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EFFICIENCY ROBUST EXPERIMENTAL DESIGN AND
ESTIMATION USING A DATA-BASED PRIOR
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Abstract: In scientific research major studies are often designed after a pilot study has
been carried out. This paper uses Bayesian methodology to incorporate the results of
the first study (or studies) into the design of the follow-up study. It is assumed that
the error variances of the pilot and of the follow-up studies are unknown but that the
experimenters are able to give intervals for the possible values of the two variances.
This assumption, together with a noninformative prior distribution of the treatment
means of the pilot study, leads to a class of prior distributions for the new experiment.

Since the properties of an experimental design can only be judged in reference
to a particular estimator, and since the choice of an estimator is in itself a very
important problem, we combine the two tasks and simultaneously search for the esti-
mator and the design which achieve the maximin efficiency over the class of posterior
distributions.

The method is illustrated on data from “6-Month Drinking Water Studies of
Sodium Fluoride”, a study, which showed that rats exposed to very high levels of
sodium fluoride had diminished growth rates.

Key words and phrases: Analysis of variance, Bayesian experimental design, efficiency
robust design and estimation.

1. Introduction

The process of acquiring scientific knowledge is a sequential one. After an
experiment yields an interesting result, others are conducted to confirm the find-
ings and further explore the implications of the original experiment. When plan-
ning the subsequent experiments, an investigator will wish to incorporate the
information available from all related prior studies into the design of the new
experiment. This paper proposes a method, based on the Bayesian paradigm,
for accomplishing this task. '

We consider the situation where data from past experiments come from an
analysis of variance model. These data can be combined to form a single prior
distribution for the new experiment by employing Bayesian analysis with nonin-
formative priors as carried out by Box and Tiao (1973). When the error variances
of all past studies are equal to a known constant, and the error variance of the
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planned study is known, the resulting distribution is a multivariate normal. Ex-
isting literature on Bayesian experimental design for a wide variety of normal
ANOVA models, such as for example Chaloner (1984), Giovagnoli and Verdinelli
(1983,1985), Owen (1970), Piltz (1984), Smith and Verdinelli (1980), Toman and
Notz (1991) and Verdinelli (1983) can be applied to derive experimental designs
for the new study. Unfortunately, in the more realistic case when the error vari-
ances are unknown, the full Bayesian experimental design problem becomes quite
intractable. Rather than assume a full prior distribution on the error variances,
the method of this article relies on the partial prior information that the error
variances lie in known intervals. Using this assumption results in an entire class
of possible prior distributions for the new experiment rather than in a single
prior as would be the case if a full Bayesian analysis was used. The experimental
design problem, which is to find a design which performs well over this class of
distributions, is solvable in this framework.

Classes of priors have been used to obtain Bayesian robust estimators by
Berger (1985), Berger and Berliner (1986) and many others. Their use in ex-
perimental design is relatively recent; a related work is DasGupta and Studden
(1990). This paper differs from previous literature in that we derive both the
robust estimator and the corresponding robust design, as in this context, the
two problems are linked. The criterion we use to select the optimum design and
estimator is motivated by the efficiency robustness literature (Gastwirth (1966,
1985), and Birnbaum and Laska (1967)). Since a confidence region for the means
may be required, we propose one which is based on the optimal estimator. Finally,
we illustrate our method by designing a follow-up experiment to the “6-Month
Drinking Water Studies of Sodium Fluoride” study described in U.S. Dept. of
HHS (1990).

The model and background information are given in Section 2. The optimal
design and estimator is derived in Section 3. Section 4 contains the example and
conclusions.

2. Model and Background

We consider the case of the analysis of variance model where = (71, 7, .. .,
7x)' are the unknown treatment effects. As the “treatment” may mean a partic-
ular combination of factor levels, this model is appropriate for one-way analysis
of variance as well as multi-factor ANOVA represented by a cell-means model,
also called the “u;;” model by Searle (1971, p.324). The purpose of the exper-
iment is the estimation of . We have a total of n experimental units available
to be allocated to the k treatment groups. The vector of observations X the
experiment will yield is assumed to have a normal distribution with mean Fr
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and a variance-covariance matrix equal to 0?1, where o is known to lie in a finite
interval [0y, 0,], F is the n X k design matrix, and I is the n x n identity matrix.
We assume that the observed values y from a previous related experiment are
available. The vector y is assumed to have come from a normal distribution with
mean G+ and a variance-covariance matrix equal to w?I, where w is known to lie
in the interval [w;,wo].

The first step in designing the new experiment is the derivation of the dis-
tribution of T after y was observed. Using a noninformative first stage prior for
r we obtain (see Box and Tiao (1973))

Ty ~ N((G'G)_lG'y,wg(G'G)—l), w; Sw L ws. (2.1)

Note that expression (2.1) defines a class of distributions indexed by w and that
the mean of T given y is simply the vector of sample treatment means from the
first experiment. Let M = G'G = diag(ma, ma, .- ,my), where the m; are the
number of units allocated to treatment ¢ in the first experiment. The available
prior information for use in planning of the new experiment can be summarized
as follows:

The vector T of means has a normal prior distribution, denoted by 7.
We assume that 7 is a member of the class:
I = {7 : 7 is normal and E(7) =6 = (G'G)'Gy,
Var(7) = w?diag(1/m;),i=1,...,k, w1 S w < wa} (2.2a)
o1 <0 < 0o (2.2b)

Expression (2.2a) restates (2.1), and (2.2b) reflects the prior information on o.
When relevant data on different subsets of the experimental treatments are avail-
able from several past experiments, one may subsume this information in a more
general class of priors. This class is described as

[ = {r: 7 is normal and E(r) = 6 = (61,0,... ,60x),
| Var(r) =T= dlag(tl), tiL S ti S tan 1= 1, .. ,k} (23)

The vector 8 is the vector of sample treatment means from the past experiments.
The values of t;; and t;y, ¢ = 1,...,k, are chosen on the basis of the ranges of
values of the error variances of the previous experiments and on the sample sizes
of each treatment group. The prior information available for the design of the
new experiment is given by (2.2b) and (2.3).

Since the distribution of X|(r, o) is normal, for each value of o and for each
prior 7 in T, the corresponding posterior distribution of 7{x is also normal with
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mean X— (0 ~*N+T~1)~'T'(x—0), and covariance matrix V = (e 2N+T -1
The vector % is the k x 1 vector of the sample treatment means, the matrix
N = F'F = diag(n, ng, ...,nx) is the allocation matrix of the new experiment.
It will be shown in the next section that the optimal estimator and design depend
on the prior covariance matrix T only through the ratios ¢;/o?. Therefore it is
mathematically convenient to express the prior covariance matrix as oS, where
S = diag(s;), s; = t;/0?. The class of prior distributions given in (2.3) together
with the prior information that o; < ¢ < o, therefore leads to the class of
posterior distributions

T, = {n(r|x) : m(r|x) are normal with mean X — (N +S$7")7'S7}(x - 6),
covariance matrix V = o*(N + S71) 7%,
0'1SO’SO’Q,S{L(U)SSiSSiU(U),’i=1,...,k}, (24)

where Si}_',(U) = t,‘L/0'2 and SiU(U) = tiu/dz.

In the new experiment we allow the possibility of not observing one or more
of the treatments. In such a case the allocation matrix N may have some rows
of zeros, that is N = diag[N g, 0] where N is the allocation matrix of the treat-
ments in the experiment that are observed, and 0 is a zero matrix of appropriate
dimension. We allow the elements of N to have non integer values. This means
that after the optimal design is derived, the n;’s must be rounded off to obtain a
usable design. The set of all possible designs is defined by this set of allocation
matrices denoted by =.

In the next section, we seek the robust estimator and design.

3. Derivation of the Robust Estimator and Design

Our purpose is to arrive at a design and estimator which have desirable
efficiency properties over the entire class of prior distributions and for all values of
o in the interval [0}, 02]. We use Bayes risk (rather than expected posterior loss)
as the basis of our criterion since the experimental design must be selected before
the data from the new experiment is collected. In classical inference, Gastwirth
(1966, 1985), Birnbaum and Laska (1967), Burnett, Krewski and Bleuer (1989)
obtain procedures having a high asymptotic relative efficiency compared to the
optimal one for each member of a family of distributions which may generate the
data. We adopt the analogous criterion of relative efficiency. We limit our search
for the best estimator to the class of linear estimators

A= {6(x):6(x)=Ax+ (I—A)§, A =diag(a;), 0 <a; <1}. (3.1)

Under squared error loss this class contains, but is not limited to, the Bayes
estimators of 7, since these are simply the posterior means for the class I',. It is
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possible that broadening the class of estimators could produce a more efficient
pair (6, N). However, our results indicate that we can obtain a reasonably efficient
procedure among linear estimators.

A procedure (6, Nps) will be called optimal if it achieves

o, N
ermM = Il]nf_;- sup rw(’;( ,N) ) = glléf__ sup e“,(é,N). (3.2)
6€€A— Ulgsgoz ’I"7r,a( moyLtNT,o TN 0125262

The quantity 7x (6, N) is the Bayes risk of the estimator § and design N for a
particular o and the prior 7. The pair 6r0 and N, , are the Bayes estimator
and design for the prior  and the particular 0. The quantity er o (6,N) is the
inverse of the efficiency of the pair (6, N) under the prior m, for the particular
o. The procedure (6),Nys) satisfying criterion (3.2) minimizes the maximum
Bayes risk relative to the optimum choice (650, Ny ) for each 0 and m € T".

We next obtain an expression for e, (8, N). For a particular estimator 6 the
vector a = (a1, as, . ..,a;) may be partitioned as a = [ag, 0], since the elements
of 7 corresponding to treatments which will not be observed must be estimated
purely from the prior information. The risk of § and a particular design N for a
given T and o? is

R,(6,N,7) = 0’ayNz'ap + (r— 0)'(1 —a) (1 —a)'(r—0). (3.3)

For any o, taking expectation of this function with respect to a particular prior
7 in T, yields the Bayes risk of the pair (6, N)

Tro(6,N) = o*[apNg'ap + (1 —a)'S(1 - a)]. (3-4)

The vector 1 is a k x 1 vector of ones. Next, we find the Bayes design N, , and
the Bayes risk 7x ¢ (6x,0, Nro) for a particular prior distribution 7 € I' and o.
Since for this model and loss function the Bayes risk of the Bayes estimator 6. ,

is
Tro(6r.0, N) = o*trace(N + S~ HY (3.5)

the matrix N, , must minimize expression (3.5). This matrix, called the Bayes
A-optimal design, was derived in general form by Owen (1970). The particular
solution for our problem, obtained by using the method of Lagrange multipliers,
is:

Let L (obtained using an algorithm presented in the Appendix) be a
subset of m of the integers 1,...,k. Then the matrix N, , consists of

elements n;:
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forallz e L, n; = 0;
forjg L,if m=k~-1,n; =mn;
fm<k-1, n;=n/(k—m)

st —(k—m-— 1)3;1}/(k —-m). (3.6)

1€L
i#]

+

Substituting the matrix N, , into expression (3.5) we obtain the Bayes risk of
the Bayes estimator and design

Tro(6ros Ny o) =02 {(k — m)? (n +> s{‘) +> sj] : (3.7)

igL JEL

Dividing (3.4) by (3.7) yields e, (6, N).

Now we find the pair (657, Ns). The criterion given by (3.2) is quite complex,
and appears to require a search over the infinite classes =, A, T", and the interval
01 < 0 < 0,. The process can be greatly simplified upon noting the following:

Lemma 1. For a given estimator 8, the Bayes risk r, ,(6,N) in (3.4) is min-
imized by the same design denoted by Ns, for all 0 and # € I'. When at least
one a; # 0, the matriz N5 has elements n;, = na;/Ta;, i =1,... k. In the case
when a = 0, Ny can be any allocation matriz N.

Proof. This result is a direct consequence of the fact that for a given 6, the
vector a is specified and the term in (3.4) which involves the design Nz does not
depend on the prior distribution. A simple calculation yields the result.

As a result of Lemma 1, it is clear that the solution (65, IN)s) must achieve

erMZgélg ilé}; ero(6,Nsg). (3.8)
01<0<02

Combining (3.4), (3.7) and the result of Lemma 1 yields

-1
ero(6,Ng)= la’Ja—%—(l-a)’S(l—a)] /[(k—m)2 (n-i—z 31‘1) +Z st,
n igL JEL
(3.9)
where J is a k x k matrix of ones. The optimization can be further simplified
by noting that o does not appear in the expression (3.9). Thus, the particular

value o and the particular prior = enter this expression only through the matrix
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S. Hence the search for the supremum of e, , (6, N5) over the interval [oy, 02} and
the class I in (3.8) is equivalent to the search over the convex and compact set

II={S:S =diag(s:), sri < si < sui}. (3.10)
The values of s;; and sy; can be obtained as:
spi =tiL /o2, syi =t /o (3.11)
The final simplification of the search process is presented in

Theorem 1. The unique Tobust estimator &y achieves erpy = infsea Supgep,
er.o(6,N5), where g is the set of the 2% extreme points of II.

Proof. For each 8, e,,(8,N;s) is a function of S defined on the convex and
compact set II. The function e, (6, Ns) changes form as the set L acquires new

members when constraints such as s; = (k — 1) (Zj# s;t+ n) 1 are satisfied
for some ¢ € L. The second-order partial derivatives ﬁ%;e,,,a(é, N;) exist and
are finite everywhere, including the boundaries where e, ,(6, Ns) changes form.
The Hessian matrix is positive definite, thus implying that e, . (6, Ns) is strictly
convex over the set II. Hence for each 6§, supgep er,0(6, Ng) is achieved for a
matrix S corresponding to one of the 2% extreme points of II.

Now for each S, the function e, , (8, Ny) is strictly convex in a and finite over
the convex, compact set of all possible a, that is the set {a:a = (a1,0a,...,ax),
0<a £1,i=1,...,k}. Therefore the function supgcr, €ro(6, Ns) is also
strictly convex in a. Consequently er)s is achieved, and the estimator 6, (or
equivalently a,s) is unique.

The solution ajs can now be found by a numerical search procedure, such as
the one given by Charalambous and Conn (1978). Once ay, is found, the design
N,/ is computed using Lemma 1.

Given o, it is possible to identify the normal prior 7y, for which 6, is the
Bayes estimator. We may think of this as the “robust” prior for our class I'. This
is useful if, after the data is collected, we wish to obtain credible sets for = or for
linear functions of 7. The set

C={r:(r=6ux))V 1 (r=-bux)) <xi(1-0a)}, (3.12)

where V= 0%(Ny + S;,)7}, is a good choice for a 100(1 — a)% credible set
for 7. The unknown o2 can now be estimated from the new data. In the next
section we illustrate the derivation of é,;, N, and the region C for a particular
example and compare the efficiency of the estimator and design and the coverage
probability of the confidence region to other procedures.
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4. Application to a Potential Follow-up Study

One of the objectives of the “6-Month Drinking Water Studies of Sodium
Fluoride”, U.S. Dept. of HHS (1990), was to determine the effect of various doses
of sodium fluoride on the body weights of rats. The experimental groups consisted
of thirty rats which were the controls and four other groups of ten rats, each of
which were given one of four experimental dosages of Sodium Fluoride. The
controls were divided into three groups, the first and second of these received the
semisynthetic, low fluoride diet which was also fed to the treated rats, the third
group received a different diet. Therefore, we considered the first two control
groups as the zero dose. Table 1 contains the means and standard errors of the
five treatment groups.

Table 1. Mean change in body weights of the male rats

Dose Sample size mean =+ standard error
0 20 369+9
10 10 349+ 7
30 10 359 + 10

100 10 - 357+£5

300 10 290 £+ 8

The results of the study were interesting as there was a significant effect on
body weight only at the highest dose level. Since the sample sizes were small,
the results of the study should be confirmed on both the same and other species
of rats before concluding that fluoride is potentially harmful. We now show how
our method could be used to design a follow-up study.

We begin by defining the class I' of priors. First, the prior mean of all
members of T" is 6 = (369, 349, 359, 357,290)". Second, using the fact that this
experiment is of the type where one treatment is a control and the rest are
actual experimental treatments, and the fact that the previous experiment was
balanced in the experimental treatments, the matrix S can be written as S = 1/¢
diag(1,d,...,d) where ¢ = (¢/w)*m,, and d = m./m,. Since m. equals 20 and
m, equals 10, the value of d is 2. We enlarge the class allowing 1.9 < d < 2.5.
This is reasonable since the control in this experiment is “no treatment”, so its
prior variance should be less than that of the other treatments. Next, we examine
the values of the standard errors. These range between 5 and 10, so we conclude
that w? ranged between 250 and 1000. It is now necessary to decide on a range
for 02, the error variance for the new planned experiment. If the new experiment
is done under similar conditions, it is reasonable to expect that o will be similar
to w?. Therefore, let 02 range between 250 and 1000. If one thought that all
possible values of w? were equally likely to pair with each value of o2, one would
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obtain the range of possible values of their ratio as 0.25 < (0/w)* < 4.0. Since we
believe however, that the values of the two error variances are similar, it is much
more likely that this range will be narrower. We take 0.75 < (o/ w)? < 1.35. The
assumed ranges of (o/w)? and d lead to the set

II = {S : S = diag(s:, s2, 52, 52, 52), where 0.037<s; <0.067, 0.07<s,<0.17}.
(4.1)
Next, it is necessary to determine the functional form of e, (6, Ng) for the
matrices S in I1z. Thus the set L, indicating which treatments will not be used
for each of the four matrices in IIg is needed. The algorithm presented in the
Appendix reduces to checking for each matrix whether

(i) 51 < 4s2/(4+7 83); in this case the allocation to the control treatment is zero,
that is L = {1}.

or

(ii) s < 81/(1 + ns;); in this case the allocation to the control treatment is n,
that is L = {2, 3,4, 5}.

or

(iii) neither (i) or (ii) obtains, that is L is empty and all treatments are used.

The e, (8, N;s) are then given by (3.9).

Let us find e, , (6, N;) for the four matrices in IIg. Since L depends on n,
the total sample size of the planned experiment, the results will be presented for
n = 75,100,125,150. For n = 75, L = {1} for the matrix which has s; = 0.037

and s, = 0.17. For all remaining matrices and sample sizes L is empty. Hence,
for n = 75, s; = 0.037, and s, = 0.17

ero(6,Ns) = [1/na'Ja+ (1 —a)'S(1 —a)]/[4*(n + 457,17 + 5] (4.2)
For the other three matrices in Ilg

ero(6,Ng) = [I/na'Ja+ (1 —a)'S(1—a)]/[5*(n+s" + 4s;1)71. (4.3)
For the larger sample sizes e, . (6, Ns) is given by (4.3) for all four matrices in Il 5.
Numerical search using the method of Charalambous and Conn (1978) results in
the a,; and N, given in Table 2 for the four different sample sizes. Note that the

quantities n, and n;, that is the allocation of the control and of the experimental
treatments, would now be rounded off to obtain a usable design.

Table 2. The robust designs and estimators, and their relative efficiencies

ac ag e Ty n e;}, Eff; Eff,
0.17 0.71 4.2 17.7 75 84% 67% T72%
032 08 9 22.75 100 86% T2% T75%
0.43 0.82 145 2763 125 8% 7% T7%

0.51 0.84 19.8 3255 150 92% 80% 76%
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In Table 2 the column labeled e}, gives the minimum efficiency of the pro-
cedure (63, Nj) over the entire set II. The column labeled Eff; gives the min-
imum efficiency over the set IT of the standard estimator 6 = X and the design
n, = n; = n/5 which would be used in the absence of the prior information.
To assess the potential loss of efficiency when procedures (6, N) are used instead
of the optimal one, we computed the minimum efficiency over the set II for the
Bayes estimators and designs corresponding to the four extreme matrices S. The
smallest of these efficiencies is Eff; and reflects the maximum loss over II of a
Bayesian procedure. For moderate sample sizes, comparing Eff; and Eff; in-
dicates that even the worst Bayesian choice is preferable to ignoring the prior
information. Comparing the columns e} and Eff, provides a measure of the
value of the prior information when used in a robust manner. Comparison of
e;, and Eff, gives a measure of robustness of (6, Nas) with respect to other
Bayes procedures corresponding to members of the set II. The results in Table 2
show that using the procedure (8,7, Njs) results in a substantial gain in efficiency
for all sample sizes. For the relatively small sample sizes such as n = 75, which
are used in these experiments, the gain is noteworthy.

After the new data is collected, credible sets for the vector 7 should be
obtained. For posteriors in I', the Bayes estimator ¢ corresponds to a vector
a, such that a; = 0if n; = 0, and a; = n—";—s-jr-l if n; # 0. Therefore, given the
vector aps and Nj, we can solve for S;,. Consider the case when n = 75. Here
we find that S), = diag(0.049,0.138,0.138,0.138,0.138). Credible sets such as
(3.12) can now be found using an estimated value (from the new data) for o?.
In simulations, where T was generated from different priors in I', including the
extreme priors corresponding to S in IIg, the coverage probability of the 95%
credible set based on 6, was between 93% and 97%. On the other hand, when a
95% credible set was computed for one of the extreme priors and 7 was generated
from another, coverage probabilities were as low as 77%.

To evaluate the sensitivity of the procedure (65r,Njs) to changes in the
specification of the prior information, we computed the procedures and the
corresponding efficiencies for the case where 0.5 < (o0/w)?* < 2.0, and where
0.25 < (0/w)? < 4.0. These results are presented in Tables 3 and 4.

Table 3. The robust designs and estimators and efficiency comparisons
when 0.5 < (o/w)? < 2.0

ac a; e Ny n e;’%, Eff; Eff; Eff;
0.18 0.72 44 17.65 75 80% 65% 69% 78%
0.33 0.81 9.24 2269 100 83% 70% T70% 81%
0.43 0.82 14.5 2763 125 87% 76% T75% 87%

0.51 0.84 19.8 32.55 150 90% 79% 77% 90%
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Table 3 shows that enlarging the range of (o /w)? slightly does not have much
effect on the procedures (85r, Njs) which are quite similar to those based on the
original prior information. A slight increase in the n. is observed. The efficiencies
decreased as expected but the gain in using the robust procedure remains. The
column labeled Eff; gives the minimum efficiencies over this set II of the original
procedures (857, , Ny, ) presented in Table 2. The fact that the values Effs and e+,
are very close or equal, seems to indicate that the robust procedure (6ur,, Ny, )
obtained for the smaller class of priors remained quite robust over the enlarged
class.

To explore a large degree of uncertainty about the ratio of the error variances
we consider the case when 0.25 < (0 /w)? < 4.0 in Table 4.

Table 4. The robust designs and estimators and efficiency comparisons
when 0.25 < (0/w)? < 4.0

Qe ay Ne ny n e;, Effi Effy Effs
0.22 0.82 4.6 17.6 75 8% 60% 59% 75%
0.37 0.86 9.6 226 100 81% 68% 69% 79%
0.48 0.89 150 275 125 83% 74% 74% 80%

0.55 0.89 20.08 32.47 150 88% 79% T79% 87%

It can be seen from Table 4 that the efficiency of the robust (6, Ny,) for
this class has decreased relative to the efficiency of the robust (6, Njs) for the
smaller class considered in Table 2. This was expected since the range of (¢/w)?
is now quite large. The decrease at all sample sizes is not large, on the order of
about 5 to 6%. Furthermore, comparison of e, with Eff; and Eff, shows that
the use of our procedure still results in substantial gain in efficiency, especially
in the small to moderate sample size case. The estimators 6,; and especially the
allocation matrices N, have remained quite similar to the original ones. The
comparison of Effs with e} in this more extreme case shows only a slightly
larger impact of the possible misspecification in the prior class. On the basis of
this numerical example, we conclude that the procedure (85, Ns) appears to be
quite robust to changes in the set I

Appendix

The Algorithm for obtaining the set L, that is the set of treatments which
will not be used in the experiment.

1. Find 4, such that s;, < (k — 1)(2#1-1 syt + n) L={i}.
If no such 7; exists then L is empty and STOP.

If more than one candidate for i; exists, pick the one for which
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51, —(k=1) (T, 57% +n) is the smallest. STOP if k = 2.

2. Find iz such that s;, < (k- 2)(Tser 57 + n). L= {iris}.

J#i2

If no such 7, exists STOP. If k = 3 STOP.

3. Continue till no i, exists such that s, < (k—m)(z ;€L sj'l-{—n)
JFim

or till m=k—-1.
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