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Abstract: We investigate approximations for the mean squared prediction error

in a linear regression model with correlated errors. The correlation structure is

assumed to be the family of exponential correlations widely used in practical appli-

cations of computer experiments. Well known members of this family include the

Ornstein-Uhlenbeck process as well as stochastic processes with analytic sample

paths. Special emphasis is put on the situation when the true values of the param-

eters involved in the correlation structure are on the boundary of the parameter

space.
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1. Introduction

In the design and analysis of computer experiments, the deterministic output
y(t) of a computer code for inputs t ∈ T is commonly considered as a realization
of a Gaussian stochastic process Y. A widely accepted model is

Y (t) = β + Z(t), β ∈ RI . (1)

We take the input t to be d-dimensional in T = [0, 1]d. In (1), the Gaussian
process Z is assumed to have zero mean, constant variance σ2, and a correlation
structure given by Corr(Z(s), Z(t)) = Cδ(|s − t|) for s, t ∈ T, which depends on
some unknown parameter (vector) δ. Therein, by the absolute value of a vector,
we mean the vector obtained by taking absolute values of its components. In
one dimension, the processes considered will thus be stationary, and in two and
more dimensions we are led to homogeneous random fields (see Yaglom (1987),
Section 21).

More general models can be considered as well. The constant mean may
be replaced by a trend term of the form

∑k
j=1 βjfj(t) with unknown parameters

β1, . . . , βk and given functions f1, . . . , fk : [0, 1]d → RI . However, it has been
observed that the model (1) performs sufficiently well in practical applications
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(see for example Welch et al. (1992)). We could also incorporate nonstationary
covariance structures as those of the Brownian motion or the Brownian sheet. As
very often there is no prior knowledge that would justify any of these assumptions,
we will not pursue this any further here.

Long running times of the computer code are not unusual. Therefore, only
a limited number of runs for inputs D = {t(1), . . . , t(n)} ⊂ T can be made,
leading to observations YD = (Y (t(1)), . . . , Y (t(n)))T . We use linear predictors
of the form cδ(t)T YD for predicting Y (t) at untried inputs t ∈ T \ D. Following
Sacks et al. (1989), the vector cδ(t) can be found by minimizing the mean squared
prediction error

MSE(cδ(t)T YD) = E
[(

cδ(t)T YD − Y (t)
)2]

(2)

with respect to cδ(t) under the unbiasedness constraint cδ(t)T 1 = 1, wherein
1 = (1, . . . , 1)T . Let Rδ be the n × n correlation matrix of YD and let rδ(t) be
the n × 1 vector of correlations between YD and Y (t). Then minimization of (2)
leads to

cδ(t) = R−1
δ rδ(t) + R−1

δ 1
1 − 1T R−1

δ rδ(t)
1T R−1

δ 1
,

from which we find the best linear predictor Ŷδ(t) of Y (t) to be

Ŷδ(t) = cδ(t)T YD =
1T R−1

δ YD

1T R−1
δ 1

+ rδ(t)T R−1
δ

(
YD − 1T R−1

δ YD

1T R−1
δ 1

1
)
. (3)

Again, the subscript δ denotes dependence on the parameter δ of the correlation
function.

Assuming δ known, the mean squared prediction error of Ŷδ(t) is

MSE(Ŷδ(t)) = σ2
(
1 − rδ(t)T R−1

δ rδ(t)
)

+
σ2

1T R−1
δ 1

(
1 − rδ(t)T R−1

δ 1
)2

. (4)

The first part on the right hand side of (4) is the conditional variance of Y (t) given
the observations YD. This corresponds to the mean squared error in case of known
mean β. The second part considers the additional variability due to estimating
β, as, for the maximum likelihood estimate β̂, we have Var(β̂) = σ2/1T R−1

δ 1.

As a measure of uncertainty of the predictor Ŷδ(t), the mean squared error
is used in two ways: First, to choose locations t(1), . . . , t(n) which provide highest
possible accuracy in the predictions, we can look at optimal design problems of
the form

min
D⊂T :|D|=n

max
t∈T

MSE
(
Ŷδ(t)

)
or min

D⊂T :|D|=n

∫
T

MSE
(
Ŷδ(t)

)
dt. (5)
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The problem of finding optimal robust designs with respect to the integrated
mean squared error is considered in Sacks et al. (1989). Second, (1−α)-prediction
intervals for Y (t) are usually found via

Ŷδ(t) ± q1−α/2

√
̂

MSE
(
Ŷδ(t)

)
, (6)

wherein q1−α denotes the upper 100α-percentage point of the standard normal
distribution. The estimate of MSE(Ŷδ(t)) in (6) is generally obtained by replacing
δ in (4) by a suitable estimate δ̂.

To compute predictions, the unknown parameter δ in (3) is commonly re-
placed by the maximum likelihood estimate δ̂, leading to a predictor Ŷδ̂(t). The
usage of (5) and (6) may suffer from this, as, due to the additional variability in
δ̂, we expect MSE(Ŷδ̂(t)) to be larger than MSE(Ŷδ(t)).

In the present paper we do not investigate the problem of deriving accurate
prediction intervals. Instead, we concentrate on an approximation for MSE(Ŷδ̂(t))
and evaluate it by simulation. The emphasis is on the family of exponential
correlation functions. In one dimension, for s, t ∈ [0, 1], it is given by

Cδ(|s − t|) = exp(−θ|s − t|2−α), (θ, α) ∈ (0,∞) × [0, 2).

Special cases included are the correlation of the Ornstein-Uhlenbeck process for
α = 1 and the Gaussian correlation for α = 0. The first can be constructed by an
exponential transformation of a Brownian motion (see Ross (1983), page 218),
and the sample paths are therefore nowhere differentiable (as are those of stochas-
tic processes obtained for any other value α ∈ (0, 2)). On the other hand, the
sample paths in the case α = 0 are infinitely differentiable (see Loève (1978),
page 186). As prior information one might know at most whether the sample
paths are differentiable or not. We therefore restrict attention to the cases α = 0
and α = 1. According to whether α is assumed to be known or unknown, the
vector δ of unknown parameters is either δ = θ or δ = (θ, α).

In d ≥ 2 dimensions, for s, t ∈ [0, 1]d, we use the ‘product correlation rule’

Cδ(|s− t|)=
d∏

k=1

exp
(
−θk|sk − tk|2−αk

)
, (θ1, . . . , θd, α1, . . . , αd) ∈ (0,∞)d× [0, 2)d,

to define a correlation on [0, 1]d. Again, we may have δ = (θ1, . . . , θd) or δ =
(θ1, . . . , θd, α1, . . . , αd), that is, we only look at the cases where all αk’s are either
known or unknown, whereas the θk’s are always assumed to be unknown.

In Section 2 we review an approximation for the mean squared prediction
error of Ŷδ̂(t). It in turn requires an approximation of the mean squared error
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matrix of δ̂, for which we suggest using the inverse of the Fisher information
matrix. This was seen to be appropriate before in Abt and Welch (1998). Some
computational aspects in deriving it are discussed in Section 3. Section 4 finally
evaluates the approximations by simulation. We focus only on the two cases
where all the αk’s are either zero or one, as these correspond to two important
families of stochastic processes. The first case is of particular interest, as zero is
the boundary value for the parameters α1, . . . , αd. Appropriate modifications of
the information matrix are considered.

2. Approximating the Mean Squared Prediction Error

Approximations of MSE(Ŷδ̂(t)) were derived earlier in the literature (see
Harville and Jeske (1992), Kackar and Harville (1984), and Zimmerman and
Cressie (1992)). We will briefly follow the outline in Zimmerman and Cressie
(1992) and then concentrate on the peculiarities of the product correlation struc-
ture in this context. We note, as the multivariate normal distribution is sym-
metric about its mean, Ŷδ̂(t) is unbiased for Y (t) (see Zimmerman and Cressie
(1992)). We can write

MSE
(
Ŷδ̂(t)

)
= E

[(
(cδ(t)T YD − Y (t)) + (cδ̂(t)

T YD − cδ(t)T YD)
)2]

. (7)

Again, due to multivariate normality, the two components herein are shown to
be independent in Zimmerman and Cressie (1992), which leads to

MSE
(
Ŷδ̂(t)

)
= MSE

(
Ŷδ(t)

)
+ E

[(
cδ̂(t)

T YD − cδ(t)T YD

)2]
. (8)

By a second order Taylor series expansion of h(δ̂; t) = (cδ̂(t)
T YD − cδ(t)T YD)2

around the true parameter δ, we find the approximation

AMSE
(
Ŷδ̂(t)

)
= MSE

(
Ŷδ(t)

)
+ σ2trace

(
ΓδGδ(t)

)
(9)

for MSE(Ŷδ̂(t)). The second term considers the extra variability due to estimating
the correlation parameters δ. Therein, Γδ denotes a matrix that equals or approx-
imates the mean squared error matrix E[(δ̂ − δ)(δ̂ − δ)T ]. The matrix Gδ(t) is
given by (Gδ(t))k,� = c

(k)
δ (t)T Rδc

(�)
δ (t), wherein the vector c

(k)
δ (t) is the compo-

nentwise partial derivative of cδ(t) with respect to δk. The matrix Gδ(t) and the
vector c

(k)
δ (t) are in d dimensions if the αk’s are known and in 2d dimensions if

the αk’s are unknown. With Bδ = R−1
δ 1/1T R−1

δ 1 and Aδ = R−1
δ −Bδ1T R−1

δ , we
have

c
(k)
δ (t) = Aδ

(
r
(k)
δ (t) − R

(k)
δ (Bδ + Aδrδ(t))

)
,
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again denoting elementwise partial derivatives with respect to δk by a superscript
(k). For t(i) ∈ D, we have c

(k)
δ (t(i)) = 0 for all k and thus also AMSE(Ŷδ̂(t

(i))) = 0.
We note that the derivation of (9) essentially assumes YD and δ̂ to be un-

correlated, or, as stated in Kackar and Harville (1984), that δ̂ was obtained from
previous data. The first does not hold for the maximum likelihood estimate δ̂

and the latter is either rarely true or impossible in practical applications. A first
order Taylor series expansion of δ̂ around the data yD can be used to overcome
this drawback. This leads to an additional term in (9). A detailed investigation
of this approach, which might be particularly useful for estimating the prediction
errors, has not been carried out yet but is the topic of future work.

We suggest using the inverse of the Fisher information matrix as an approx-
imation for the mean squared error matrix of δ̂. Justifications for this approach
can be given in an asymptotic sense. Consider a sequence of equispaced designs
Dn of size n in [0, 1] and the corresponding sequence Dd

n of product designs of
size nd in [0, 1]d. Let θ = (θ1, . . . , θd)T . Then, for d ≥ 2 and α1 = · · · = αd = 1,
Ying (1993), Theorems 2 and 4 shows the strong consistency of (σ̂2, θ̂T )T and

n(d−1)/2
(

σ̂2 − σ2

θ̂ − θ

)
→D N (0,Σ) (10)

for n → ∞. The covariance matrix Σ is specified in more detail in Ying (1993).
The proof of (10) relies heavily on the fact that the inverse covariance matrix
corresponding to the finite dimensional distribution of an Ornstein-Uhlenbeck
process in one dimension is tridiagonal. This property is lost as soon as αk’s
different from one are considered, which makes any proof of similar results for
these cases impossible. It is shown in Abt and Welch (1998) that Σ in (10)
satisfies Σ = limn→∞ nd−1I−1

σ2,θ. Therein Iσ2,θ is the Fisher information ma-
trix of (σ2, θT )T . It is worth noting that the same relation between the covari-
ance matrix of the asymptotic distribution of (σ̂2, θ̂T )T and the inverse of the
Fisher information matrix can be shown for the product triangular correlation
Corr(Z(s), Z(t)) =

∏d
k=1(1− θk|sk − tk|). This however exhausts the possibilities

for theoretical considerations. For the product Gaussian correlation, the simula-
tion results given in Abt and Welch (1998) indicate that I−1

σ2,θ provides a good

approximation for the mean squared error matrix of (σ̂2, θ̂T )T .

3. Computing the Information Matrix

We only consider product designs of the form Dd
n = {(i − 1)/(n − 1) : i =

1, . . . , n}d of size nd in [0, 1]d. Taking partial derivatives of the log-likelihood
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function

L(β, σ2, δ) = −1
2

(
nd log(2π)+nd log σ2+log det(Rδ)+

1
σ2

(yD−β1)T R−1
δ (yD−β1)

)

with respect to β, σ2, and δ, we find the information matrix of β, σ2, and δ to be

Iβ,σ2,δ =




1T R−1
δ 1/σ2 0 0
0 nd/(2σ4) iTσ2,δ

0 iσ2,δ Iδ


 ,

wherein (Iδ)k,� = tr(R−1
δ R

(k)
δ R−1

δ R
(�)
δ )/2 and (iσ2,δ)k = tr(R−1

δ R
(k)
δ )/(2σ2) for

k, � = 1, . . . , d if the αk’s are known and k, � = 1, . . . , 2d if the αk’s are unknown.
From this, the information matrix Iσ2,δ of σ2 and δ is given by

Iσ2,δ =
(

nd/(2σ4) iTσ2,δ

iσ2,δ Iδ

)
.

Denoting by C1̄,1̄ the matrix obtained from a matrix C after removing the 1-st
row and the 1-st column, we suggest using Γδ = (I−1

σ2,δ)1̄,1̄ as an approximation

of the mean squared error matrix of δ̂.

In the setup of product designs, some further simplifications are possible.
The correlation matrix Rδ can be written as a Kronecker product, Rδ = ⊗d

k=1Rk,

wherein the matrices Rk are given by (Rk)i,j = exp(−θk|(i− j)/(n− 1)|2−αk ) for
i, j = 1, . . . , n. From this it can be verified that, if all αk’s are unknown,

(
I−1

σ2,δ

)
1̄,1̄

=
(

Aθθ Aθα

Aθα Aαα

)−1

,

wherein Aθθ, Aθα, and Aαα are d × d diagonal matrices given by

Aθθ = diag
(
nd−2(ng

(k)
θθ − h

(k)
θ h

(k)
θ )/2, k = 1, . . . , d

)
,

Aθα = diag
(
nd−2(ng

(k)
θα − h

(k)
θ h(k)

α )/2, k = 1, . . . , d
)
,

Aαα = diag
(
nd−2(ng(k)

αα − h(k)
α h(k)

α )/2, k = 1, . . . , d
)
,

with

g
(k)
θθ = tr

(
R−1

k

( ∂

∂θk
Rk

)
R−1

k

( ∂

∂θk
Rk

))
, h

(k)
θ = tr

(
R−1

k

( ∂

∂θk
Rk

))
,

g(k)
αα = tr

(
R−1

k

( ∂

∂αk
Rk

)
R−1

k

( ∂

∂αk
Rk

))
, h(k)

α = tr
(
R−1

k

( ∂

∂αk
Rk

))
,

g
(k)
θα = tr

(
R−1

k

( ∂

∂θk
Rk

)
R−1

k

( ∂

∂αk
Rk

))
.
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This makes the numerical evaluation of Γδ rather simple for product designs. If
α1, . . . , αd are all known, we are left with (I−1

σ2,θ)1̄,1̄ = A−1
θθ .

4. Simulation Results

In the following we report simulation results on the quality of the mean
squared error approximation given in (9) for known as well as unknown param-
eters α1, . . . , αd. For dimensions d = 1, 2, a regular grid is laid out over the
region T = [0, 1]d of interest and a design D is chosen as a subset of T. On the
grid, N sets of observations from the finite dimensional marginal distribution of
a Gaussian stochastic process are generated for each considered combination of
parameters. We chose:
(a) in one dimension: D = {0, 1, (2i + 1)/14 : i = 1, . . . , 5} and T = {i/14 : i =

0, . . . , 14} with N = 2500;
(b) in two dimensions: D = {i/4 : i = 0, . . . , 4}2 and T = {1/4, 3/4, i/10 : i =

0, . . . , 10}2 with N = 1500.
Simulations were also carried out in three dimensions. As the results were not

found to be qualitatively different from what we report below, they are omitted
here.

All data were obtained taking σ2 = 1 (which is always assumed to be un-
known), as we found that changing σ2 leads merely to rescaling of the empirical
mean squared errors and the approximations. The simulations are based on
β = 0, which is considered to be unknown as well. The observations correspond-
ing to locations in D are used to estimate the parameters β, σ2, θ1, . . . , θd, and
α1, . . . , αd. With m = |T | and denoting the locations in T by s(1), . . . , s(m), we
look at the maximum empirical mean squared error

MEMSE = max
{ 1

N

N∑
j=1

(
Ŷ

(j)

δ̂
(s(i)) − Y (j)(s(i))

)2
: i = 1, . . . ,m

}
(11)

and the integrated empirical mean squared error

IEMSE =
1
m

m∑
i=1

1
N

N∑
j=1

(
Ŷ

(j)

δ̂
(s(i)) − Y (j)(s(i))

)2
. (12)

Therein, for j = 1, . . . , N, the quantity Y (j)(s) is the jth simulation of the Gaus-
sian process Y at location s ∈ T and Ŷ

(j)

δ̂
(s) is the predictor (3) obtained for

s ∈ T using the data {Y (j)(t) : t ∈ D} and the parameters estimated from these.
The maximum likelihood estimates were obtained using the software pack-

age GaSP developed by Welch (1995). As a function of the correlation parame-
ters δ, explicit formulas can be obtained for β̂ and σ̂2. Numerical maximization
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of L(β̂, σ̂2, δ) with respect to δ then uses Powell’s conjugate directions method
(see Press et al. (1988), Section 10.5). The constraints on the range of θ1, . . . , θk

and α1, . . . , αk are dealt with by suitable transformations that then allow an
unconstrained optimization.

In the tables that follow, the first line gives the MEMSE and the IEMSE.

A raised number x after the decimal point indicates multiplication by 10−x. The
second line gives

max
i=1,...,m

MSE
(
Ŷδ

(
s(i)

))
/MEMSE and

1
m

m∑
i=1

MSE
(
Ŷδ

(
s(i)

))
/IEMSE, (13)

whereas in each table the third line considers the full approximation as given
in (9) and shows

max
i=1,...,m

AMSE
(
Ŷδ̂

(
s(i)

))
/MEMSE and

1
m

m∑
i=1

AMSE
(
Ŷδ̂

(
s(i)

))
/IEMSE. (14)

Values for these ratios that are less than one indicate that the corresponding ap-
proximations underestimate the true mean squared error, whereas values greater
than one would indicate approximations that are too conservative.

4.1. Simulation results for known parameters α1, . . . , αd

In one dimension, it is well known that for α = 1 the parameters θ and σ2

cannot be identified, even if an entire path of the stochastic process Y would be
available (see Jørsboe (1968), page 58). Numerical computation of the maximum
likelihood estimates is nevertheless possible, but θ is overestimated severely and
the approximate Γθ for the mean squared error of θ̂ as provided by the inverse
information matrix is very poor (see Abt and Welch (1998)). We therefore do
not investigate this scenario any further.

There are no identifiability problems when we assume α = 0 (see Ibragimov
and Rozanov (1978), page 95). For θ = 3, 5, 7.5, 25, and 50, Table 1 summarizes
the results. The smallest value of θ was chosen in a way such that the Choleski
decomposition used for the simulations was numerically well conditioned. The
results indicate that the approximation provided by AMSE(Ŷδ̂(t)) in (9) performs
rather well, whereas, as the ratios in the second line are much smaller than one,
MSE(Ŷδ(t)) performs poorly. Thus there is considerable loss by ignoring the fact
that the correlation parameters are estimated.

In two and more dimensions, all parameters are identifiable. For α1 = α2 =
1, the results are depicted in Table 2. For small values of θ1 and θ2, the differences
between MSE(Ŷδ(t)) and AMSE(Ŷδ̂(t)) are negligible. For increasing values of θ1

or θ2, the usage of AMSE(Ŷδ̂(t)) proves to be slightly superior.
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Table 1. Simulation results for the Gaussian correlation in one dimension
for known α. A raised number x after the decimal point indicates that the
empirical mean squared error has to be multiplied by 10−x.

θ = 3.0 θ = 5.0 θ = 7.5 θ = 25.0 θ = 50.0

Max Int Max Int Max Int Max Int Max Int

EMSE 0.5693 0.5118 0.3133 0.4236 0.2103 0.3194 0.1925 0.1235 0.374 0.133

MSE(Ŷδ(t)) 0.715 0.722 0.743 0.748 0.813 0.815 0.865 0.886 0.825 0.778

AMSE(Ŷδ̂(t)) 0.944 0.952 0.971 0.976 1.047 1.045 1.027 1.029 1.010 0.953

Table 2. Simulation results for the product Ornstein-Uhlenbeck process in
two dimensions for known α1 and α2.

θ1 = θ2 = 0.01 θ1 = θ2 = 0.1 θ1 = θ2 = 1.0 θ1 = θ2 = 4.0 θ1 = θ2 = 10.0

Max Int Max Int Max Int Max Int Max Int

EMSE 0.2261 0.2124 0.1258 0.1124 0.239 0.119 0.791 0.445 1.085 0.778

MSE(Ŷδ(t)) 0.918 0.996 0.925 0.989 0.942 0.997 0.881 0.921 0.918 0.907

AMSE(Ŷδ̂(t)) 0.918 0.996 0.925 0.989 0.942 0.997 0.890 0.931 0.971 1.026

θ1 = 0.01, θ2 = 0.1 θ1 = 0.01, θ2 = 1.0 θ1 = 0.01, θ2 = 4.0 θ1 = 0.01, θ2 = 10.0

Max Int Max Int Max Int Max Int

EMSE 0.1138 0.2679 0.123 0.1606 0.479 0.246 0.971 0.529

MSE(Ŷδ(t)) 0.953 0.997 0.983 1.020 0.939 0.948 0.900 0.886

AMSE(Ŷδ̂(t)) 0.953 0.997 0.983 1.020 0.948 0.955 1.021 0.989

Table 3. Simulation results for the product Gaussian correlation in two di-
mensions for known α1 and α2.

θ1 = θ2 = 2.5 θ1 = θ2 = 5.0 θ1 = θ2 = 7.5 θ1 = θ2 = 10.0

Max Int Max Int Max Int Max Int

EMSE 0.3387 0.4880 0.2652 0.2166 0.1260 0.2757 0.1632 0.1206

MSE(Ŷδ(t)) 0.868 0.887 0.871 0.903 0.899 0.917 0.876 0.885

AMSE(Ŷδ̂(t)) 0.945 0.962 0.936 0.960 0.954 0.956 0.921 0.911

Table 3 shows the results in two dimensions for α1 = α2 = 0. The approxima-
tion (9) leads to a clear improvement over (4). Again, the choice of θ1 = θ2 = 2.5
as the smallest values considered was made to avoid numerical singularity prob-
lems of the Choleski factor. The quality of the results is the same when θ1 and
θ2 are chosen to be different and thus omitted.

Large values of θ1 or θ2, like θ1 = θ2 = 20 or more lead to weakly corre-
lated observations. In these cases and for the given design used here, which is
equispaced in each dimension, the algorithm has difficulties in identifying the
true values of θ1 and θ2 and also the variability of their maximum likelihood
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estimates tends to be overestimated by the inverse Fisher information matrix.
As a consequence, AMSE(Ŷδ̂(t)) becomes too large. Larger designs that include
nearby observations are required in these situations. We tried a design of size
57 that includes locations at various distances and found that then also large
θk’s and their standard errors are estimated well. Due to this, the approxima-
tion (9) again turned out to be in good agreement with the true mean squared
error. Generally, it was observed that the abovementioned effect large θk’s have
on AMSE(Ŷδ̂(t)) is less severe if the sample path of the stochastic process Y is
smooth, i.e., α1 = α2 = 0.

4.2. Simulation results for unknown parameters α1, . . . , αd

In this section, we have δ = (θ1, . . . , θd, α1, . . . , αd). We first look at the
situation α1 = · · · = αd = 0, when these parameters take values on the boundary
of their range.

Using (I−1
σ2,δ)1̄,1̄ as an approximation for the mean squared error matrix of δ̂

requires that the true parameter δ is in the interior of the parameter space. If the
true parameters are on the boundary, the variability in the maximum likelihood
estimates is expected to be smaller than the approximation provided by (I−1

σ2,δ)1̄,1̄.

Modifications of Iσ2,δ to adjust for this problem are suggested in Moran (1971).
Before we briefly outline these for d = 1 and d = 2, we need some results on
the moments of mixtures of distributions as well as the moments of truncated
normal distributions.

Let P1, . . . , Ps be probability distributions on RI n and γ1, . . . , γs ∈ (0, 1) con-
stants with

∑s
i=1 γi = 1. Then P =

∑s
i=1 γiPi is called the mixture of P1, . . . , Ps

and is a probability distribution on RI n as well. Denoting by E(P ) and Var(P )
the expectation vector and the covariance matrix of an n-dimensional random
vector with distribution P, we have

E(P ) =
s∑

i=1

γiE(Pi) (15)

and it can be shown that

Var(P ) =
s∑

i=1

γi

(
Var(Pi) + E(Pi)E(Pi)T

)
−

s∑
i,j=1

γiγjE(Pi)E(Pj)T . (16)

As a next step, we need to find the first and second moment of a truncated
normal distribution. Let R be a positive definite n×n matrix and let (R)i,j = ρi,j

for i, j = 1, . . . , n and ρi,i = 1 for i = 1, . . . , n. For index sets I, J ⊆ {1, . . . , n} we
mean by RI,J the matrix obtained from R by selecting the rows with subscripts
in I and the columns with subscripts in J. For an index set I let Ī = {1, . . . , n}\I.
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For a set consisting of one point only, say I = {k}, we use the abbreviation k̄

for {k}. With this, the 2 × (n − 2) matrix obtained from R by selecting the kth
and �th rows and all but the kth and �th columns is denoted by Rk�,k̄�̄. Similarly,
xk� would be the vector (xk, x�)T , whereas xk̄�̄ is the vector x with components
xk and x� removed. Furthermore, φn(x;R) denotes the n-variate normal density
with mean zero, variance one and correlation matrix R. For b ∈ RI n we define

Φn(b;R) =
∫ ∞

b1
· · ·

∫ ∞

bn

φn(x;R) dxn · · · dx1 =
∫
[b,∞)

φn(x;R) dx.

With this notation, we have the following Lemma, the proof of which can be
found in Tallis (1961).

Lemma. Let Z1, . . . , Zn be real valued random variables defined on some prob-
ability space (Ω,A, Q), whose joint distribution has density φn(z;R) as defined
above. By Q[Zi] we mean the distribution of Zi on RI induced by Q. For an index
set K ⊆ {1, . . . , n} and k, � ∈ K let Kk = K \ {k} and Kk� = K \ {k, �}. If
Y1, . . . , Yn are random variables on (Ω,A, Q) with

Q[Y1, . . . , Yn] = Q[Z1, . . . , Zn|ZK ≥ 0],

we have

E(Yi) =
1

αK

√
2π

∑
k∈K

ρi,kΦ|K|−1

(
0;RKk,Kk

− RKk,kR
T
Kk,k

)
, (17)

and

E(YiYj) = ρi,j +
1

αK2π

∑
k∈K

{
ρk,i

∑
�∈Kk

ρ�,j − ρk,�ρk,j√
1 − ρ2

k,�

Φ|K|−2(0; R̃k,�)
}
, (18)

with R̃k,� = RKk�,Kk�
− RKk�,k�R

−1
k�,k�R

T
Kk�,k�. Therein Φ0(0; ·) = 1,Φn(0; ·) = 0

for n < 0, and αK = Φ|K|(0;RK,K).

As it is seen, tail probabilities of the form Φn(0;R) are required for various
values of n. Results are available for n = 1, 2, 3 in Tong (1990), Section 8.2.2.
Our implementation is so far limited to these situations. A recursive formula
reducing the n-dimensional integration to one-dimensional integrations is given
in Plackett (1954).

We are now ready to outline the modifications of the inverse Fisher infor-
mation matrix in order to use it as an approximation for the mean squared error
matrix of δ̂ if the parameters α1, . . . , αd take their boundary value zero. From
Section 3 we know that, as σ2 is unknown, the matrix

A =
(

Aθθ Aθα

Aθα Aαα

)
∈ RI 2d,2d
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is the information matrix of δ. Define the random vector X as having a 2d-
dimensional normal distribution with mean zero and covariance matrix A, and
let Z = A−1X. Then the distribution of Z is multivariate normal with mean
zero and covariance matrix A−1. Think of Z as the parameter vector δ. Again we
assume all random variables to be defined on a probability space (Ω,A, Q).

In the one-dimensional case, d = 1, we have δ = (θ, α). Suppose the true
(but unknown) value of the parameter α is zero. Then, applying the results in
Moran (1971) to this situation, an approximation for the covariance matrix of δ̂

is found as the second moment of a distribution P on RI 2 given by the mixture
P = (P0 + P1)/2, with P0 and P1 both being probability distributions on RI 2 .

Therein, P0 = Q[Z|Z2 ≥ 0] is the conditional distribution of Z given Z2 ≥ 0, and
P1 is concentrated on RI ×{0}, the nonsingular part being Q[Z̃1|Z2 ≤ 0] with
Z̃1 = (A2̄,2̄)−1X1. Using the previous results given in (15) to (18), the second
moment of P is readily derived.

For two dimensions, d = 2, let δ = (θ1, θ2, α1, α2) and assume the true
underlying values for α1 and α2 are zero. Then the approximate covariance
matrix of δ̂ can be found as the second moment of the mixture P = γ0P0 +
γ1P1 + γ2P2 + γ12P12 of probability distributions P0, P1, P2, P12 on RI 4 . Therein
γ0, γ1, γ2, γ12 ≥ 0 and they sum up to one and P0 = Q[Z|Z3 ≥ 0, Z4 ≥ 0]
with γ0 = Q(Z3 ≥ 0, Z4 ≥ 0). With Z̃(3) = (A3̄,3̄)−1X3̄, the measure P1 is a
probability distribution on RI 2 ×{0} × (0,∞), the nonsingular part of which is
given by Q[Z̃(3)|Z3 ≤ 0, Z̃(3)

3 ≥ 0] and γ1 = Q(Z3 ≤ 0, Z̃(3)
3 ≥ 0). Similarly,

the nonsingular part of the distribution P2 on RI 2 ×(0,∞) × {0} is found as
Q[Z̃(4)|Z̃(4)

3 ≥ 0, Z4 ≤ 0] and γ2 = Q(Z̃(4)
3 ≥ 0, Z4 ≤ 0), with Z̃(4) = (A4̄,4̄)−1X4̄.

The probability distribution P12 finally is defined on RI 2 ×{0}2, the part on RI 2

being Q[(A3̄4̄,3̄4̄)−1X3̄4̄|Z̃(3)
3 ≤ 0, Z̃(4)

3 ≤ 0] and γ12 = Q(Z̃(3)
3 ≤ 0, Z̃(4)

3 ≤ 0). As we
are looking at product designs only, it can be shown from equations (56) to (58)
in Moran (1971) that γ0 = γ1 = γ2 = γ12 = 1/4. Appropriate modifications of
the proof of Theorems I and II in Moran (1971) allow immediate generalization
to three and more dimensions. In general, mixtures of 2d distributions will arise.

Denoting the covariance matrix of the distribution P obtained in this way
by Γδ,b, where we use the subscript b to indicate the boundary situation, we
suggest using the approximation (9) with Γδ replaced by Γδ,b in cases where the
true αk’s are assumed to lie on the boundary of their range. It will be denoted
by AMSEb(Ŷδ̂(t)). We note that the diagonal elements of Γδ,b are found to be
smaller than those in Γδ, thus indicating smaller variability in the α̂k’s if true
values are on the boundary.

The usage of AMSEb(Ŷδ̂(t)) instead of AMSE(Ŷδ̂(t)) is investigated by sim-
ulation for the Gaussian correlation function. Tables 4 and 5 summarize the
results for one and two dimensions.
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Table 4. Simulation results for the Gaussian correlation in one dimension for
unknown α.

θ = 3.0 θ = 5.0 θ = 7.5 θ = 25.0 θ = 50.0

Max Int Max Int Max Int Max Int Max Int

EMSE 0.4475 0.5863 0.3531 0.4975 0.2276 0.3583 0.146 0.051 0.514 0.202

MSE(Ŷδ(t)) 0.138 0.130 0.218 0.194 0.304 0.271 0.547 0.408 0.601 0.512

AMSE(Ŷδ̂(t)) 2.486 2.606 2.482 2.503 2.420 2.498 2.166 1.848 4.307 4.209

AMSEb(Ŷδ̂(t)) 0.967 1.001 1.034 1.020 1.083 1.081 1.033 0.942 1.936 1.849

Table 5. Simulation results for the product Gaussian correlation in two di-
mensions for unknown α1 and α2.

θ1 = θ2 = 2.5 θ1 = θ2 = 5.0 θ1 = θ2 = 7.5 θ1 = θ2 = 10.0

Max Int Max Int Max Int Max Int

EMSE 0.3680 0.3142 0.2872 0.2229 0.1336 0.1111 0.1913 0.1360

MSE(Ŷδ(t)) 0.494 0.549 0.651 0.652 0.694 0.626 0.607 0.547

AMSE(Ŷδ̂(t)) 2.031 2.059 1.820 1.654 1.788 1.514 1.701 1.563

AMSEb(Ŷδ̂(t)) 1.047 1.094 1.081 1.021 1.095 0.946 1.000 0.904

It is clearly seen, that MSE(Ŷδ(t)) seriously underapproximates the maxi-
mum as well as the integrated mean squared error. Using AMSE(Ŷδ̂(t)), and
thus ignoring the fact that the true parameters are on the boundary of the pa-
rameter space, leads to a severe overapproximation of the true mean squared
errors. However, the approximation AMSEb(Ŷδ̂(t)) based on Γδ,b captures the
maximum and the integrated mean squared error rather well.

Similarly to the discussion at the end of Subsection 4.1, Table 4 indicates that
large values of at least one θk may inflate the approximation AMSEb(Ŷδ̂(t)). How-
ever, MSE(Ŷδ(t)) underestimates the true mean squared error. Similar behavior,
but not shown in the tables, can be observed for θ1 = θ2 = 20 or θ1 = θ2 = 30 in
two dimensions as well. The reason again is in the overestimation of the variance
of θ̂k and α̂k by the information matrix. For weak correlations, the 25 point
design we used is not suitable for estimating the correlation structure properly.
Increasing the number of design points and including nearby locations shows
that the inverse of the Fisher information matrix again provides a very accurate
approximation of the standard errors of θ̂k and α̂k and, as a consequence, the
mean squared errors are accurately approximated by AMSEb(Ŷδ̂(t)) in case of
α1 = α2 = 0 and large values for θ1 or θ2.

Table 6 shows the simulation results for unknown α1 = α2 = 1. As the
true values of α1 and α2 are inside their range [0, 2), we can use AMSE(Ŷδ̂(t)).
For small values of θ1 and θ2, the difference in the approximations seems to be
negligible, with AMSE(Ŷδ̂(t)) performing better. For larger values of one or both
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of θ1 and θ2, slight superiority of AMSE(Ŷδ̂(t)) becomes clear. Also here, a similar
discussion as above applies for large values of θ1 or θ2. As opposed to Table 2,
the overapproximation of MSE(Ŷδ(t)) is already observed for θ1 = θ2 = 10. This
is because based on the same number of observations α1 and α2 need also to be
estimated here.

Table 6. Simulation results for the product Ornstein-Uhlenbeck process in
two dimensions for unknown α1 and α2.

θ1 = θ2 = 0.01 θ1 = θ2 = 0.1 θ1 = θ2 = 1.0 θ1 = θ2 = 4.0 θ1 = θ2 = 10.0

Max Int Max Int Max Int Max Int Max Int

EMSE 0.2269 0.2130 0.1269 0.1132 0.256 0.129 0.812 0.474 1.157 0.822

MSE(Ŷδ(t)) 0.890 0.946 0.886 0.928 0.876 0.921 0.859 0.865 0.861 0.858

AMSE(Ŷδ̂(t)) 0.906 0.961 0.903 0.944 0.913 0.956 1.064 1.124 25.003 18.948

θ1 = 0.01, θ2 = 0.1 θ1 = 0.01, θ2 = 1.0 θ1 = 0.01, θ2 = 4.0 θ1 = 0.01, θ2 = 10.0

Max Int Max Int Max Int Max Int

EMSE 0.1143 0.2717 0.134 0.1662 0.503 0.266 1.005 0.555

MSE(Ŷδ(t)) 0.924 0.943 0.899 0.935 0.894 0.876 0.870 0.845

AMSE(Ŷδ̂(t)) 0.942 0.959 0.939 0.971 1.184 1.157 24.920 21.025

5. Conclusions

The approximation AMSE(Ŷδ̂(t)) for the mean squared prediction error that
accounts for the fact that the correlation parameters are estimated turns out
to be superior to the usage of MSE(Ŷδ(t)). However, in all cases, large values
of the parameters θk lead to overapproximation of the mean squared error by
AMSE(Ŷδ̂(t)). This is due to the fact that the observations are weakly correlated
in this case, which, in turn, may lead to overestimation of the variability of θ̂k

and α̂k. Increasing the design size and the inclusion of nearby observations for
model fitting overcomes this problem and is therefore necessary. In general, using
different designs for model fitting and prediction can be beneficial. Special care
is also needed when the true values of some of the parameters take values on the
boundary of the parameter space. As suggested, a modification of the inverse
Fisher information matrix can be used as an approximation for the mean squared
error matrix of the maximum likelihood estimates in (9).

We are aware of the limitations of the approach when it comes to the usage
of the approximation in the optimal design criteria (5). Exact formulas for the
tail probabilities are available for up to three dimensions only. Therefore the
investigation in this paper is limited to these cases. Especially, the computation
of Γδ,b becomes very time intensive for dimensions larger than three, as numerical
integration routines are needed to evaluate the multivariate normal tail probabil-
ities. The moments of a mixture of 2d truncated normal distributions would be
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required in each iteration of an optimal design algorithm. Using the approxima-
tion for optimal design purposes is thus prohibitive. As we found no qualitative
difference in the results for dimensions ranging from one to three, we expect the
performance of the approximation not to be affected by the dimensionality of the
problem.

More relevant for practical applications seems to be the accurate estimation
of MSE(Ŷδ̂(t)) to find prediction intervals as indicated in (6). The design would
be fixed, and the approximation of the mean squared error then needs to be
evaluated once only for each site t. We suggest using the approximation (9)
with δ replaced by the maximum likelihood estimate δ̂. Prior knowledge of the
response Y as well as the parameter estimates α̂k obtained from fitting the model
might help to decide whether to use Γδ or Γδ,b as an approximation for the mean
squared error matrix of δ̂. The suggested methodology can be readily adapted to
models similar to (1) that also include an additional random error term. Many
practical situations, as they arise in environmental statistics or the geostatistical
literature are thus covered. Further work will be undertaken in this direction.
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