pronounced effect in the upper tail (effect on the 90th percentile
is 32 under (A0) and 51 under (A1)). This pattern also is evident for viral load.
Overall, with the exception of the lower tail (10th percentile), HAART therapy
shifts nearly the entire CD4 distribution 50 units higher. Among women with
baseline CD4 200−500, the effect of weighting is similar but more pronounced
at the median (where treatment effect is 43 under (A0) and 64 under (A1), a
difference of 1.5 standard errors). By contrast, estimated treatment effects for
viral load are similar under the two different assumptions, but indicate a clear
benefit to HAART therapy. The stratum of women with CD4> 500 has the
lowest proportion of women receiving HAART and therefore treatment effects
have the greatest standard errors. Changing modeling assumptions has the most
pronounced effect for this stratum, where the shift in CD4 due to treatment
actually changes direction when moving from (A0) to (A1). There is relatively
little change for viral load. It is worth noting that, for CD4 at least, comparing
estimates to their standard errors under (A1) does not lead to the conclusion of
significant treatment effect. For viral load, there is some evidence of a shift in
median. Estimated treatment effects are greater when adjusting for confounders,
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which suggests those who are less healthy, and/or those who are less likely to
respond well, are more likely to receive HAART (note that both characteristics
may be present in the same individual).

Table 2. Treatment effects and bootstrapped standard errors estimated
from structural quantile model under assumptions A0 (unweighted) and A1
(weighted). Confounders used under assumption A1 are listed in Table 1.

CD4 Count log10 Viral Load
Baseline CD4 Quantile (θ) Unweighted Weighted Unweighted Weighted

< 200 0.10 14 (16) 16 (19)
0.25 58 (14) 62 (13)
0.50 58 (21) 66 (22) -0.82 (0.35) -0.97 (0.31)
0.75 56 (25) 63 (29) -0.30 (0.15) -0.43 (0.19)
0.90 32 (30) 51 (34) -0.34 (0.10) -0.50 (0.19)

200 to 500 0.10 5 (16) -10 (20)
0.25 20 (19) 27 (23)
0.50 43 (16) 64 (15) -0.96 (0.23) -0.82 (0.23)
0.75 43 (23) 54 (28) -0.55 (0.14) -0.48 (0.17)
0.90 91 (39) 98 (52) -0.39 (0.12) -0.35 (0.12)

> 500 0.10 6 (32) 41 (45)
0.25 -7 (31) 32 (35)
0.50 -55 (52) 25 (47) -1.03 (0.32) -0.82 (0.42)
0.75 -57 (70) 22 (71) -0.01 (0.25) 0.14 (0.22)
0.90 -73 (110) 87 (92) 0.06 (0.18) 0.03 (0.21)

To summarize, receipt of HAART during the previous six months has a pro-
nounced therapeutic effect on both CD4 and viral load among women whose
baseline CD4 is less than or equal to 500 (the first two strata in Table 2. Treat-
ment effects may or may not be as pronounced for those with CD4 greater than
500: for CD4, the point estimates for distributional shift are on the same order
as those in the other two strata, but standard errors are high and the estimates
cannot be distinguished from zero; for viral load, except for the median, point
estimates indicate very little shift due to treatment. This could be a result of
the relatively small degree of variability in viral load for those with baseline
CD4> 500, who are among the healthiest HIV-positive women and will tend to
have low viral burden.

5. Summary and Discussion

The current work invites a number of possible extensions and topics for
further study. Foremost among these is a strategy for sensitivity analysis to
gauge the effects of departures from the critical assumptions about confounding
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(namely A1). Robins (1999b) gives details for marginal structural models of
the mean (see Ko et al. (2003) for an illustration), but extension to quantiles is
less obvious. Another possible extension involves second moments, for example,
understanding the causal effect on covariation between two markers would expand
understanding of how treatment works in two dimensions (see Liang, Wu and
Carroll (2003)). Missing data and dropout is an important issue that we have
not addressed directly; however it is rather easily handled by introducing a second
set of weights along the lines of Lipsitz et al. (1997). See Hernán et al. (2000) for
application in a survival analysis context. In a previous analysis of mean CD4
data from HERS (Ko et al. (2003)), the use of additional weights for missing
data yielded only small changes in point estimates of model parameters.

Acknowledgement

The authors thank an associate editor, two referees and Jamie Robins for
very helpful comments on an earlier version of the manuscript, Lytt Gardner
for permission to use the data, and the organizers of the 2002 AMA/SIAM/IMS
Summer Research Conference for providing the opportunity to contribute to this
special issue. The material in the Appendix is adapted from a set of lecture
notes prepared by Marie Davidian (http://www.stat.ncsu.edu/biostat/msm.ps);
we thank her for sharing these notes and assume full responsibility for any errors.
Support for this project was provided by grants R01-AI50505 and P30-AI42853
from the U.S. National Institutes of Health. Data from the HER Study were
collected under grant U64-CCU10675 from the U.S. Centers for Disease Control
and Prevention.

Appendix

The following argument demonstrates that U(βθ) = 0 is an unbiased esti-
mating equation. A fully general study of the properties of weighted estimating
equations for estimating marginal structural models is found in Robins (1999a).

Consider the unweighted observed-data estimating equation U0(βθ) = 0,
where

U0(βθ) =
n∑

i=1

T∑
t=1

ψ(xit, Yit(Ait),βθ),

which yields a consistent estimator of βθ under assumption (A0). Let Rt =
|At| = 2t denote the number of unique treatment sequences at, and let a(r)

j

denote treatment received at time j ≤ t under the treatment sequence r. The
function U0(βθ) can be re-written as

U0(βθ) =
n∑

i=1

T∑
t=1

Rt∑
r=1

{ t∏
j=1

I(Aij = a
(r)
j )

}
ψ(xit, Yit(a

(r)
t ),βθ).
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For a correctly specified MSQ model, E{ψ(xit, Yit(a
(r)
t ),βθ)} = 0. However, in

general the solution to U0(βθ) = 0 will be biased for βθ unless Aij is independent
of ψ(xit, Yit(a

(r)
t ),βθ) for all r and for all j ≤ t (i.e., unless Aij is exogenous).

Now consider forming U(βθ) by weighting each term in U0(βθ) inversely by

πit(a
(r)
t | xit, cit) =

t∏
j=1

pr {Aij = a
(r)
j

∣∣∣ Ai,j−1 = a
(r)
j−1,xij , cij}.

Then each term of the (weighted) sum in U(βθ) has expectation

E[
{∏t

j=1 I(Aij = aj)}ψ(xit, Yit(at),βθ)∏t
j=1 pr(Aij = aj | Ai,j−1 = aj−1,xij , cij)

] (8)

(where superscript r has been dropped for clarity). It remains to show that this
expectation equals zero. Recall that under Assumption (A1), for any t and for
any at ∈ At,

E{I(Ait =at) |Yit(at), Ai,t−1 =at−1,xit, cit} = pr(Ait =at | Ai,t−1 =at−1,xit, cit).

Taking expectation of (8) conditional on Yit(at), Ai,t−1,xit and cit, we have

E

[
E

{ {∏t
j=1 I(Aij = aj)}ψ(xit, Yit(at),βθ)∏t

j=1 pr(Aij = aj | Ai,j−1 = aj−1,xij , cij)

}∣∣∣∣∣Yit(at), Ai,t−1,xit, cit

]

= E

[ {∏t−1
j=1 I(Aij = aj)} ψ(xit, Yit(at),βθ)∏t−1

j=1 pr(Aij = aj | Ai,j−1 = aj−1,xij , cij)

·E{I(Ait = at) | Yit(at), Ai,t−1,xit, cit}
pr(Ait = at | Ai,t−1 = at−1,xit, cit)

]
, (9)

and (A1) implies that the second fraction inside the expectation (9) equals one.
Next, we take the expectation of (9) conditionally on Yi,t−1(at−1), Ai,t−2,xi,t−1

and ci,t−1 and obtain a similar simplification. Repeating down to t = 1 gives the
result.
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