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Abstract: Trigonometric regression is commonly used to describe cyclic phenomena

that occur in the engineering, biological, and medical sciences. Optimal designs

for this model on a complete cycle have been studied extensively in the literature.

However, much less attention has been paid to the design problem with a partial

cycle. This paper solves this problem for the first-order trigonometric regression.

Explicit D-, A-, and E-optimal designs are analytically derived. These designs are

used to evaluate the D-, A-, and E-efficiencies of the equidistant sampling method

commonly used in practice. Efficient and practical designs are then suggested.

Some optimal exact designs and optimal designs for all nontrivial subsets of the

coefficients are also obtained. A discussion is made on the φp-optimal designs

(p ∈ [−∞, 1]) for the general trigonometric regression on a partial cycle.

Key words and phrases: A-optimality, D-optimality, efficiency, E-optimality,

equidistant sampling, exact design, φp-criterion.

1. Introduction

Consider the first-order trigonometric regression

y(x) = β0 + β1 cos(x) + β2 sin(x) + ε(x), (1)

where x ∈ X = [α1, α2], with −π ≤ α1 < α2 ≤ π, and β0, β1, and β2 are un-
known parameters of interest. The error ε(x) is an unobservable random variable
independent of x, with mean zero and unknown variance σ2. If n uncorrelated
observations y(x) are to be taken, ni at each xi ∈ X , where i = 1, . . . , l (l ≥ 1),
the corresponding experimental design can be viewed as a probability measure ξ

on X , with ξ(xi) = ni/n, for i = 1, . . . , l. Let β̂ be the least squares estimator of
β = (β0, β1, β2)

′
. Then the covariance matrix of β̂ is Cov(β̂) = (σ2/n)M−1(ξ),

where M(ξ) =
∫
X f(x)f(x)

′
dξ is the information matrix per observation of the

design ξ, with f(x) = (1, cos x, sin x)
′
. In general, an (approximate) experimental

design is a probability measure ξ on X that assigns all its mass to a finite num-
ber of points (Pukelsheim (1993, p.26)). To implement such a design in practice,
certain approximation is often needed.
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Some popular criteria for choosing a design ξ are the D-,A-, and E-optimality
criteria, which belong to a class of φp-criteria (Pukelsheim (1993, Chap.9)). When
p=−∞,−1, and 0, we obtain the E-, A-, and D-criteria, respectively. Let λ1, λ2,
and λ3 be the eigenvalues of M(ξ). Then the φp-criteria (p ∈ [−∞, 1]) maximize
the following φp functions:

φp(M(ξ)) =



minj≤3 λj for p = −∞,(∏
j≤3 λj

)1/3
for p = 0,(

(1/3)
∑

j≤3 λp
j

)1/p
for p ∈ (−∞, 1] and p �= 0.

(2)

When observations can be taken from a complete cycle, that is, when X =
[−π, π], the optimal design problem for the trigonometric regression of order m

(m ≥ 1),

y(x) = β0 +
m∑

j=1

β2j−1 cos(jx) +
m∑

j=1

β2j sin(jx) + ε(x), (3)

has been well discussed in the literature. See, for example, Hoel (1965), Kar-
lin and Studden (1966, p.347), Fedorov (1972, p.94), Lau and Studden (1985),
Riccomagno, Schwabe and Wynn (1997), and Dette and Haller (1998). It is
well known (Pukelsheim (1993 p.241)) that, for any n ≥ 2m + 1, a design that
assigns equal weight 1/n to each of n equispaced support points on [−π, π] is
φp-optimal, for all p ∈ [−∞, 1]. However, much less attention has been paid to
the design problem for Model (1) or (3) on a partial cycle X = [α1, α2], where
−π ≤ α1 < α2 ≤ π: Hill (1978) obtained the D-optimal design for (β0, β1, β2)

′

for Model (1) with X = [−π/2, π/2]; Karlin and Studden (1966, p.343) obtained
the D-optimal design for (β0, β1, β3, . . . , β2m−1)

′
for Model (3) with X = [0, π]

and when all the sine terms are absent.
This paper will focus on Model (1), a widely used trigonometric regression for

modeling cyclic phenomena in the engineering, physical, biological, and medical
sciences. See, for example, Graybill (1976, pp.311 and 314), McCool (1979), and
Kitsos, Titterington and Torsney (1988). In some applications, it is impossible
or difficult to take observations on a complete cycle [−π, π]. For example, in
mechanical and precision engineering (McCool (1979)), α2 − α1 is the included
angle of a mechanical circular part, and the angle may range from π/30 (e.g., in
the ball bearing industry) to 2π (e.g., a circular hole). Kitsos, Titterington and
Torsney (1988) studied a design problem in rhythmometry involving circadian
rhythm exhibited by peak expiratory flow, for which a complete cycle is a 24-
hour period. However, in such circumstances the design region [α1, α2] has to
be restricted to “normal waking hours”—a partial cycle, especially if the people
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involved are ill or children. Thus, it is of practical importance to investigate
optimal designs for model (1) on a partial cycle. They are useful as benchmarks
in evaluating the performance of other designs, and also provide a means of
identifying efficient and practical designs.

In this paper, the problem of constructing φp-optimal designs for Model (1)
on a partial cycle is considered. It is first shown that the problem reduces to
that of finding optimal designs for Model (1) with X = [−α/2, α/2], and that the
requisite designs are symmetric. Then explicit D-, A-, and E-optimal designs
are analytically derived. These designs are used to evaluate the efficiencies of the
commonly used equidistant sampling method. Efficient and practical designs are
then suggested. Some optimal exact designs and optimal designs for all nontrivial
subsets of the coefficients are also obtained. A discussion is given on φp-optimal
designs (p ∈ [−∞, 1]) for the general trigonometric regression model (3) with
X = [α1, α2], where −π ≤ α1 < α2 ≤ π. Technical proofs are given in the
Appendix.

2. Symmetry of the Problem

For a 3×t matrix A, denote its column space by C(A) = {Ax : x ∈ Rt}, and a
generalized inverse of A by A− (satisfying AA−A = A). Let K be a 3× s matrix
of full column rank s (s ≤ 3), with C(K) ⊂ C(M(ξ)). Then, the information
matrix for K

′
β is given by CK(M(ξ)) = (K

′
M−(ξ)K)−1.

For X = [−α/2, α/2], where α ∈ (0, 2π], the reflected design of ξ is ξR(x) =
ξ(−x) for x ∈ X , and the symmetrized design of ξ is ξ = (ξ + ξR)/2. We have
M(ξR) = QM(ξ)Q, where Q = diag (1, 1,−1). If K

′
K = Is, where Is is the s× s

identity matrix then, from Pukelsheim (1993, p.338), there exists an orthogo-
nal matrix HK such that CK(M(ξR)) = CK(QM(ξ)Q) = HKCK(M(ξ))H

′
K .

Thus CK(M(ξR)) and CK(M(ξ)) have the same eigenvalues. This implies that
φp

(
CK(M(ξR))

)
= φp (CK(M(ξ))), for p ∈ [−∞, 1]. Then, by concavity of CK

and of φp (Pukelsheim (1993, pp.77 and 151)), we have

φp

(
CK(M(ξ))

)
= φp

(
CK

(
M(ξ)/2 + M(ξR)/2

))
≥ φp

(
CK (M(ξ)) /2 + CK

(
M(ξR)

)
/2

)
≥ φp (CK(M(ξ))) /2 + φp

(
CK(M(ξR))

)
/2 = φp (CK(ξ))) .

In particular, let K
′
β designate a subset of the coefficients β0, β1, and β2. Then

K
′
K = Is. The above derivation shows that it suffices to consider symmetric

designs in order to obtain φp-optimal designs for any (nonempty) subset of the
coefficients.

For X = [α1, α2], where −π ≤ α1 < α2 ≤ π, let α = α2 − α1, γ = (α1 +
α2)/2, x̃ = x − γ, ỹ(x̃) = y(x), and ε̃(x̃) = ε(x). Then Model (1) becomes
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ỹ(x̃) = β̃0 + β̃1 cos x̃ + β̃2 sin x̃ + ε̃(x̃), where β̃ = (β̃0, β̃1, β̃2)
′
= (β0, β1 cos γ +

β2 sin γ, −β1 sin γ + β2 cos γ)
′ ≡ K1β, and x̃ ∈ X̃ = [−α/2, α/2]. Note that

β0 = β̃0, (β1, β2)
′
= K

′
2β̃ with K

′
2K2 = I2, and β = K

′
1β̃ with K

′
1K1 = I3. By

the argument in the above paragraph, it suffices to consider symmetric designs ξ̃

on X̃ in order to obtain φp-optimal designs for β0, (β1, β2)
′
, and β.

The focus of this paper is on Model (1), with X = [−α/2, α/2]. Thus, it
suffices to consider symmetric designs ξ, which give

M(ξ) =

 1 µ 0
µ ν 0
0 0 1 − ν

 , where µ =
∫
X

cos(x)d ξ, ν =
∫
X

cos2(x)d ξ. (4)

The eigenvalues of M(ξ) are λ1 = (1+ν)/2+{(1−ν)2/4+µ2}1/2, λ2 = (1+ν)/2−
{(1 − ν)2/4 + µ2}1/2, and λ3 = 1 − ν. Since φ1(M(ξ)) ≡ 2/3, the φ1-criterion
(the T -criterion) is useless.

3. D-, A-, and E-Optimal Designs

Throughout this paper, let c = cos(α/2), and νm(u) = (1 + c)u − c, for
u ∈ [−1, 1]. Let ξu(x1, . . . , xk) denote the design that assigns uniform weights
1/k to x1, . . . , xk ∈ X . For w ∈ [0, 1], x ∈ [0, α/2], let ξ(w, x) denote the
symmetric design that assigns weights w/2, 1 − w, and w/2 to −x, 0, and x,
respectively. The following lemma shows that ξm(w) ≡ ξ(w,α/2) attains the
largest possible value of ν among all symmetric designs with the same µ. The
proof of the lemma is given in the Appendix.

Lemma 1. (a) The design ξm(w) gives µ = 1−(1−c)w, and ν = 1−(1−c2)w =
νm(µ).
(b) Any symmetric design ξ has ν ∈ [µ2, νm(µ)].
(c) If a symmetric design ξ gives ν = νm(µ), the design is ξm ((1 − µ)/(1 − c)).
(d) For any given µ ∈ [c, 1] and ν ∈ [µ2, νm(µ)], there exist w ∈ [0, 1] and

x ∈ [0, α/2] such that, for t = cos(x),

M(ξ(w, x))=

 1 1−w+wt 0
1−w+wt 1−w+wt2 0

0 0 w−wt2

=

 1 µ 0
µ ν 0
0 0 1−ν

 . (5)

Note that, for α ∈ [4π/3, 2π], any design ξ with M(ξ) given by (4) and
(µ, ν) = (0, 1/2) (e.g., ξu(−2π/3, 0, 2π/3)) is φp-optimal, for all p ∈ [−∞, 1].
This follows directly from Pukelsheim (1993, Sec. 9.16), because such a design
is φp-optimal, for all p ∈ [−∞, 1], when X = [−π, π]. Main results of this paper
are the D-, A-, and E-optimal designs given in the following theorem, the proof
of which is given in the Appendix.
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Theorem 1. (a) For α ∈ (0, 4π/3), the design ξm(2/3) is D-optimal.
(b) For α ∈ (0, 4π/3), the design ξm(wa) is A-optimal, where

wa = (3 + c)1/2{(3 + c)1/2 + (1 + c + c2 + c3)1/2}−1. (6)

(c) For α ∈ (0, 4π/3), the design ξm(we) is E-optimal, where

we =

 (3 + c)(5 + 2c + c2)−1 if α ∈ (0, α∗],

(1 + 3c)(1 + 3c − 2c2 − 2c3)−1 if α ∈ (α∗, 4π/3).
(7)

Here, α∗ = 2arccos(
√

17/2 − 5/2) ≈ 1.2889π.

Remark 1. For X = [α1, α2], where −π ≤ α1 < α2 ≤ π, let ξm(w) denote the
design that assigns weights w/2, 1 − w, and w/2 to α1, α0, and α2, respectively,
where α0 = (α1 + α2)/2. Then, by the discussion in the third paragraph of
Section 2, Theorem 1 still holds, with α = α2−α1 ∈ (0, 4π/3). For α ∈ [4π/3, 2π],
any design ξ on X = [α1, α2] with M(ξ) given by (4) and (µ, ν) = (0, 1/2) (e.g.,
ξu(−2π/3 + α0, α0, 2π/3 + α0)) is φp-optimal, for all p ∈ [−∞, 1]. Again, this
follows directly from Pukelsheim (1993, Sec. 9.16), because such a design is φp-
optimal, for all p ∈ [−∞, 1], when X = [−π, π].

Figure 1 gives the values of we/2, wa/2, and 1/3, the probabilities assigned to
each of the endpoints ±α/2, for the E-, A-, and D-optimal designs, respectively,
for α ∈ (0, 4π/3).
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Figure 1. The probabilities assigned to each of the endpoints ±α/2, for
the E (solid line), A (dotted line), and D (dashed line) optimal designs,
respectively, for α ∈ (0, 4π/3).

For Model (3) with m ≥ 2 and X = [α1, α2], where −π ≤ α1 < α2 ≤ π,
it follows from the same argument as in Section 2 that, to obtain φp-optimal
designs (p ∈ [−∞, 1)), it suffices to consider X = [−α/2, α/2] (0 < α ≤ π) and
symmetric designs on X . (Note that the φ1-optimality is useless since φ1(M(ξ)) ≡
(m + 1)/(2m + 1) for any design ξ on X .) For α ≥ 4mπ/(2m + 1), it follows
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from Pukelsheim (1993, Sec. 9.16) that the equidistant sampling that assigns
equal weights 1/(2m + 1) to support points xj = 2π(−m + j − 1)/(2m + 1)
(j = 1, . . . , 2m + 1) is φp-optimal, for all p ∈ [−∞, 1). For m ≥ 2 and 0 <
α < 4mπ/(2m + 1), by the results of Theorem 1, we conjecture that φp-optimal
designs can be obtained from symmetric designs on X with 2m + 1 distinct
support points, including a midpoint 0 and an endpoint pair ±α/2. In particular,
D-optimal designs with 2m + 1 distinct support points must have equal weights
1/(2m + 1) (Pukelsheim (1993, p.201)).

For m = 2 and D-optimality, the above conjecture leads to considera-
tion of the design that assigns equal weights 1/5 to support points 0, ±θ, and
±α/2, where 0 < θ < α/2 < 4π/5. Let x = cos(θ) and denote this design
by ξx. Using the Maple programming language (Maple is a registered trade-
mark of Waterloo Maple Inc.), we obtain that φ0(M(ξx)) = (256/3125)(1 −
c)3(1 + c)(1 − x)3(1 + x)(x − c)4, where M(ξx) =

∫
X f(t)f(t)

′
dξx(t), with f(t) =

(1, cos(t), sin(t), cos(2t), sin(2t))
′
. Since c < x < 1, solving (∂/∂x)φ0(M(ξx)) = 0

leads to 4x2+(1−2c)x−(2+c) = 0, which gives x = x0 = (2c−1)/8+(1/8)(4c2 +
12c + 33)1/2. By the Kiefer-Wolfowitz theorem (Pukelsheim (1993, p.212)), to
show that ξx0 is D-optimal, it suffices to verify that f(t)

′{M(ξx0)}−1f(t) ≤ 5
for −α/2 ≤ t ≤ α/2, with equality holding at every support point of ξx0. We
numerically and graphically verified this fact and thus informally showed that
ξx0 is D-optimal. In general, for m ≥ 2 and 0 < α < 4mπ/(2m + 1), a φp-
optimal design can be obtained using numerical algorithms based on the general
equivalence theorem; see, for example, Atkinson and Donev (1992, pp.96 and
101).

4. Efficiency Comparisons

In this section, we study the efficiency of the equidistant sampling commonly
used in practice (McCool (1979)), and then suggest designs that are both efficient
and practically appealing. Let ξn,α denote the equidistant sampling with sample
size n, and ξp,α the φp-optimal design for p ∈ [−∞, 1], on X = [−α/2, α/2].
Let vp(α) = φp(M(ξp,α)). The φp-efficiency of ξn,α is defined by φp-eff(n, α) =
φp(M(ξn,α))/vp(α). When p = −∞,−1, and 0, we obtain the E-, A-, and D-
efficiency, respectively. If α ∈ [4π/3, 2π], then M(ξp,α) is given by (4), with
(µ, ν) = (0, 1/2), and thus v−∞(α) = 1/2, v−1(α) = 3/5, and v0(α) = 4−1/3. For
α ∈ (0, 4π/3), by Theorem 1, we have

v−∞(α) = (1 + νe)/2 − {(1 − νe)2/4 + µ2
e}1/2,

v−1(α) = 3(1 − c)2(1 + c)wa(1 − wa){3 + c − (1 − c)(2 + 2c + c2)wa}−1,

v0(α) = (41/3/3)(1 − c)(1 + c)1/3,

where wa is given by (6), we by (7), µe = 1 − (1 − c)we, νe = (1 + c)µe − c, and
c = cos(α/2).
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The n support points of ξn,α are xj = −α/2+(j−1)α/(n−1), for j = 1, . . . , n.
If α = 2π(n − 1)/n, then ξn,α is an equidistant sampling on a complete cycle,
because the angles between any neighbor pairs (x1, x2), . . . , (xn−1, xn), (xn, x1)
all equal 2π/n. For α ∈ [2π(n − 1)/n, 2π], we can replace ξn,α by ξn,2π(n−1)/n,
which is φp-optimal for p ∈ [−∞, 1] (by the discussion above Theorem 1), and
thus has φp-efficiency 1. For α ∈ (0, 2π(n − 1)/n),

φ−∞(M(ξn,α)) = min
(
1 − νn,α, (1 + νn,α)/2 − {(1 − νn,α)2/4 + µ2

n,α}1/2
)

,

φ−1(M(ξn,α)) = 3(1 − νn,α)(νn,α − µ2
n,α)(1 + νn,α − µ2

n,α − ν2
n,α)−1,

φ0(M(ξn,α)) = (νn,α − µ2
n,α)1/3(1 − νn,α)1/3,

where µn,α = (1/n)Σj≤n cos(xj), and νn,α = (1/n)Σj≤n cos2(xj). Note that
limn→∞ µn,α = (2/α) sin(α/2) and limn→∞ νn,α = 1/2 + sin α/(2α).
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Figure 2. The E (solid line), A (dotted line), and D (dashed line) efficiencies
of the equidistant sampling on [−α/2, α/2] for (a) n = 5, (b) n = 10, (c)
n = 20, and (d) n → ∞.

Figure 2 gives the E-, A-, and D-efficiencies of the equidistant sampling for
α ∈ (0, 2π] and n = 5, 10, 20, and n → ∞. For n ≥ 20, most of the E- and A-
efficiencies are less than 0.6, and most of the D-efficiencies are less than 0.8. Thus,
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there is much room for efficiency improvement. For example, we can take n/6
measurements at the midpoint 0 and each of the endpoints ±α/2, and take the
other half of the measurements using the equidistant sampling. This new method
would increase all the low efficiency values (less than 0.65) by 20% to 80%, and
would still provide sufficient information for checking model inadequacy.

The φp-absolute efficiency of a design ξ is defined by φp-abseff(ξ) = φp(M(ξ))
/mp, where mp = vp(2π). When p = −∞,−1, and 0, we have the E-, A-, and
D-absolute efficiency, respectively. Note that, m−∞ = 1/2, m−1 = 3/5, and
m0 = 4−1/3. Figure 3 gives the E-, A-, and D-absolute efficiencies for the E-,
A-, and D-optimal designs, respectively, and for the equidistant sampling (as
n → ∞), for α ∈ (0, 2π].
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Figure 3. The E (solid line), A (dotted line), and D (dashed line) absolute
efficiencies for (a) the E-, A-, and D-optimal designs, respectively, and for
(b) the equidistant sampling (as n → ∞).

5. Optimal Exact Designs

Consider Model (1) with X = [α1, α2], where −π ≤ α1 < α2 ≤ π. A design
ξ on X is called an exact design of size n if it consists of n (not necessarily
distinct) sampling points on X with equal weights 1/n. An exact design ξ∗ of
size n is said to be φp-optimal (p ∈ [−∞, 1]) if φp(M(ξ∗)) attains the maximum
value of φp(M(ξ)) among all exact designs ξ of size n. To obtain φp-optimal
exact designs for Model (1), by the same argument as in Section 2, it suffices to
consider X = [−α/2, α/2], where 0 < α ≤ 2π.

It follows from Pukelsheim (1993, Sec. 9.16) that an exact design ξ of size n

with M(ξ) given by (4) and (µ, ν) = (0, 1/2) is φp-optimal, for all p ∈ [−∞, 1];
such designs will be called orthogonal. For α ≥ 2π(n − 1)/n, let ξn denote
an equidistant sampling design of size n on the complete cycle, with all of its
support points on X ; then ξn is orthogonal. For n = 3k (k ≥ 1) and α ≥ 4π/3, a
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design consisting of k orthogonal designs ξ3 is orthogonal and is denoted by ξ∗3k.
Similarly, for α ≥ 3π/2 (or α ≥ 8π/5), a design consisting of ξ∗3k and ξ4 (or ξ5)
is an orthogonal design of size 3k + 4 (or 3k + 5).

By Theorem 1, orthogonal designs of size n = 3k exist if and only if α ≥
4π/3. For n = 3k + 1, consider the symmetric design consisting of ±x,±y,
k − 1 pairs of ±z, and k − 1 midpoints 0, where 0 ≤ x ≤ y ≤ z ≤ α/2. Let
r = cos(x), s = cos(y), and t = cos(z) and denote this design by ξ∗3k+1(r, s, t).
Note that ξ∗3k+1(r, s, t) is orthogonal if and only if µ = {(k − 1)(1 + 2t) + 2r +
2s}/(3k + 1) = 0 and ν = {(k − 1)(1 + 2t2) + 2r2 + 2s2}/(3k + 1) = 1/2. That
is, r and s are the two roots of

g(v) = 8v2 + 4(k − 1)(1 + 2t)v + 4k(k − 1)t2 + 4(k − 1)2t + k2 − 3k − 2.

Since 1 ≥ r ≥ s ≥ t ≥ c and r + s = (1 − k)(1 + 2t)/2, this is equivalent to the
conditions that c ≤ (1− k)(1 + 2t)/4 ≤ 1, g(c) ≥ 0, g((1− k)(1 + 2t)/4) ≤ 0, and
g(1) ≥ 0. After some simplification, these conditions lead to (a) in Theorem 2
below. For n = 3k+2, consider ξ∗3k+2(r, s, t), the design consisting of ξ∗3k+1(r, s, t)
and a midpoint 0. Using the same method as that for n = 3k + 1, we obtain (b)
of Theorem 2.

Theorem 2. (a) For n = 3k+1 and α ≥ α∗
3k+1 ≡ 2 arccos(t3k+1), where t3k+1 =

−1/2 − {2k + (6k2 + 2k)1/2}−1, there exists an orthogonal design ξ∗3k+1(r, s, t)
with r and s given by

r, s = (1 − k)(1 + 2t)/4 ± (1/4){4(1 − k2)t2 − 4(1 − k)2t − (k2 − 4k − 5)}1/2,

where t ≤ −√
2/2 for k = 1 and −1/2−2{(k−1)+(3k2−2k−1)1/2}−1 ≤ t ≤ t3k+1

for k ≥ 2.
(b) For n = 3k + 2 and α ≥ α∗

3k+2 ≡ 2 arccos(t3k+2), where t3k+2 = −1/2 −
{k + (3k2 + 2k)1/2}−1, there exists an orthogonal design ξ∗3k+2(r, s, t) with r and
s given by

r, s = (1 − k)t/2 − k/4 ± (1/4){4(1 − k2)t2 − 4k(k − 1)t − (k2 − 2k − 4)}1/2,

where −1/2 − (5/2){(k − 1) + (6k2 − 2k − 4)1/2}−1 ≤ t ≤ t3k+2.

Table 1. Some Selected Values of α∗
3k+1 and α∗

3k+2

k 1 2 3 4 5 10 20 50 ∞
α∗

3k+1 1.5π 1.416π 1.388π 1.375π 1.366π 1.350π 1.342π 1.337π 4π/3
α∗

3k+2 1.6π 1.465π 1.421π 1.399π 1.386π 1.360π 1.347π 1.339π 4π/3

Table 1 gives some selected values of α∗
3k+1 and α∗

3k+2. Note that the above
orthogonal designs have a similar structure to those in Wu (1997). Motivated by
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Wu’s results, we conjecture that there exists no orthogonal design of size 3k+1 (or
3k+2) for α < α∗

3k+1 (or α < α∗
3k+2), and that the D-optimal designs in this case

can be obtained among the designs ξ3k+1(r, c, c) (or ξ3k+2(r, c, c)). The optimal
value of r can be obtained by numerically maximizing φ0(M(ξ3k+1(r, c, c)) (or
φ0(M(ξ3k+2(r, c, c))) for r ∈ [c, 1]. In particular, using the Maple programming
language, we find that the optimal value of r is 1 for n = 3k + 1 and c ≤
(1 − k)/(2k), that the value is c for n = 3k + 2 and c ≤ (5 − k)/(2k + 1).

6. Optimal Designs for Subsets of the Coefficients

For any symmetric design ξ, let M(i)(ξ) and M(ij)(ξ) denote the informa-
tion matrices for βi and (βi, βj)

′
, respectively, where i = 0, 1, 2, and (i, j) =

(0, 1), (0, 2), (1, 2). The optimal design for βi is to maximize (scalar) M(i)(ξ),
i = 0, 1, 2. The φp-optimal design for (βi, βj)

′
is to maximize φp(M(ij)), 0 ≤

i < j ≤ 2, where p ∈ [−∞, 1]. Let K
′
β denote a subset of β0, β1, and β2,

where K is a 3 × s matrix of rank s. Then the information matrix for K
′
β is

given by CK(M(ξ)) = (K
′
M−(ξ)K)−1, where M(ξ) satisfies C(K) ⊂ C(M(ξ)).

Theorem 3 gives optimal designs for βi, i = 0, 1, 2. Theorems 4, 5, and 6 give
explicit D-, A-, and E-optimal designs for (β0, β1)

′
, (β0, β2)

′
, and (β1, β2)

′
, re-

spectively. Note that µ ∈ [c, 1] and Lemma 1 shows that ν ∈ [µ2, νm(µ)]. If
µ = c or 1, then ν = µ2. Thus, for ν > µ2, (µ, ν) ∈ S where S ≡ {(µ, ν) : µ ∈
(c, 1), ν ∈ (µ2, νm(µ)]}. This fact will be used in the Appendix in the proofs of
Theorems 5(b) (D-optimality) and 6(b) (A- and E-optimality). Proofs of the
other results in this section are similar in spirit and are omitted.

Theorem 3. (a) For α ∈ [π, 2π], any symmetric design ξ with µ = 0 is optimal
for β0. For α ∈ (0, π), the design ξm((1 + c)−1) is optimal for β0.
(b) The design ξm(1/2) is optimal for β1.
(c) The design ξu(−min(π/2, α/2),min(π/2, α/2)) is optimal for β2.

Theorem 4. The designs ξm(1/2), ξm(wa01), and ξm(we01) are D-, A-, and
E-optimal for (β0, β1)

′
, respectively, where wa01 = {1 + (1/2 + c2/2)1/2}−1 and

we01 = (3 + c)(5 + 2c + c2)−1.

Theorem 5. (a) For α ∈ [π, 2π], the design ξu(−π/2, π/2) is φp-optimal for
(β0, β2)

′
, for all p ∈ [−∞, 1].

(b) For α ∈ (0, π), the designs ξm(wd02), ξm(wa02), and ξm((1 + c)−1) are D-,
A-, and E-optimal for (β0, β2)

′
, respectively, where wd02 = {1 − c2/4 + (c/4)(8 +

c2)1/2}−1 and wa02 = {1 + c(1/2 + c/2)1/2}−1.

Theorem 6. (a) For α ∈ [4π/3, 2π], any design ξ with M(ξ) given by (4) with
(µ, ν) = (0, 1/2) is φp-optimal for (β1, β2)

′
, for all p ∈ [−∞, 1].
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(b) For α ∈ (0, 4π/3), the designs ξm(2/3), ξm(wa12), and ξm(we12) are D-, A-,
and E-optimal for (β1, β2)

′
, respectively, where wa12 = {1 + (1/2 + c/2)1/2}−1,

we12 = 1/2 if α ∈ (0, π − arccos(1/3)], and we12 = (−2c)/(1 − c) if α ∈ (π −
arccos(1/3), 4π/3).

Remark 2. For X = [α1, α2], where −π ≤ α1 < α2 ≤ π, let ξm(w) and α0

be defined in Remark 1. Then Theorems 3(a) and 6 still hold, with α = α2 −
α1, ξu(−π/2, π/2) replaced by ξu(−π/2 + α0, π/2 + α0), and ξu(−2π/3, 0, 2π/3)
replaced by ξu(−2π/3 + α0, α0, 2π/3 + α0).
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Appendix

Proof of Lemma 1. The proof of part (a) is straightforward. Let v(x) =
(cos x − c)/(1 − c) for x ∈ X , and mi =

∫
X (v(x))idξ(x) for i = 1, 2. Then for

part (b), since v(x) ∈ [0, 1], m2 = (ν − 2cµ+ c2)(1− c)−2 ≤ m1 = (µ− c)/(1− c),
that is, ν ≤ (1 + c)µ− c = νm(µ). This proves part (b) since clearly ν ≥ µ2. For
part (c), note that m2 = (νm(µ) − 2cµ + c2)(1 − c)−2 = (µ − c)/(1 − c) = m1,
that is,

∫
X v(x)(1 − v(x))dξ(x) = 0. This implies v(x) = 0 or 1 for all x with

ξ(x) > 0, because v(x) ∈ [0, 1]. Then the support points of ξ are ±α/2 and 0,
and the symmetric design ξ is ξm ((1 − µ)/(1 − c)).

For part (d), let 1 − w(1 − t) = µ and 1 − w(1 − t2) = ν. If µ = 1, then
ν = 1 and we take w = t = 0. If µ < 1, we have t = (µ − ν)/(1 − µ) and
w = (1−µ)/(1− t). It remains to show that t ∈ [c, 1) and w ∈ [0, 1]. This follows
from the fact that µ2 ≤ ν ≤ νm(µ) = (1 + c)µ − c.

Proof of Theorem 1. By Lemma 1(d), it suffices to consider designs ξ(w, x),
and hence the information matrix M(ξ(w, x)) given by (5). Since |M(ξ(w, x))| =
{1−w +wt2 − (1−w +wt)2}(w−wt2) = w2(1−w)(1− t)3(1+ t), M(ξ(w, x)) is
nonsingular iff w ∈ (0, 1) and t ∈ [c, 1). Thus it suffices to consider M(ξ(w, x))
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for w ∈ (0, 1) and t ∈ [c, 1). Note that c = cos(α/2) ∈ (−1/2, 1), since
α ∈ (0, 4π/3).

(a) D-optimality would maximize f(w, t) ≡ |M(ξ(w, x))| for w ∈ (0, 1) and
t ∈ [c, 1). Note that w2(1 − w) is maximized at w = 2/3, for w ∈ (0, 1). Since
{(1−t)3(1+t)}′

= −2(1−t)2(1+2t) < 0 for −1/2 < c ≤ t < 1, then (1−t)3(1+t)
is maximized at t = c for t ∈ [c, 1). Thus, f(w, t) is maximized at w = 2/3 and
t = c (i.e., x = α/2).

(b) A-optimality would minimize the trace of {M(ξ(w, x))}−1, that is, min-
imize

g(w, t)=tr({M(ξ(w, x))}−1)=
2 − w + wt2

w(1−w)(1−t)2
+

1
w−wt2

=
3 + t − (2 − t2 − t3)w
w(1−w)(1−t)2(1+t)

for w ∈ (0, 1) and t ∈ [c, 1). Note that, g(0+, t) = g(1−, t) = +∞, and that

∂

∂w
g(w, t) =

(t3 + t2 − 2)w2 + 2(t + 3)w − (t + 3)
w2(1 − w)2(1 − t)2(1 + t)

= 0

has a unique root w = w(t) = (3 + t)1/2{(3 + t)1/2 + (1 + t + t2 + t3)1/2}−1

for w ∈ (0, 1). Thus, for given t ∈ [c, 1), g(w, t) is minimized at w = w(t) for
w ∈ (0, 1).

Further observe that

∂

∂s
g(w(t), s)|s=t =

2(1 + t)3w(t) + 2(t2 + 5t + 2)(1 − w(t))
(1 − t)3(1 + t)2w(t)(1 − w(t))

> 0. (8)

Clearly (8) holds for t2+5t+2 ≥ 0. If t2+5t+2 < 0, then (1+t)6(3+t)−(t2+5t+
2)2(1+t+t2+t3) = (1+t)(1+2t)(1−t)2{(1+t)−(t2+5t+2)} > 0, and again (8)
holds. By (8), there exists δ(t) > 0 such that, for s ∈ [c, 1) and 0 ≤ t − s < δ(t),
we have g(w(t), t) ≥ g(w(t), s), and thus g(w(t), t) ≥ g(w(t), s) ≥ g(w(s), s).
This shows that g(w(t), t) increases on t ∈ [c, 1) and is thus minimized at t = c,
which proves part (b).

(c) Since λ1 ≥ λ2, E-optimality would maximize min(λ2, λ3), where λ2 =
1− (1/2){w −wt2 + (h(w, t))1/2} and λ3 = w−wt2, with h(w, t) = (w−wt2)2 +
4(1 − w + wt)2. Consider first maximizing λ2 = λ2(w, t). Note that λ2(0+, t) =
λ2(1−, t) = 0, and that

∂

∂w
λ2(w, t) =

t − 1
2

{
(1 + t) − w(t3 + t2 + 3t − 5) + 4

{h(w, t)}1/2

}
= 0

has a unique root w = wm(t) = (3 + t)(5 + 2t + t2)−1 for w ∈ (0, 1). This follows
by observing that w(t3 + t2 + 3t − 5) + 4 = 1 + t > 0 and that (1 + t)2h(w, t) −
{w(t3 + t2 +3t−5)+4}2 = 4(1− t){1−w(1− t)}{w(5+2t+ t2)− (3+ t)}. Thus,
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for given t ∈ [c, 1), λ2(w, t) is maximized at w = wm(t) for w ∈ (0, 1). Note that
h(wm(t), t) = 1 + t and thus λ2(wm(t), t) = (1 − t)2{4 + (1 + t)2}−1, maximized
at t = c for t ∈ [c, 1). Thus, λ2 is maximized at w = wm(c) and t = c.

Consider now maximizing min(λ2, λ3). Note that λ2(wm(c), c) = (1−c)2{4+
(1+c)2}−1 and λ3(wm(c), c) = (3+c)(1−c2){4+(1+c)2}−1. Thus λ2(wm(c), c) >

λ3(wm(c), c) iff c2 +5c+2 < 0 iff c ∈ (−1/2, c∗), where c∗ = (
√

17−5)/2. Hence,
for c ∈ [c∗, 1),

min(λ2, λ3) ≤ λ2 ≤ λ2(wm(c), c) = min {λ2(wm(c), c), λ3(wm(c), c)} .

That is, min(λ2, λ3) is maximized at w = wm(c) and t = c.
For c ∈ (−1/2, c∗), if t ∈ [c∗, 1) the above result shows that min(λ2, λ3) is

maximized at w = wm(c∗) and t = c∗. Thus, it suffices to consider maximizing
min(λ2, λ3) for t ∈ [c, c∗] and w ∈ (0, 1). For given t ∈ [c, c∗], λ2 increases
from 0 to λ2(wm(t), t) and then decreases to 0, while λ2 linearly increases from
0 to 1 − t2 for w ∈ [0, 1]. The above paragraph shows that λ2(wm(t), t) >

λ3(wm(t), t). Thus, given t ∈ [c, c∗], min(λ2, λ3) is maximized when λ2(w, t) =
λ3(w, t) > 0, that is, when 2 − 3w(1 − t2) = {h(w, t)}1/2 , or when w = weq(t) =
(1 + 3t)(1 − t)−1(1 + 4t + 2t2)−1 for w ∈ (0, 1). Then f(t) ≡ λ2(weq(t), t) =
λ3(weq(t), t) = (1 + 3t)(1 + t)

(
1 + 4t + 2t2

)−1, which is maximized at t = c since
f

′
(t) = 2t(1 + 2t)(1 + 4t + 2t2)−2 < 0, for t ∈ [c, c∗]. Thus, for c ∈ (−1/2, c∗),

min(λ2, λ3) is maximized at t = c and w = weq(c). This proves part (c).

Lemma 2. Suppose that g(µ, ν) ≥ 0 for (µ, ν) ∈ S, g(µ, ν) increases on
(µ2, νm(µ)] for given µ ∈ (c, 1), and g1(µ) ≡ g(µ, νm(µ)) is differentiable on
(c, 1). If g1(c+) = g1(1−) = 0 and g

′
1(µ) = 0 has a unique solution µ0 ∈ (c, 1),

then max(µ,ν)∈S g(µ, ν) = g1(µ0).

The proof of Lemma 2 is straightforward and is omitted.

Proof of Theorem 5(b) (D-optimality). Maximize g(µ, ν) = (1−µ2/ν)(1−ν)
on S. Note that g1(µ) = g(µ, νm(µ)) = (1 + c)(µ − c)(1 − µ)2(µ + cµ − c)−1.
Now g

′
1(µ) = 0 gives 2(1 + c)µ2 − c(4 + c)µ + c2 = 0, which has a unique solution

µ0 = c(4+ c+(8+ c2)1/2)(4+4c)−1 for µ ∈ (c, 1). The D-optimality of ξm(wd02)
then follows from Lemmas 2 and 1(c).

Proof of Theorem 6(b) (A- and E-optimality). A-optimality would max-
imize g(µ, ν) = (1 − ν)(ν − µ2)/(1 − µ2) on S. Note that (1 + µ2)/2 < νm(µ)
iff c < 0 and µ ∈ (1 + 2c, 1). In this case, we have g(µ, ν) ≤ g(µ, (1 + µ2)/2) =
(1−µ2)/4 ≤ (1−(1+2c)2)/4 = g(1+2c, νm(1+2c)), since 1+2c > 0. Thus, it suf-
fices to consider maximizing g(µ, ν) for µ ≤ 1+2c. Then g(µ, ν) ≤ g(µ, νm(µ)) =
(1 + c)(µ − c)(1 − µ)/(1 + µ), which is maximized at µ∗ = −1 + (2 + 2c)1/2 for
µ ∈ (c, 1) and µ ≤ 1 + 2c.
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For E-optimality, by Lemma 1(d), it suffices to maximize g(w, t)=min(w(1−
w)(1−t)2, w(1−t2)) for w ∈ (0, 1) and t ∈ [c, 1). First note that w(1−w)(1− t)2

is maximized at w = 1/2 and t = c. Since (1/2)2(1 − c)2 > (1/2)(1 − c2)
iff c < −1/3, then for c ∈ [−1/3, 1), g(w, t) is maximized at w = 1/2 and
t = c. For c ∈ (−1/2,−1/3), if t ∈ [−1/3, 1), then g(w, t) is maximized at
w = 1/2 and t = −1/3. Thus it suffices to consider maximizing g(w, t) for
t ∈ [c,−1/3] and w ∈ (0, 1). For given t ∈ [c,−1/3], g(w, t) is maximized when
w(1−w)(1−t)2 = w(1−t2), for w ∈ (0, 1), which gives w = w(t) = (−2t)/(1+t).
Then g(t, w(t)) = (−2t)(1 − t) which is maximized when t = c. This completes
the proof.
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