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Abstract: In the inverse Gaussian model, the sample mean and sample recipro-

cal mean are minimum sufficient, and the distribution of sample reciprocal mean

depends only on the dispersion parameter. Traditional inference about the dis-

persion parameter considers only the sample reciprocal mean instead of the whole

sufficient statistic. This causes information loss, especially when the sample size

is small. The purpose of this paper is to utilize the information of the dispersion

parameter contained in the sample mean, and to improve the estimation of the

dispersion parameter.
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1. Introduction

The inverse Gaussian distribution was introduced by Schröedinger (1915).
Since this distribution can be regarded as the first passage time in a Brownian
motion, it has applications in fields such as economics, biology, medicine, and
reliability testing (see Chhikara and Folks (1988)). The inverse Gaussian dis-
tribution has been studied extensively by many authors, for example, Tweedie
(1945, 1946, 1957), Wald (1947), Wasan (1968) and Hsieh and Korwar (1990).

The probability density of an inverse Gaussian distribution is of the form

f(x;µ, λ) = (λ/2πx3)1/2 exp{−λ(x − µ)2/2µ2x}; x > 0, µ > 0, λ > 0,

where µ is the mean parameter and λ is called the dispersion parameter. We de-
note this distribution by IG(λ, µ). We are interested in the dispersion parameter
λ and will treat µ as a nuisance parameter.

Let X = (X1, . . . ,Xn) be a random sample of size n from IG(λ, µ). The
likelihood function is

L(λ, µ)=
n∏

i=1

f(Xi|µ, λ)=(
λ

2π
)

n
2 (

n∏
i=1

X
− 3

2
i ) exp{−nλ

2
V − nλ(X̄ − µ)2

2µ2X̄
}; λ, µ>0,

(1.1)
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where X̄ =
1
n

n∑
i=1

Xi, V =
1
n

n∑
i=1

(
1
Xi

− 1
X̄

), and (X̄, V ) is a complete sufficient

statistic for (λ, µ). Tweedie (1957) proved that the sample mean X̄ has distribu-
tion IG(nλ, µ), the statistic V has distribution ( 1

nλ)χ2
n−1, and these two statistics

are independent. The dispersion parameter λ is traditionally estimated by the
MLE (λ̂p = V −1), the UMVUE (λ̃ = n−3

n V −1) or λ̂mp = n−1
n V −1, which maxi-

mizes the modified profile likelihood function given by Barndorff-Nielsen (1983).
We notice that all these estimates depend only on V , and not on X̄. The

purpose of the paper is to find the information of λ contained in X̄ to improve
the estimation of λ.

The organization of the paper is as follows. In Section 2, we discuss the
intuitive information of λ contained in X̄. In Section 3 we review the method of
average likelihood (Hung and Wong (1996)), a method of eliminating nuisance
parameters. In Section 4, we apply this method to the inverse Gaussian model.
In the last section, we compare the information of λ contained in X̄, as discussed
in Section 2, and the information from the average likelihood. Also, we consider
the estimation of any other monotone transformation of λ.

2. Information of λ in X̄

To understand the information of λ contained in X̄, consider how the inverse
Gaussian distribution can be interpreted as the first passage time of a Brownian
motion.

Suppose that {B(t), t ≥ 0} is a one-dimensional Brownian motion process
with positive drift v and diffusion β, i.e., B(0) = 0, {B(t), t ≥ 0} has stationary
and independent increments, and for every t > 0, B(t) is normally distributed
with mean vt and variance βt. Let T be the first time the process hits 1 (see
Figure 1).

Schröedinger (1915) showed that T has the IG(λ, µ) distribution with µ =
1/v and λ = 1/β. Since X̄ is the average first passage time and λ is a reciprocal
measure of the diffusion parameter in B(t), X̄ does contain information about
λ. Intuitively, when λ is close to 0, we can see that the Brownian motion B(t)
will hit 1 very fast no matter what µ is, hence X̄ should be small with high
probability. In other words, when X̄ is large, we can conclude that λ should not
be small no matter what the value of µ.

Next, we give a theoretical interpretation of the above information. Consider
two Brownian motion processes, B1(ω, t) and B2(ω, t) with positive drifts 1/µ1

and 1/µ2, respectively, and common diffusion 1/λ. It is not difficult to see that
B1(ω, t) has the same distribution as B2(ω, t) + ( 1

µ1
− 1

µ2
)t. Let Y and Z be the

first passage times of B1(ω, t) and B2(ω, t) through 1, respectively. Then, when
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µ2 > µ1, we have Y ∼ IG(λ, µ1), Z ∼ IG(λ, µ2), and Z is stochastically greater
than Y . Therefore, for fixed a > 0, we have

inf
µ

Pλ,µ

{
X̄ ≤ a

}
= lim

µ→∞Pλ,µ

{
X̄ ≤ a

}

= lim
µ→∞

[
Φ{

√
nλ

a
(
a

µ
− 1)} + e2nλ/µΦ{−

√
nλ

a
(
a

µ
+ 1)}

]

= Φ
{
−

√
nλ

a

}
+ Φ

{
−

√
nλ

a

}

= 2Φ
{
−

√
nλ

a

}
, (2.1)

where Φ(·) is the standard normal distribution function. Examining the right
hand side of (2.1), we find that 2Φ{−

√
nλ
a } is a decreasing function of λ and

2Φ{−
√

nλ
a } → 1 as λ → 0. Hence (2.1) demonstrates that if λ is small, X̄ should

be small with high probability no matter what µ is. Thus, when a large X̄ is
observed, we infer that λ is large.
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Figure 1. Brownian Motion and first passaging time where P = (µ, 1).

3. Average Likelihood

The method we use to recover the information of λ contained in X̄ is the
average likelihood method proposed by Hung and Wong (1996). For eliminat-
ing the nuisance parameter the profile likelihood method, which maximizes the
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likelihood function for each fixed parameter of interest, is the simplest method.
Unfortunately, it does not take into account the uncertainty due to lack of knowl-
edge of the nuisance parameters, and can be misleading in both precision (degrees
of freedom) and location (bias). Therefore, for each fixed parameter of interest,
instead of maximizing the likelihood function, the average likelihood method
considers the whole likelihood function and averages it.

The construction of the average likelihood function is as follows. Let a sta-
tistical model be parameterized by (θ, ϕ), where θ is the parameter of interest
and ϕ is the nuisance parameter. Here we assume that θ is orthogonal to ϕ in the
sense that condition (M) in Hung and Wong (1996) is satisfied (in some regular
statistical models, this is equivalent to E(∂2 log f(X;θ,ϕ)

∂θ∂ϕ ) = 0). Otherwise we need
to reparameterize the nuisance parameters. After reparameterization, Hung and
Wong (1996) define the average likelihood to be

Lave(θ) = lim
n→∞

∫
Φn

L(θ, ϕ)π(ϕ|θ) dϕ∫
Φn

π(ϕ|θ) dϕ

/∫
Φn

L(θ0, ϕ)π(ϕ|θ0) dϕ∫
Φn

π(ϕ|θ0) dϕ
,

where Φ is the range of ϕ, (Φn)∞n=1 is a sequence of compact subsets of Φ such
that Φn goes to Φ as n goes to infinity, and θ0 is some fixed point. For the
choice of weighting function π(ϕ|θ) in the above formula, the idea is to put equal
mass on each small interval of equal Hellinger length. Under some regularity
conditions, Hung and Wong (1996) proved that this leads to the choice π(ϕ|θ) =
(E(− ∂2

∂ϕ2 log f(X; θ, ϕ)))
1
2 , which is the Jeffrey’s prior for ϕ when θ is fixed. It is

well known that Jeffrey’s prior has some good properties in the Bayesian approach
when the dimension of the parameter is one. However, Jeffrey’s prior only exists
when the model is regular. Therefore, the weighting function based on Hellinger
distance can be regarded as an extension of the Jeffrey’s prior to non-smooth
models, or to cases where the nuisance parameter is discrete. Details can be
found in Hung and Wong (1996). We note that in smooth models this approach
is related to the reference prior approach of Berger and Bernardo (1992). However
the issue of parameterization of the nuisance parameters, which is essential for
good results, was not discussed in the reference prior approach.

Now let X = (X1, . . . ,Xn) be a random sample of size n from IG(λ, µ). We
have

E
(∂2 log f(X;λ, µ)

∂λ∂µ

)
=

n

µ3
E(X̄) − n

µ2
=

n

µ3
µ − n

µ2
= 0,

i.e., λ is orthogonal to µ and

E
(
− ∂2 log L(λ, µ)

∂µ2

)
=

nλ

µ3
.
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Hence, we choose π(µ|λ) = µ− 3
2 , and the average likelihood function of λ is

Lave(λ) ∝
∫ ∞

0
L(λ, µ) · µ− 3

2 dµ

∝
∫ ∞

0
(

λ

2π
)

n
2 (

n∏
i=1

X
− 3

2
i ) exp{−nλ

2
V − nλ(X̄ − µ)2

2µ2X̄
} · µ− 3

2 dµ

∝ λ
n
2 exp

{
− nλ

2
V

} ∫ ∞

0
µ− 3

2 exp
{
− nλ

2X̄

(X̄

µ
− 1

)2}
dµ

∝ exp
{
− nλ

2
V

}
λ

n−1
2 ·

∫ ∞

0
exp

{
− nλ

2X̄
(t − 1)2

}
· t− 1

2 dt. (3.1)

4. Results

In this section, we compare the estimator of λ derived from the average
likelihood of λ (which contains the information of λ in X̄) and the three es-
timators of λ mentioned in Section 1 (λ̂p, λ̂mp and λ̃) which depend only on
V . To compare these estimators, we consider the Pitman (1937) criterion: if
T1 and T2 are two estimators of λ, we say that T1 is closer to λ than T2 if
P { |T1 − λ| < |T2 − λ| } > 0.5.

Before finding the information of λ contained in X̄, let us review a property
of the inverse Gaussian distribution. If Y ∼ IG(λ, µ), then, for a > 0, aY ∼
IG(aλ, aµ). For invariance, if T is an estimator of λ and X = (X1, . . . ,Xn) is a
random sample, T should satisfy

T (aX) = aT (X), for a > 0. (4.1)

It is easy to check that λ̂p, λ̂mp and λ̃ satisfy (4.1). Suppose that T1(X) and
T2(X) are two invariant estimators of λ. For a > 0, let Y = (Y1, . . . , Yn) =
(aX1, . . . , aXn). Then Y1, . . . , Yn are i.i.d. IG(aλ, aµ) and T1(Y ) and T2(Y ) are
estimators of aλ. Since

Pλ,µ { |T1(X) − λ| < |T2(X) − λ| } = Pλ,µ { |aT1(X) − aλ| < |aT2(X) − aλ| }
= Pλ,µ { |T1(aX) − aλ| < |T2(aX) − aλ| }
= Paλ,aµ { |T1(Y ) − aλ| < |T2(Y ) − aλ| } ,

we obtain the following.

Lemma 4.1. For the inverse Gaussian model, IG(λ, µ), if T1 and T2 are two
invariant estimators of λ, then Pλ,µ { |T1 − λ| < |T2 − λ| } depends on (λ, µ) only
through λ

µ .

Going further, if a likelihood function of λ, L(λ;X), satisfies L(λ;X) =
L(aλ; aX) up to a factor depending only on X and a, then we say the likelihood
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function is an invariant likelihood function of λ. For an invariant likelihood
function, it is not difficult to establish the following result.

Lemma 4.2. If T is an estimator of λ which maximizes an invariant likelihood
function, T is an invariant estimator of λ. In particular, the average likelihood
function of λ in (3.1) is invariant. Hence λ̂ave, the estimator of λ obtained by
maximizing (3.1), is an invariant estimator of λ.

By the above results, λ̂p, λ̃, λ̂mp, and λ̂ave are all invariant estimators of λ

and to compare them, we need only consider different values of λ/µ in our study.
The results are shown in Tables 1 to 3. These tables show that λ̂ave is better
than λ̂p, λ̂mp and λ̃ in all situations. In particular when the sample size is small,
λ̂ave is much better than λ̂p, λ̂mp and λ̃. In other words, the information on λ

contained in X̄ plays an important role and should not be ignored.

5. Discussion

1. Note that the average likelihood function of λ depends on both X̄ and
V , and that X̄ does contain information about λ. We will see why, from the
average likelihood point of view, the information of λ contained in X̄ matches
the intuitive and theoretical information of λ contained in X̄ , as discussed in
Section 2.

Let

k(t) =

{
1√
t
if t > 0,

0 if t ≤ 0.

From (3.1), we have

Lave(λ) ∝ exp
{
− nλ

2
V

}
λ

n
2

∫ ∞

0
exp

{
− nλ

2X̄
(t − 1)2

}
t−

1
2 dt

∝ exp
{
− nλ

2
V

}
λ

n−1
2 ·

√
2πX̄

n

∫ ∞

0
t−1/2 ·

√
nλ

2πX̄
exp

{
− nλ

2X̄
(t − 1)2

}
dt

∝ Lmp(λ) · Eλ[k(T )|X̄ ],

where Lmp(λ) is the modified profile likelihood of λ (i.e., the marginal den-
sity of V ) given by Barndorff-Nielsen (1983), and T given X̄ is distributed as
N(1, X̄

nλ). Hence we can regard Lave(λ) as Lmp(λ) multiplied by a weight func-
tion Eλ[k(T )|X̄ ] which depends on X̄ but not on V . Since Eaλ[k(T )|aX̄ ] =
Eλ[k(T )|X̄ ] and Eλ[k(T )|X̄ ] goes to 0 and 1 as λ goes to 0 and ∞ respectively,
we can conclude that, from the average likelihood function, λ should be large
when large X̄ is observed. Hence the average likelihood provides the right in-
formation about λ contained in X̄ and suggests that λ̂ave sholud be better than
estimators using only V . The following figure is the average likelihood function
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of λ due to the observation X̄, (i.e., Eλ[k(T )|X̄ ]), and illustrates the results
mentioned above.
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Figure 2. The average likelihood function of λ due to X̄. The X-axis is the
value of

√
nλ
X̄

, the Y-axis is the value of Eλ[k(T )|X̄].

2. Mean squared error (MSE) is the most common criterion for evaluating
estimators. It is not a good criterion in this study however. Our interest is in
the parameter λ in an IG(λ, µ) model. Recall that the variance of the inverse
Gaussian distribution is µ3/λ. Hence λ is a reciprocal measure of variance and
also a reciprocal measure of the diffusion parameter in the Brownian motion.
From the mean squared error point of view, the difference between λ = 40 and
λ = 50 is much larger than the difference between λ = 0.1 and λ = 1. But
when we consider distributions, the difference between λ = 40 and λ = 50 is
much smaller than the difference between λ = 0.1 and λ = 1. Hence the mean
squared error is not really suitable and we choose Pitman closeness instead.
It is also reasonable to compare two estimators of λ, T1 and T2, by considering
P {| log T1 − log λ| < | log T2 − log λ|}. By a proof similar to that of Lemma 4.1, it
is easy to show that, for the inverse Gaussian model, if T1 and T2 are two invariant
estimators of λ, then Pλ,µ {| log T1 − log λ| < | log T2 − log λ|} depends on (λ, µ)
only through λ/µ. The comparisons in terms of this new criterion are shown
in Tables 4 to 6. These tables show that there is no obvious difference between
the use of P {|T1 − λ| < |T2 − λ|} or P {| log T1 − log λ| < | log T2 − log λ|} as the
criterion.
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We might ask how λ̂ave performs if we use other scales in λ instead. To
answer this question, we consider the following.

Lemma 5.1. Let h(λ) be a monotone function of λ. Then

P{ |h(T1(X)) − h(λ)| < |h(T2(X)) − h(λ)| }
≥ P{ |T1(X) − λ| < |T2(X) − λ| } − P{ (T1(X) − λ)(T2(X) − λ) < 0 }.
From this lemma and the entries in Tables 1, 2, 3 and 7, we can see that,

for the most part, P{ |h(λ̂ave(X))− h(λ)| < |h(λ̂mp(X)))− h(λ)| } > 0.5. Thus,
λ̂ave is really better than λ̂mp no matter what kind of scale about λ we use.

3. From Tables 1 through 6, P (|λ̂ave−λ| < |λ̂other−λ|) appears to converge
to 1/2. This suggests that all these estimators are asymptotically efficient. This
result can be understood by the following argument. From Section 1, we have
λ̂p = V −1, λ̃ = n−3

n V −1 and λ̂mp = n−1
n V −1. Hence, they agree to Op(n− 1

2 ).
From the asymptotic result of average likelihood, (Hung and Wong (1996)), the
logarithm of the average likelihood is of order n and differs from the logarithm
of profile likelihood in a term of Op(1) and, therefore, λ̂ave − λ̂p = Op( 1

n). Thus,
the four estimators mentioned in this paper are equal to Op(n− 1

2 ). Since λ̂p is
well-known to be asymptotically efficient, the above argument deduce has all four
estimators asymptotically efficient.
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Appendix

Proof of Lemma 5.1. Without loss of generality, we may assume that h is
increasing. Since

P {|T1(X) − λ| < |T2(X) − λ|}
≤ P{λ<T1(X)<T2(X)}+P{T2(X)<T1(X)<λ}+P{(T1(X)−λ)(T2(X)−λ)<0}
= P {h(λ) < h(T1(X)) < h(T2(X))} + P {h(T2(X)) < h(T1(X)) < h(λ)}

+P {(T1(X) − λ)(T2(X) − λ) < 0}
≤ P {|h(T1(X))−h(λ)| < |h(T2(X))−h(λ)|}+P {(T1(X) − λ)(T2(X)−λ)<0} ,

it follows that

P {|h(T1(X)) − h(λ)| < |h(T2(X)) − h(λ)|}
≥ P {|T1(X) − λ| < |T2(X) − λ|} − P {(T1(X) − λ)(T2(X) − λ) < 0} .
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Table 1. P{|λ̂ave − λ| < |λ̂p − λ|}.
Sample Sizeλ

µ 2 3 4 5 6
0.001 0.8074 0.7366 0.6955 0.6756 0.6548
(St.E) (0.0039) (0.0044) (0.0046) (0.0047) (0.0048)
0.01 0.8106 0.7360 0.6930 0.6735 0.6574

(St.E) (0.0039) (0.0044) (0.0046) (0.0047) (0.0047)
0.1 0.8071 0.7401 0.7010 0.6712 0.6532

(St.E) (0.0039) (0.0044) (0.0046) (0.0047) (0.0048)
0.5 0.7960 0.7157 0.6771 0.6681 0.6401

(St.E) (0.0040) (0.0045) (0.0047) (0.0047) (0.0048)
1 0.7958 0.7244 0.6628 0.6432 0.6225

(St.E) (0.0040) (0.0045) (0.0047) (0.0048) (0.0048)
2 0.7797 0.7011 0.6593 0.6393 0.6212

(St.E) (0.0041) (0.0046) (0.0047) (0.0048) (0.0049)
10 0.7711 0.6943 0.6676 0.6436 0.6339

(St.E) (0.0042) (0.0046) (0.0047) (0.0048) (0.0048)
100 0.7762 0.7066 0.6821 0.6458 0.6337

(St.E) (0.0042) (0.0046) (0.0047) (0.0048) (0.0048)
1000 0.7750 0.7159 0.6750 0.6499 0.6340

(St.E) (0.0042) (0.0045) (0.0047) (0.0048) (0.0048)

Sample Sizeλ

µ 10 15 20 25 30
0.001 0.6141 0.5852 0.5720 0.5629 0.5580
(St.E) (0.0049) (0.0049) (0.0049) (0.0050) (0.0050)
0.01 0.6156 0.5818 0.5699 0.5637 0.5536

(St.E) (0.0049) (0.0049) (0.0050) (0.0050) (0.0050)
0.1 0.6102 0.5751 0.5604 0.5543 0.5430

(St.E) (0.0049) (0.0049) (0.0050) (0.0050) (0.0050)
0.5 0.5877 0.5628 0.5552 0.5518 0.5379

(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
1 0.5968 0.5679 0.5628 0.5541 0.5401

(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
2 0.5940 0.5702 0.5542 0.5467 0.5407

(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
10 0.6016 0.5712 0.5535 0.5547 0.5860

(St.E) (0.0049) (0.0049) (0.0050) (0.0050) (0.0049)
100 0.6031 0.5814 0.5644 0.5633 0.5452

(St.E) (0.0049) (0.0049) (0.0050) (0.0050) (0.0050)
1000 0.6053 0.5766 0.5611 0.5542 0.5470

(St.E) (0.0049) (0.0049) (0.0050) (0.0050) (0.0050)
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Table 2. P{ |λ̂ave − λ| < |λ̃ − λ| }.
Sample Sizeλ

µ 2 3 4 5 6
0.001 — — 0.5471 0.5400 0.5370
(St.E) (0.0050) (0.0050) (0.0050)
0.01 — — 0.5529 0.5435 0.5391

(St.E) (0.0050) (0.0050) (0.0050)
0.1 — — 0.5465 0.5493 0.5376

(St.E) (0.0050) (0.0050) (0.0050)
0.5 — — 0.5811 0.5577 0.5626

(St.E) (0.0049) (0.0050) (0.0050)
1 — — 0.5904 0.5821 0.5789

(St.E) (0.0049) (0.0049) (0.0049)
2 — — 0.5929 0.5794 0.5704

(St.E) (0.0049) (0.0049) (0.0050)
10 — — 0.5838 0.5747 0.5648

(St.E) (0.0049) (0.0049) (0.0050)
100 — — 0.5693 0.5696 0.5609

(St.E) (0.0050) (0.0050) (0.0050)
1000 — — 0.5779 0.5739 0.5591

(St.E) (0.0049) (0.0049) (0.0050)

Sample Sizeλ

µ 10 15 20 25 30
0.001 0.5355 0.5290 0.5264 0.5268 0.5223
(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.01 0.5357 0.5329 0.5328 0.5309 0.5270

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.1 0.5310 0.5362 0.5355 0.5375 0.5337

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.5 0.5535 0.5527 0.5418 0.5412 0.5458

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
1 0.5517 0.5456 0.5375 0.5339 0.5421

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
2 0.5505 0.5452 0.5478 0.5435 0.5417

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
10 0.5417 0.5454 0.5448 0.5371 0.4952

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
100 0.5470 0.5335 0.5308 0.5317 0.5317

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
1000 0.5419 0.5341 0.5300 0.5320 0.5313

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
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Table 3. P{ |λ̂ave − λ| < |λ̂mp − λ| }.
Sample Sizeλ

µ 2 3 4 5 6
0.001 0.5897 0.5414 0.5253 0.5141 0.5085
(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
0.01 0.5935 0.5487 0.5310 0.5233 0.5120

(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
0.1 0.6422 0.5992 0.5813 0.5852 0.5799

(St.E) (0.0048) (0.0049) (0.0049) (0.0049) (0.0049)
0.5 0.7786 0.7854 0.7707 0.7766 0.7637

(St.E) (0.0042) (0.0041) (0.0042) (0.0042) (0.0042)
1 0.8568 0.8374 0.7912 0.7411 0.6662

(St.E) (0.0035) (0.0037) (0.0041) (0.0044) (0.0047)
2 0.8816 0.7579 0.6485 0.5919 0.5636

(St.E) (0.0032) (0.0043) (0.0048) (0.0049) (0.0050)
10 0.6818 0.6119 0.5959 0.5784 0.5721

(St.E) (0.0047) (0.0049) (0.0049) (0.0049) (0.0049)
100 0.6811 0.6226 0.6070 0.5837 0.5762

(St.E) (0.0047) (0.0048) (0.0049) (0.0049) (0.0049)
1000 0.6716 0.6315 0.6049 0.5805 0.5760

(St.E) (0.0047) (0.0048) (0.0049) (0.0049) (0.0049)

Sample Sizeλ

µ 10 15 20 25 30
0.001 0.5082 0.5087 0.5119 0.5099 0.5107
(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.01 0.5036 0.5172 0.5199 0.5087 0.5099

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.1 0.5927 0.6183 0.6331 0.6472 0.6374

(St.E) (0.0049) (0.0049) (0.0048) (0.0048) (0.0048)
0.5 0.6624 0.5447 0.5250 0.5205 0.5105

(St.E) (0.0047) (0.0050) (0.0050) (0.0050) (0.0050)
1 0.5544 0.5274 0.5306 0.5256 0.5114

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
2 0.5493 0.5327 0.5210 0.5158 0.5145

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
10 0.5564 0.5352 0.5208 0.5229 0.5622

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
100 0.5551 0.5464 0.5317 0.5331 0.5195

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
1000 0.5611 0.5402 0.5318 0.5277 0.5206

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
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Table 4. P{ | log λ̂ave − log λ| < | log λ̂p − log λ| }.
Sample Sizeλ

µ 2 3 4 5 6
0.001 0.8031 0.7339 0.6932 0.6750 0.6536
(St.E) (0.0040) (0.0044) (0.0046) (0.0047) (0.0048)
0.01 0.8061 0.7341 0.6911 0.6725 0.6569

(St.E) (0.0040) (0.0044) (0.0046) (0.0047) (0.0047)
0.1 0.8025 0.7381 0.6981 0.6693 0.6518

(St.E) (0.0040) (0.0044) (0.0046) (0.0047) (0.0048)
0.5 0.7890 0.7123 0.6736 0.6647 0.6375

(St.E) (0.0041) (0.0045) (0.0047) (0.0047) (0.0048)
1 0.7844 0.7163 0.6558 0.6386 0.6194

(St.E) (0.0041) (0.0045) (0.0048) (0.0048) (0.0049)
2 0.7632 0.6905 0.6525 0.6338 0.6177

(St.E) (0.0043) (0.0046) (0.0048) (0.0048) (0.0049)
10 0.7527 0.6851 0.6617 0.6408 0.6313

(St.E) (0.0043) (0.0046) (0.0047) (0.0048) (0.0048)
100 0.7633 0.6987 0.6777 0.6428 0.6317

(St.E) (0.0043) (0.0046) (0.0047) (0.0048) (0.0048)
1000 0.7616 0.7083 0.6700 0.6460 0.6318

(St.E) (0.0043) (0.0045) (0.0047) (0.0048) (0.0048)

Sample Sizeλ

µ 10 15 20 25 30
0.001 0.6135 0.5851 0.5718 0.5629 0.5579
(St.E) (0.0049) (0.0049) (0.0049) (0.0050) (0.0050)
0.01 0.6151 0.5817 0.5698 0.5636 0.5536

(St.E) (0.0049) (0.0049) (0.0050) (0.0050) (0.0050)
0.1 0.6094 0.5742 0.5601 0.5542 0.5428

(St.E) (0.0049) (0.0049) (0.0050) (0.0050) (0.0050)
0.5 0.5863 0.5619 0.5549 0.5514 0.5378

(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
1 0.5954 0.5671 0.5623 0.5539 0.5400

(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
2 0.5923 0.5695 0.5540 0.5465 0.5404

(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
10 0.6009 0.5703 0.5526 0.5545 0.5856

(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0049)
100 0.6012 0.5808 0.5639 0.5629 0.5452

(St.E) (0.0049) (0.0049) (0.0050) (0.0050) (0.0050)
1000 0.6038 0.5762 0.5608 0.5541 0.5469

(St.E) (0.0049) (0.0049) (0.0050) (0.0050) (0.0050)
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Table 5. P{ | log λ̂ave − log λ| < | log λ̃ − log λ| }.
Sample Sizeλ

µ 2 3 4 5 6
0.001 — — 0.6175 0.5773 0.5627
(St.E) (0.0049) (0.0049) (0.0050)
0.01 — — 0.6255 0.5792 0.5657

(St.E) (0.0048) (0.0049) (0.0050)
0.1 — — 0.6137 0.5856 0.5620

(St.E) (0.0049) (0.0049) (0.0050)
0.5 — — 0.6376 0.5879 0.5834

(St.E) (0.0048) (0.0049) (0.0049)
1 — — 0.6432 0.6070 0.5941

(St.E) (0.0048) (0.0049) (0.0049)
2 — — 0.6433 0.6059 0.5876

(St.E) (0.0048) (0.0049) (0.0049)
10 — — 0.6398 0.6045 0.5806

(St.E) (0.0048) (0.0049) (0.0049)
100 — — 0.6274 0.5978 0.5793

(St.E) (0.0048) (0.0049) (0.0049)
1000 — — 0.6308 0.6016 0.5787

(St.E) (0.0048) (0.0049) (0.0049)

Sample Sizeλ

µ 10 15 20 25 30
0.001 0.5439 0.5339 0.5292 0.5286 0.5240
(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.01 0.5465 0.5370 0.5359 0.5325 0.5288

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.1 0.5407 0.5409 0.5374 0.5386 0.5345

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.5 0.5598 0.5555 0.5430 0.5426 0.5469

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
1 0.5565 0.5477 0.5402 0.5357 0.5437

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
2 0.5564 0.5480 0.5493 0.5451 0.5426

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
10 0.5484 0.5485 0.5469 0.5393 0.4968

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
100 0.5528 0.5367 0.5330 0.5332 0.5324

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
1000 0.5488 0.5373 0.5320 0.5329 0.5324

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
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Table 6. P{ | log λ̂ave − log λ| < | log λ̂mp − log λ| }.
Sample Sizeλ

µ 2 3 4 5 6
0.001 0.5942 0.5433 0.5266 0.5150 0.5087
(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
0.01 0.5973 0.5504 0.5321 0.5240 0.5125

(St.E) (0.0049) (0.0050) (0.0050) (0.0050) (0.0050)
0.1 0.6475 0.6004 0.5819 0.5860 0.5800

(St.E) (0.0048) (0.0049) (0.0049) (0.0049) (0.0049)
0.5 0.7805 0.7861 0.7712 0.7766 0.7637

(St.E) (0.0041) (0.0041) (0.0042) (0.0042) (0.0042)
1 0.8577 0.8373 0.7911 0.7410 0.6661

(St.E) (0.0035) (0.0037) (0.0041) (0.0044) (0.0047)
2 0.8814 0.7576 0.6483 0.5918 0.5636

(St.E) (0.0032) (0.0043) (0.0048) (0.0049) (0.0050)
10 0.6817 0.6119 0.5959 0.5784 0.5721

(St.E) (0.0047) (0.0049) (0.0049) (0.0049) (0.0049)
100 0.6810 0.6226 0.6070 0.5837 0.5762

(St.E) (0.0047) (0.0048) (0.0049) (0.0049) (0.0049)
1000 0.6716 0.6315 0.6049 0.5805 0.5760

(St.E) (0.0047) (0.0048) (0.0049) (0.0049) (0.0049)

Sample Sizeλ

µ 10 15 20 25 30
0.001 0.5084 0.5088 0.5120 0.5100 0.5108
(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.01 0.5039 0.5173 0.5199 0.5088 0.5100

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
0.1 0.5928 0.6185 0.6331 0.6472 0.6374

(St.E) (0.0049) (0.0049) (0.0048) (0.0048) (0.0048)
0.5 0.6624 0.5447 0.5250 0.5205 0.5105

(St.E) (0.0047) (0.0050) (0.0050) (0.0050) (0.0050)
1 0.5544 0.5274 0.5306 0.5255 0.5114

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
2 0.5493 0.5327 0.5210 0.5158 0.5145

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
10 0.5564 0.5352 0.5208 0.5229 0.5622

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
100 0.5551 0.5464 0.5317 0.5331 0.5195

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
1000 0.5611 0.5402 0.5318 0.5277 0.5206

(St.E) (0.0050) (0.0050) (0.0050) (0.0050) (0.0050)
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Table 7. Number of [λ̂ave − λ][λ̂mp − λ] < 0 over 10000 simulations.

Sample Sizeλ

µ 2 3 4 5 6 10 15 20 25 30
0.001 834 690 584 568 511 423 296 278 239 215
0.01 804 687 595 574 527 392 281 264 247 183
0.1 796 594 545 464 396 272 179 110 87 54
0.5 593 369 292 200 155 116 97 75 59 39
1 370 241 177 174 181 137 66 70 25 14
2 276 218 193 170 136 53 15 11 12 16
10 137 63 35 19 20 8 2 1 2 1
100 8 3 1 0 3 1 1 0 1 0
1000 0 0 0 0 1 1 0 0 0 0
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