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Abstract: In high-dimensional prediction problems, we propose subsampling the pre-

dictors prior to the analysis. Specifically, we draw features using random sampling,

and then fit a model and make predictions based on the sampled feature subset.

This greatly reduces the dimension, storage, and computational bottlenecks. We

explore this “subset regression” strategy under a linear regression framework. We

propose an ensemble method that combines multiple subset regressions, called the

ensemble subset regression (ENSURE) that reduces the uncertainty due to feature

sampling. We provide a theoretical upper bound on the excess risk of the predic-

tions computed in the subset regression, and provide theoretical support that the

ensemble can improve the performance of the subset regression. Detailed empirical

studies demonstrate that ENSURE performs well, better than methods that use all

features.

Key words and phrases: Feature subset, high-dimensional, non-sparsity, random

sampling, ridge regression, uniform sampling.

1. Introduction

High-dimensional problems arise in diverse scientific areas, and various sta-

tistical methods have been developed to deal with such problems. In this article,

we propose a new method for predicting an outcome variable Y from the feature

variables X1, X2, . . . , Xp measured on each of n individuals. We are interested in

the high-dimensional scenario in which the dimension p is much larger than the

sample size n.

However, high-dimensional prediction suffers frin the curse of dimensionality.

Classic strategies use techniques to identify important variables or components

in order to improve the prediction efficiency. These techniques include best sub-

set selection methods such as the nonnegative garrote (Breiman and Spector

(1992); Breiman (1995)), penalization–based methods such as the ridge regres-

sion (Hoerl (1962); Hoerl and Kennard (1970), the least absolute shrinkage and

selection operator (LASSO,Tibshirani (1996), and its variants (Fan and Li (2001);
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Yuan and Lin (2006); Efron et al. (2004); Zou and Hastie (2005)), the Dantzig

selector (Candes and Tao (2007)), and principal components (Bair et al. (2006)).

It is well known that prediction is a fundamental concept and aim in machine

learning, statistics, and other disciplines. In addition to prediction, the identifi-

cation of important variables and model selection are often desirable; see Hastie,

Tibshirani and Friedman (2009) for a review. Here, however, we investigate

prediction rather than variable selection, because prediction is of independent

interest. Recently, the prediction performance of high-dimensional modeling has

garnered a substantial attention. Cook, Forzani and Rothman (2013) discusses

the asymptotic characteristics of prediction in high-dimensional linear regression.

Dalalyan, Hebiri and Lederer (2017) investigates the relationship between pre-

diction performance and the correlations of the covariates for the LASSO.

In this paper, we propose a new approach to high-dimensional prediction

based on a random sampling of the predictors prior to the analysis, and perform-

ing an l2-regularized linear regression using this subset. This strategy, which we

call “subset regression,” uses the survey sampling principle, which states that

one can obtain an accurate estimate from a subsample (a proxy for the finite-

population-based estimate) taken using random sampling from a finite popula-

tion. From the subset regression, we obtain an approximate prediction that acts

as a proxy for the full high-dimensional prediction. Compared with methods that

use all available features, the subset regression greatly reduces the computational

cost, without compromising on prediction quality. We provide a theoretical upper

bound on the excess risk of a prediction from a subset regression. This bound

establishes the convergence rate for the prediction from the subset regression with

respect to the true prediction.

More interestingly, we apply the ensemble method to the subset regression

to reduce the uncertainty due to feature sampling. This is accomplished by

generating multiple subsets, each of which is used to obtain a prediction, and

then using the ensemble method to average the results. Our theoretical results

reveal the effect on performance of applying the ensemble method, and show that

the excess risk can be reduced by using this ensemble method. Empirical studies

indicate that a subset regression with the ensemble method typically yields better

predictions than those of methods based on all available features.

Our method is related to bagging (or its modification random forests) (Breiman

(1996, 1998); Ho (1998); Breiman (2001); Brylla, Gutierrez-Osunab and Quek

(2003)), which fits the same regression model many times to bootstrap-sampled

versions of the training data, and averages the results. However, our method

obtains multiple predictions by sampling features, rather than bootstrapping the



FEATURE SUBSET SAMPLING 1413

training data, as in the case of bagging. Here, we dhow the potential benefit of

using the feature sampling ensemble for high-dimensional regression problems.

This study contributes to the literature by showing that predictions using a sin-

gle subset regression perform well, and that, under ensemble learning, a subset

regression can improve the prediction efficiency. Empirically, our ensemble sub-

set regression (ENSURE) often outperforms existing high-dimensional methods

in terms of prediction accuracy. Our results suggest that, by combining multiple

predictions, it may not be necessary to use all of the features in a high-dimensional

data set.

There is a substantial body of parallel work on efficiently analyzing high-

dimensional problems by using random projections, which are used to approxi-

mate a regression function in a high-dimensional linear space using projections

onto a random subspace of a lower dimension. Maillard and Munos (2009) pro-

posed the compressed least squares regression, which was later studied further by

Fard et al. (2012). Guhaniyogi and Dunson (2015) proposed a Bayesian version of

the compressed least squares regression. High-dimension projections are also used

in other methods, such as support vector machines (Krishnan, Bhattacharyya and

Hariharan (2007)) and discriminant analysis (Cannings and Samworth (2017)).

However, we provide an alternative method based on feature sampling. To the

best of our knowledge, this is the first work to use random sampling for high-

dimensional predictions in linear models.

The remainder of the paper is organized as follows. Section 2 introduces

the subset regression based on feature sampling. We provide an upper bound

on the excess risk for the subset regression in Section 3. An ensemble method is

proposed in Section 4. We report our simulation results in Section 5, where the

performance of the subset regression is compared with that of methods that use

all available features. Section 6 concludes the paper. The proofs of the theoretical

results are provided in the Appendix.

Notation. Throughout this paper, for a matrix X ∈ Rn×p, x(k) represents the

kth column of X, xi represents the ith row of X, and xik is the (i, k)th element

of X. For a vector β ∈ Rp, we define βk as the kth element of β.

2. Subset Regression Using Feature Sampling

In this section, we first introduce feature sampling, and then study the con-

vergence properties of the feature sampling and propose a subset regression al-

gorithm for high-dimensional predictions.
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2.1. Problem setting

We study the high-dimensional prediction problem for the linear regression

model

yi = µi + εi, (2.1)

where µi is a linear function of xi such that

µi = x>i β =

p∑
k=1

xikβk, (2.2)

{εi}ni=1 are the model errors with zero mean and σ2 variance, and β ∈ Rp is a

parameter vector. We allow p � n and β to be nonsparse. Suppose we have a

finite set of training examples {(xi, yi)}ni=1 from model (2.1). We assume that,

without loss of generality, the inputs {xi}ni=1 and output {yi}ni=1 are centered.

The matrix form of the model (2.1) is

y = µ+ ε = Xβ + ε, (2.3)

where µ = (µ1, . . . , µn)>, ε = (ε1, . . . , εn)>, and X = (x>1 , . . . ,x
>
n )>. We fo-

cus on the canonical instance of a high-dimensional prediction problem, that is,

predicting µx = x>β given an input x, rather than estimating β.

2.2. Feature sampling

The idea of feature sampling is to approximate the summation term
∑p

k=1

xikβk in Eqn. (2.2) using a summation based on a feature subset obtained by

random sampling. Generate a feature subset S ⊂ U = {1, . . . , p} of size ps
(ps = |S|) by uniform sampling without replacement from the full set of features

{1, . . . , p}, that is, draw Xs = {x(k), k ∈ S} from X. Note that we apply sampling

without replacement rather than with replacement, because the latter may be less

efficient (Särndal, Swensson and Wretman (2003)) and may induce additional

collinearity. However, our analysis indicates that sampling with replacement is

applicable, in principle, for the subset regression, and its theoretical analysis is

easier than that of sampling without replacement.

Feature sampling is a standard survey sampling procedure that draws a “sam-

ple set” (subset) S of size ps from the population {xi1β1, . . . , xipβp} by uniform

sampling without replacement. The sampling ratio is fs = ps/p. We estimate the

population total in (2.2) from the subset S
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µis =
∑
k∈S

f−1s xikβk = f−1s x>isβs, (2.4)

where xis and βs are subsets of xi and β, respectively, corresponding to the sub-

set S. Note that µis is inaccessible in practice because β is unknown. However,

intuitvely, a prediction based on feature sampling should work well when µis ap-

proximates µi. Here, we explore this approximation from a theoretical viewpoint.

It is easy to verify that E(µis) = µi and

Var(µis) =
1− fs
ps

p

p∑
k=1

x2ikβ
2
k <

1

fs

p∑
k=1

x2ikβ
2
k. (2.5)

Theorem 1 follows directly from Markov’s inequality.

Theorem 1. We have that

|µis − µi| ≤ ρ−1p−1/2s p1/2

(
p∑

k=1

x2ikβ
2
k

)1/2

, (2.6)

with probability at least 1− ρ.

Theorem 1 indicates that the excess error of µis can be bounded by p
−1/2
s p1/2

(
∑p

k=1 x
2
ikβ

2
k)1/2. Therefore, we define the condition that µi is c-compatible if

there exists a constant c ≥ 0 such that

p∑
k=1

x2ikβ
2
k ≤ cpδsp−1|µi|2, for some 0 ≤ δ < 1. (2.7)

From (2.6), as ps →∞,
|µis − µi|
|µi|

= op(1), (2.8)

where we assume |µi| 6= 0. Eqn. (2.8) shows that µis can approximate µi well.

Note that |µi|2 ≤ p
∑p

k=1 x
2
ikβ

2
k, by the Cauchy–Schwartz inequality, and the

equality holds if and only if xikβk are completely homogeneous. Roughly speak-

ing, Condition (2.7) excludes some extreme sparsity cases, but the term pδs in

Condition (2.7) allows a certain degree of heterogeneity of the contribution of

each feature to the prediction. Note that our excess risk bound, provided in Sec-

tion 3, does not rely on Theorem 1. Instead, Theorem 1 provides a valuable hint

that a subset prediction may be reasonable.
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Remark 1. We perform uniform sampling for its computational simplicity and

statistical efficiency; we verify the latter in Section 5. However, uniform sampling

may lose statistical efficiency relative to data-driven importance sampling. It

would be interesting to develop a more efficient data-based importance sampling

method, because it makes sense to place more weight on those features that carry

more information or are more important.

2.3. Prediction on feature subset

From Theorem 1, we know that it may make sense to replace µ=
∑

k∈U x
(k)βk

with the approximation µ̃ = f−1s
∑

k∈S x
(k)βk to construct the least squares esti-

mate based on the feature subset. Note that the goal of this study is prediction.

Therefore, we ignore the constant fs, which can be absorbed into βk, and simply

rewrite the approximation as µ̃ =
∑

k∈S x
(k)βk without loss of generality. Fur-

thermore, subset size ps may not be much smaller, but is typically larger than

the sample size n, so we add an l2 regularized penalty to the subset regression,

that is, we minimize

RSSS(βs) =

∥∥∥∥y −∑
k∈S

x(k)βk

∥∥∥∥2 + λ
∑
k∈S

β2k, (2.9)

where λ > 0 is a penalty parameter. This is a statement about the feature subset

drawn using sampling without replacement.

By minimizing the function RSSS(βs) based on the feature subset, we obtain

the estimator β̂s,RR

β̂s,RR
=
(
X>s Xs + λIs

)−1
X>s y, (2.10)

where we use generalized cross-validation (GCV) to choose the regularized pa-

rameter λ. From (2.4) and (2.10), the prediction of µi are

µ̂i =
∑
k∈S

xikβ̂s,k,

where β̂s,k is the kth element of β̂s,RR
. Thus, the approximate fitted values of

µ = (µ1, . . . , µn)> is

µ̂s =
∑
k∈S

x(k)β̂s,k = Xsβ̂s,RR

= Xs

(
X>s Xs + λIs

)−1
X>s y. (2.11)

Our proposed subset regression is presented in Algorithm 1 below.
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Algorithm 1. Subset Regression Algorithm.

• Random Sampling Features: Draw a feature subset using uniform sampling from
the full features.

• Estimation: Solve the ridge regression problem using the feature subset, that is, min-
imize the function RSSS(βs) in Eqn.(2.9) to obtain the estimate β̂s,RR.

• Prediction: Calculate the prediction values µ̂ using Eqn.(2.11) from the feature sub-
set.

Remark 2. We use an l2-regularization (“ridge”) in our subset regression because

it is simple and it performs well. We discuss performance of our subset regres-

sion with the l2-regularization in Sections 3 and 5 from theoretical and empirical

perspectives, respectively. The regularization can reduce the mean squared error

by potentially allowing a slight increase in the bias, but dramatically reducing

the variance. Shao and Deng (2012) theoretically investigated the consistency

of the ridge estimator in a high-dimensional setting. The regression with the

l2-regularization has been shown to be effective in many applications and is re-

markable in terms of its predictive performance (Frank and Friedman (1993);

Malo, Libiger and Schork (2008)). Tibshirani (1996) and Fu (1998) compared

predictions from a LASSO and a ridge regression, and found that the latter is

competitive, even in some sparse settings.

3. An Upper Bound on Excess Risk

In this section, we provide an upper bound on the excess risk of the subset

regression,

R(µ̂s) = E‖µ̂s − µ‖2.

We re-express µ̂s by applying the Sherman–Morrison–Woodbury update. The

classical method for a low-rank update of an inverse of a matrix is as follows:

for V ∈ Rn×m and D ∈ Rm×m, (V>V + D)−1 = D−1 − D−1V>(VD−1V> +

I)−1VD−1. We apply this equality to
(
X>s Xs + λIs

)−1
, yielding the equation(

X>s Xs + λIs

)−1
=λ−1Is − λ−1X>s

(
λIn + XsX

>
s

)−1
Xs. (3.1)

By inserting (3.1) into (2.11), we have

µ̂s − µ =(XsX
>
s + λIn)−1XsX

>
s (Xβ + ε)−Xβ

=− λ(XsX
>
s + λIn)−1Xβ + (XsX

>
s + λIn)−1XsX

>
s ε
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=:dB + dV . (3.2)

The term dB = −λ(XsX
>
s +λIn)−1Xβ is the bias of the subset regression predic-

tion, and dV = (XsX
>
s +λIn)−1XsX

>
s ε is the noise that determines the variance.

In the following, we investigate the performance of the subset regression as

λ→ 0, that is,

dB → −[In −Xs(X
>
s Xs)

+X>s ]Xβ, and

dV → Xs(X
>
s Xs)

+X>s ε.

Note that the bias term of the ridge regression based on all available features

goes to zero as λ → 0, but the bias dB of our subset regression does not. Thus,

compared with the ridge method that uses all features, the error caused by the

bias in the subset regression is larger. On the other hand, the error caused by the

variance in the subset regression may decrease because the dimension decreases

from p to ps.

Based on the decomposition of Eqn.(3.2), we are now ready to present our

main theoretical result, that is, an upper bound on the excess risk of µ̂s.

Theorem 2. Assume that X is full row rank and denote d1 ≥ · · · ≥ dn > 0 as

the ordered nonzero eigenvalues of p−1XX>. Define a = max{‖x(k)‖2}pk=1. Let

1 > ρ, κ > 0. A feature subset of size ps is drawn randomly from all p features by

uniform sampling without replacement. If

ps >

(
ln
n

ρ

)
κ/3 + ad−1n

κ2/2
, (3.3)

then

R(µ̂s) ≤
1

(1− κ)2

[
n∑
i=1

λ2µ2i
(pdi + λ)2

+ σ2
n∑
i=1

pdi
pdi + λ

]
,

with probability at least 1− ρ.

Now, we examine the bound on R(µ̂s) in Theorem 2. The bound has three

terms: the risk from the model approximation, represented by
∑n

i=1 λ
2µ2i /

(pdi + λ)2, the risk from the noise, represented by σ2
∑n

i=1 pdi/(pdi + λ), and

the risk from the subsampling, represented by (1 − κ)−2. The first two terms

are the risk from the ridge regression based on all available features. When

λ goes to zero, the first term becomes small, and the second term becomes

large. The third term (1 − κ)−2 controls the extra risk from the subsampling
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step. Therefore, Theorem 2 provides a theoretical foundation for the subset re-

gression showing that the extra risk can be small when the feature subset size

ps is sufficiently large. This property indicates that the computationally cheap

algorithm is also statistically efficient for high-dimensional predictions. Next,

we discuss the requirement on ps in Eqn. (3.3). Assuming each element in X

is bounded, we have a = max{‖x(k)‖2}pk=1 = O(n). Assuming that each xi
is independent and identically distributed (i.i.d.), p−1XX> is close to a diago-

nal matrix that has the same diagonal element. This implies that di and d−1i
are constants of order O(1). Thus, in Eqn. (3.3), given constants κ and ρ,

(ln(n/ρ))(κ/3 + ad−1n )/(κ2/2) = O(n log n), implying that the requirement on

ps can still be much smaller than p, given that n � p in our high-dimensional

setting. As a result, the feature subset size ps that satisfies Eqn.(3.3) can be

dramatically smaller than p of the original features.

To choose ps, we provide a cross-validation strategy, and examine its nu-

merical performance in the empirical studies below. Specifically, equation (3.3)

describes the theoretical relationship between the feature subset size and the

approximation accuracy, that is, ps = O(n log n). We show empirically using

simulated and real data sets in Section 5 that the risk based on the subset re-

gression procedure can approach that based on the full model as ps increases.

Therefore, we suggest choosing ps using ps = cn, where c is some integer that

can be chosen using validation.

Remark 3. Theorem 2 does not require the result in Theorem 1, that is, we do

not require the term
∑p

k=1 ‖x
(k)‖2β2k to be as small as it is in Theorem 1. The

condition in Theorem 2 is that the subset size ps needs to be sufficiently large

enough relative to the sample size n.

Remark 4. Although we choose simple uniform sampling, we can also use un-

equal sampling dependent on X for the proposed subset regression and the ex-

cess risk analysis. Specifically, assume that we sample the subset S by unequal

sampling without replacement from the full features proportional to the sam-

pling probabilities {π1, . . . , πp}, such that
∑p

k=1 πk = 1. The objective function

Eqn.(2.9) is replaced by

RSSπS (βs) =

∥∥∥∥y −∑
k∈S

1

πk
x(k)βk

∥∥∥∥2 + λ
∑
k∈S

1

πk
β2k.

Following the process of the subset regression, we get the approximate prediction

of µ,
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µ̂s = Xs

(
X>s Xs + λΦs

)−1
X>s y,

where Φs is the submatrix of Φ = diag{π1, . . . , πp} corresponding to the subset

S. Moreover, Theorem 2 still holds when ps > (ln(n/ρ))(κ/3 +Ad−1n )/(κ2/2),

where A = max{(pπk)−1‖x(k)‖2}pk=1. We supply the proofs in Appendix A.

4. Subset-Ensemble Prediction

In this section, we show that a mixture of subset regression predictions, which

we call subset-ensemble prediction, yields a more accurate prediction than that of

a single subset regression. This result is of great practical significance, given the

prevalence of distributed computing frameworks in large-scale learning problems.

The ensemble algorithm naturally fits a distributed computing environment in

which the computational cost is roughly the same as that of the standard subset

regression. The algorithm is very simple and easily implemented. Assume there

are T predictions from the subset regression. Then, treat each prediction as

though from an expert, and combine T experts to obtain an improved prediction.

We present the ensemble process in Algorithm 2 below.

Algorithm 2. Ensemble Subset Regression Algorithm.

• Repeat: Repeat the following steps T times:

(a) Draw a feature subset: A feature subset of size ps is sampled from the full
features;

(b) Make a single prediction: A prediction from subset regression has output
µ̂s,t;

• Combine: Majority vote using the equation.

µ̂ensure = T−1
T∑

t=1

µ̂s,t, (4.1)

From Algorithm 2, we get the risk of µ̂ensure,

R(µ̂ensure) = E‖µ̂ensure − µ‖22 = E

∥∥∥∥ 1

T

T∑
t=1

(µ̂s,t − µ)

∥∥∥∥2
2

.

We compare the risks R(µ̂ensure) and R(µ̂s) in the following theorem.
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Theorem 3. Denote σ2B=E‖dB‖2−‖E(dB)‖2 and σ2V =E(‖dV ‖2|y)−‖E(dV |y)‖2.

R(µ̂s)−R(µ̂ensure
s ) =

(
1− 1

T

)
{σ2B + Em(σ2V )}, (4.2)

where “Em()” refers to the expectation over the model (2.1).

Theorem 3 tells us an interesting observation about the subset-ensemble

method. The risk performance depends on three factors: σ2B from dB, σ2V from

dV , and the ensemble number T . Here, σ2B denotes the variability of ‖dB‖ from

the feature sampling, and σ2V denotes, fixing the responses y, the variability of

‖dV ‖ from the feature sampling. After introducing the ensemble, the excess risk

decreases by (1 − 1/T ){σ2B + Em(σ2V )}. In other words, the ensemble algorithm

improves the performance by reducing the risk from the variabilities of ‖dB‖ and

‖dV ‖. From a computational viewpoint, although the subset-ensemble predic-

tion requires T times more time than the single subset regression, the ensemble

version can be easily parallelized, because all T experts can be computed simul-

taneously. Thus, for a cluster of T machines, the running time complexity of a

subset-ensemble prediction is nearly equal to that of a single subset regression.

Choice of T . Theorem 3 shows that the benefit of the ensemble narrows as T

increases. Empirical studies also verify this observation. In practice, it is enough

to set T = 10 such that Algorithm 2 has a sufficiently nice prediction.

5. Numerical Experiments

In this section, we conduct detailed experiments to assess the performance

of the subset regression. We compare ENSURE with several representative high-

dimensional methods: the ridge regression (ridge), LASSO, sure independence

screening (SIS), and random forests (RF). We implement the LASSO, SIS, and RF

using the R packages glmnet (Friedman, Hastie and Tibshirani (2010)), SIS (Fan

and Lv (2008)), and randomForest (Breiman (2001)), respectively. The default

settings are used in the implementation of these methods. In the implementation

of SIS, we use the SCAD penalty (default) and tune the regularization parameter

using the BIC. The penalizing parameters for the subset regression and ridge

regression are selected using GCV.

In Section 5.1, we report the results of extensive simulation experiments. In

Section 5.2, we apply ENSURE to two real data sets. In both sets of examples,

the proposed method outperforms the methods based on all available features.
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5.1. Simulation studies

We generated data from the linear model yi = µi + εi with µi = 1 + x>i β,

for i = 1, . . . , n, where εi ∼ N(0, σ2). For evaluation purposes, we consider

two design matrix settings: (1) autoregressive correlation xi ∼ N(0,Σ), where

Σij = ρ|i−j| (referred as to the AR data set); and (2) an input matrix from a

heavier tail, that is, xi is drawn independently from a t2 distribution (referred as

to the T2 data set). Specifically, xi = zi/
√
u, where zi ∼ N(0,Σ) independent of

2u ∼ χ2
2. To control the signal-to-noise ratio, we define σ2 = n−1

∑n
i=1(µi−µ̄)2/r,

where µ̄ = n−1
∑n

i=1 µi, and set r to three for all experiments. For β, we consider

the following scenarios:

(A) The first 10 regression coefficients are drawn uniformly between −1 to 1,

and the rest are zero;

(B) The first 100 regression coefficients are drawn uniformly between −0.5 to

0.5, and the rest are zero;

(C) Regression coefficients are drawn uniformly between −0.1 to 0.1.

We normalize β so that ‖β‖ = 1. The third scenario is referred to as the Dense

case, and scenario A (Sparsity 1 ) is much sparser than scenario B (Sparsity 2 ).

The sample size n = 50, the data dimension is p = 10,000, and ρ = 0.5 for the

main experiments. We also consider other settings of (n, p) and ρ to further our

understanding and for comparison purposes. Because the true µi is known in the

simulation, we measure the performance with MSE =
∑n

i=1(µ̂i − µi)2, where µ̂i
are the predictions from the different methods.

Performance of our method. We evaluate the performance of ENSURE. We

set the ensemble number T equal to 20 and the subset size to ps = cn, where c is

five-fold cross-validated among {0.5, 1, 2, 4, 6, 10} based on only one feature sub-

set sampled from the full features. We plot the results for AR and T2 in Figure

1. From the plots, we have several observations. (a) The MSE decreases as the

number of ensembles, T , grows. Combining the ensemble, the subset regression

even outperforms the regression based on the full features remarkably. However,

effect of increasing T becomes weak after T > 10, suggesting, that we should

choose T = 10 in practice. (b) For the AR and T2 settings, the ensemble subset

prediction outperforms the methods based on the full features, except for Dense

of T2. Note that combining 10 predictions based on a subset of size ps = 500

uses at most 5,000 features, but it achieves much better performance than that of

the methods based on all features. (c) Comparing the Sparsity 1, sparsity 2, and
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Figure 1. The performance of the ensemble method for the AR and T2 settings: the
MSE against the ensemble number. From left to right: Sparsity 1, sparsity 2, and Dense.
From top to bottom: AR and T2. The dashed lines correspond to the ridge, LASSO, RF,
and SIS.

Dense cases yields a useful observation. Figure 1 tells us that ENSURE performs

well across all sparsity scenarios. It attains relatively better performance as the

coefficients become sparser. This is a striking observation. When the coefficients

are very sparse, the probability of obtaining the important variables using a sub-

set regression is tiny. Thus, when our aim is prediction, identifying the important

variables may not be very necessary, because of the curse of dimensionality and

possible correlation among the variables. Therefore, for high-dimensional predic-

tion, ENSURE provides statistical benefits and is computationally simple.

Effect of the ps choice. We verify the performance of the ensemble subset

prediction under various ps ∈ {50, 100, 200, 300, 500}, and report the results in

Figure 2. The size ps has some effect on the performance. The case of ps = 200

performs best for Sparsity 1, Sparsity 2, and Dense. Therefore, the ensemble

subset prediction may require that ps be not too large. More importantly, we
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Figure 2. The performance of the ensemble method for the AR setting. Various ps ∈
{50, 100, 200, 300, 500} and the ps choice by CV are considered.

check the effect of the ps choice using five-fold CV. In general, the CV choice does

not attain the best performance, but it performs well across all sparsity scenarios.

Effect of correlation of features. We next check how well ENSURE performs

when the correlation among the features varies. We consider different ρ in the

AR setting. To study the effect of varying ρ, we set ρ = 0, 0.8. Figure 4 shows

that our approach’s good performance does not rely on correlations among the

features, making it suitable for a variety of applications.

Effect of (p, n). We next consider different settings of (p, n), specifically, (p, n) =

(1000, 20) and (500, 20), and report the results in Figure 3. Our method works

well under both settings. This results shows the robustness of our method to

(p, n). By comparing (p, n) = (1000, 20) and (p, n) = (500, 20), we see that our

approach works better when p is bigger with respect to n. This suggests that

ENSURE may lose its advantage when p is not much larger than n. This makes

sense, because the subset regression has a requirement on ps with respect to n,

as shown in Theorem 2.

Computational time comparison. Finally, we compare the methods in terms

of their computational costs. In Table 1, we report the computational cost

of ENSURE under three settings (n, p) = (20, 10K), (50, 10K), (50, 50K), and

(100, 100K). To show the computational advantage of ENSURE, we also re-

port the computation times for five other methods. The ridge regression is solved

using a QR decomposition. The LASSO is implemented using the R package

“glmnet” (Friedman, Hastie and Tibshirani (2010)), RF is implemented using

the R package “randomForest” (Breiman (2001)), and SIS is implemented using

the R package “SIS” (Fan and Lv (2008)). In all cases, we use the default pa-

rameters. The computation is performed on a computer with a 3 GHz Intel i7
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(b) (p, n) = (500, 20)

Figure 3. The performance of the ensemble method under various (p, n). The input X
is from AR under ρ = 0

processor, 8 GB memory, and OS X operation system. From Table 1, we see that

when p is relatively large compared to n, then ENSURE requires a far shorter

computation time than those of the methods based on the full features. In par-

ticular, the computational burden of RF and SIS increases much faster as n or

p becomes large. In contrast, ENSURE greatly reduces the computational cost,

for the following reasons: (i) the subset regression and the CV procedure are

calculated using a single ridge regression from the feature subset; (ii) simple ran-

dom sampling costs little; and (iii) the proposed ensemble procedure is a linear

function of the ensemble number.

5.2. Two real data sets

We now analyze two real data sets. The first is the gene microarray RMA

(Scheetz et al. (2006)), which consists of gene expression levels of 31,041 genes

obtained from 120 rats, that is, (n, p) = (120, 31041). The target variable is

the TRIM32 gene. The other data set is PUL (Ziyatdinov et al. (2015)), from
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Figure 4. The performance of the ensemble method for AR under ρ = 0 and 0.8.

Table 1. Computational cost (seconds), including user and system time for ENSURE,
(T = 1, 5, and 10) and four methods that use all available features: ridge, LASSO, RF,
and SIS. The results are average values of 20 runs.

(n, p) time
T (ensure)

ridge LASSO RF SIS
1 5 10

(20, 10K)
User time 0.04 0.05 0.06 0.12 0.48 3.35 8.15

System time 0.00 0.00 0.00 0.01 0.15 0.02 0.13

(50, 10K)
User time 0.17 0.27 0.33 0.27 0.79 15.0 19.43

System time 0.01 0.03 0.03 0.02 0.20 0.07 0.52

(50, 50K)
User time 0.22 0.31 0.38 1.45 3.99 91.68 91.02

System time 0.03 0.07 0.07 0.07 0.94 0.66 2.53

(100, 100K)
User time 1.48 1.86 2.40 8.04 14.87 529.4 284.5

System time 0.34 0.35 0.39 0.42 1.41 4.07 17.78

the UCI machine learning repository, that contains 58 time series acquired from

16 chemical sensors under a gas flow modulation. The sensors were exposed to

gaseous binary mixtures of acetone and ethanol at different concentrations. We
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Figure 5. The performance of the ensemble method for the data sets RMA and PUL.

use the first chemical sensor, and the response variable is acetone concentration.

There are 7,500 features, so (n, p) = (58, 7500).

Similarly to the analysis on simulated data sets, we compare ENSURE with

methods based on the full features. Because we do not know the true parameters,

we calculate the prediction performance using test data. Both data sets were

divided into two parts, training and testing data sets, by randomly selecting half-

and-half observations. The results of 500 replicated experiments are summarized

in Figure 5, where “MSPE” is the prediction error for the test data set defined

as MSPE = E‖ŷ − y‖2, and the values are arithmetic means of 200 replicated

experiments.

For RMA, the ENSURE method outperms the high-dimensional methods

based on the full features. For PUL, ENSURE obviously beats the methods based

on the full features. These results are consistent with our observations based on

the synthetic data sets. They show that ENSURE may be a better option for

high-dimensional prediction than using methods based on all available features.

6. Conclusion

The analysis of high-dimensional data has attracted a lot of attention. The

prediction performance and computational cost are problematic when predictors

os high dimensional which is not unusual. We have proposed a novel and easily

implemented algorithm for high-dimensional prediction. We perform a subset re-

gression based on a feature subset that is chosen by sampling without replacement

uniformly. Moreover, we apply the ensemble method to the subset regression. We

have provided a theoretical justification for this procedure by means of an excess

risk analysis. We have conducted intensive experiments to demonstrate that the
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procedure exhibits has promising performance.

There are three issues to address in future research. First, it is still unclear

why ENSURE does work in many empirical studies, such as the synthetic and real

data sets investigated here. Theorem 1 provides a bound without considering the

estimation process of the coefficients, and Theorem 2 provides an upper bound

on the excess risk using the randomness from sampling. However, the mechanism

behind these remains unaddressed. Understanding this mechanism can help us

know when and where the subset regression performs well for high-dimensional

prediction.

Second, we construct our subset regression by l2-regularized least squares for

its theoretical convenience. Constructing alternative subset regression functions

by using other high-dimensional methods, for example, l1-regularization or other

related methods, deserves additional research.

Lastly, we use the simplest sampling, uniform sampling, owing to the advan-

tages of computational cost and theoretical convenience in terms of approxima-

tion accuracy. However, from an approximation accuracy viewpoint, there may

be more efficient sampling methods than uniform sampling, because the features

of the data sets may be heterogeneous. Therefore, developing an efficient data-

driven sampling method is worthy of investigation.
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Appendices

A. Proofs of the Upper Bound of the Subset Regression

Here we provide the excess risk bound under the general sampling frame-

work rather than just uniform sampling; that is, we assume that the subset S

is drawn by sampling from features {1, . . . , p} proportional to the probabilities

{π1, . . . , πp}. Let Φ = diag{πk}pk=1, and Φs is the partition of Φ corresponding

to the subset S. Note uniform sampling is a specific case, i.e., πk = 1/p, so

Theorem 2 will be proved by setting πk = 1/p.
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A.1. Two lemmas

Lemma A.1. Let M = XX> + λIn and ∆ = XX> − XsΦ
−1
s X>s . Under the

event that

λmax(M−1/2∆M−1/2) ≤ κ (A.1)

holds, we have

‖dB‖2 ≤ (1− κ)−2λ2‖M−1Xβ‖22,
‖dV ‖2 ≤ (1− κ)−2‖M−1XX>ε‖2.

Proof. Let Ms = XsΦ
−1
s X>s + λIn. Firstly, we investigate the bias term. Since

M−1/2∆M−1/2 = In −M−1/2MsM
−1/2,

M1/2M−1
s M1/2 = (In −M−1/2∆M−1/2)−1. (A.2)

From (A.2),

‖dB‖2 =λ2‖M−1
s Xβ‖22 = λ2‖M−1/2M1/2M−1

s M1/2M1/2M−1Xβ‖22

≤λ2
[
λmax(M1/2M−1

s M1/2)
]2
‖M−1Xβ‖22

≤λ2
[
1− λmax(M−1/2∆M−1/2)

]−2
‖M−1Xβ‖22. (A.3)

If λmax(M−1/2∆M−1/2) ≤ κ, so from (A.3) we get

‖dB‖2 ≤ (1− κ)−2λ2‖M−1Xβ‖22.

Secondly, we investigate the variance term. Denote K = XX>. From (A.2),

we thus have

‖dV ‖2

=
∥∥M−1

s (Ms − λI)ε
∥∥2 =

∥∥∥M−1/2M1/2M−1
s M1/2M−1/2(Ms − λI)ε

∥∥∥2
≤
[
1− λmax(M−1/2∆M−1/2)

]−2 [
λmax(K−1/2(K−∆)K−1/2)

]2
‖M−1Kε‖2

≤
[
1− λmax(M−1/2∆M−1/2)

]−2
‖M−1Kε‖2.

Thus, we have that, if λmax(M−1/2∆M−1/2) ≤ κ,

‖dV ‖2 ≤ (1− κ)−2‖M−1Kε‖2.
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Lemma A.2. Denote d1 ≥ d2 ≥ · · · ≥ dn > 0 as the eigenvalues of p−1XX>.

Let A = max{(pπk)−1‖x(k)‖2}pk=1. We have, for all t > 0,

Pr
(
λmax(M−1/2∆M−1/2) > t

)
≤ n exp

{
−pst2/2

d−1n A+ t/3

}
. (A.4)

Proof. Motivated by Bach (2013), we study the probability bound under the

sampling with replacement, then apply the theorem in (Gross and Nesme (2010))

to get the bound under the sampling without replacement. Let ∆with, which has

the same expression as ∆, be obtained by sampling independently p features with

replacement. We thus have

M−1/2∆withM
−1/2 =

ps∑
j=1

1

ps

(
p∑

k=1

x(k)M−1(x(k))> −
p∑

k=1

Ikj
πk
x(k)M−1(x(k))>

)

=:

ps∑
j=1

Mj ,

where Ikj is a random variable such that Pr(Ikj = 1) = πi for the k-feature during

the jth draw. From the process of sampling with replacement, random matrices

series {Mj}psj=1 are independently distributed with E(Mj) = 0 and

E(M2
j ) =

1

p2s

[
p∑

k=1

1

πk
{x(k)M−1(x(k))>}2 − (M−1/2XX>M−1/2)2

]
. (A.5)

Denote d1 ≥ d2 ≥ · · · ≥ dn > 0 as the eigenvalues of p−1XX>. Let A =

max{(pπk)−1‖x(k)‖2}pk=1. From (A.5), we have that

λmax

 ps∑
j=1

E(M2
j )

 =
1

ps
λmax

(
AM−1XX>M−1 − (M−1/2XX>M−1/2)2

)
≤ p−1s Aλmax

(
pM−1XX>M−1

)
= p−1s A

dn
(dn + p−1λ)2

< p−1s Ad−1n . (A.6)

On the other hand, from the matrix norm inequality

λmax(Mj) ≤
1

ps
λmax

(
M−1/2XX>M−1/2

)
=

1

ps

d1
d1 + p−1λ

< p−1s . (A.7)

From (A.6) and (A.7), we apply the matrix Bernstein inequality of Tropp (2012)
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into ∆with to obtain its probability bound:

Pr(M−1/2∆withM
−1/2 > t) ≤ n exp

(
−pst2/2

(d−1n A+ t/3)

)
. (A.8)

By Gross and Nesme (2010), we have that for all g ∈ R

E[tr{exp(gM−1/2∆M−1/2)}] ≤ E[tr{exp(gM−1/2∆withM
−1/2)}]. (A.9)

Combing (A.8) and (A.9) leads to the desired result.

A.2. Proof of theorem 2

From the expression of µ̂s − µ in Eqn.(3.2) of Section 3, we have that

E‖µ̂s − µ‖2 =E‖dB‖2 + E‖dV ‖2. (A.10)

Write the event that for 0 < κ < 1,

E = {λmax(M−1/2∆M−1/2) < κ}.

So if the event E holds, then from Lemma A.1

E‖µ̂s − µ‖2 ≤(1− κ)−2(λ2‖M−1Xβ‖22 + E‖M−1XX>ε‖2)
=(1− κ)−2[λ2‖(XX> + λIn)−1µ‖2 + σ2‖In − λ(XX> + λIn)−1‖2F ].

(A.11)

Notice that

‖(XX> + λIn)−1µ‖2 =

n∑
i=1

µ2i
(pdi + λ)2

, (A.12)

‖In − λ(XX> + λIn)−1‖2F =

n∑
i=1

pdi
pdi + λ

, (A.13)

On the other hand, from Lemma A.2 if ps > (lnn/ρ)(κ/3 + d−1n A)/(κ2/2), then

Pr (E) ≥ 1− ρ. (A.14)

Combining (A.11), (A.12), (A.14) and Theorem 1, we have that

E‖µ̂s − µ‖2 ≤ (1− κ)−2

[
λ2

n∑
i=1

µ2i
(pdi + λ)2

+ σ2
n∑
i=1

pdi
pdi + λ

]
(A.15)

with probability at least 1− ρ. Therefore, Theorem 2 is proved.
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B. Proof of Theorem 3

From the process of the subset-ensemble prediction, we have that

‖µ̂ensure − µ‖ =

∥∥∥∥ 1

T

T∑
t=1

µ̂s,t − µ
∥∥∥∥ =

∥∥∥∥ 1

T

T∑
t=1

(µ̂s,t − µ)

∥∥∥∥.
It follows that

E‖µ̂ensure − µ‖2 = E

∥∥∥∥ 1

T

T∑
t=1

(µ̂s,t − µ)

∥∥∥∥2

=
1

T 2

∑
t1 6=t2

E(µ̂s,t1 − µ)>(µ̂s,t2 − µ) +

T∑
t=1

E‖µ̂s,t − µ‖2


=
1

T 2

∑
t1 6=t2

Em

(
[E(µ̂s,t1 − µ|y)]>[E(µ̂s,t2 − µ|y)]

)
+

T∑
t=1

E‖µ̂s,t − µ‖2


=

(
1− 1

T

)(
‖E(dB)‖2 + Em‖E(dV |y)‖2

)
+

1

T
(E‖dB‖2 + E‖dV ‖2) (B.1)

where the 3rd equality is from that each feature subset is independently and

repeatedly in our ensemble process, µ̂s,t : t = 1, . . . , T can be considered as i.i.d.

random vectors.

E‖µ̂s − µ‖2 − E‖µ̂
ensure
s − µ‖2

=

(
1− 1

T

){
E‖dB‖2 + E‖dV ‖2 − ‖E(dB)‖2 − E‖E(dV |y)‖2

}
=

(
1− 1

T

)[
E‖dB‖2 − ‖E(dB)‖2 + Em{E(‖dV ‖2|y)} − E‖E(dV |y)‖2

]
=

(
1− 1

T

)
{σ2B + Em(σ2V )}.

Thus, Theorem 3 is proved.
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