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Abstract: Various methods, such as the moving block bootstrap, have been devel-

oped to resample dependent data. These contain features that attempt to retain

the dependence structure in the data. Asymptotic results for these methods have

been based on increasing the number of observations as the observation region in-

creases, combined with restrictions on the range of dependence of the data. In this

work, we consider resampling a one-dimensional Gaussian random field observed

on a regular lattice, with increasing number of observations within a fixed obser-

vation region. We show a consistency result for resampling the variogram when

the underlying process has a variogram of the form γ(t) = θt + S(t), |S(t)| ≤ Dt2.

For a class of smoother processes, specifically, for a process with variogram of the

form γ(t) = βt2 + θt3 + R(t), |R(t)| ≤ Dt4, we provide a similar result when re-

sampling the second-order variogram. We performed a simulation study in one

and two dimensions. We used the Matérn model for the covariance function with

varying values of the smoothness parameter ν. We find that the empirical coverage

of confidence intervals of the variogram approaches the nominal 95% level as the

number of observations increases for models with small ν, but as ν is increased the

empirical coverage decreases, with the coverage becoming significantly lower than

the nominal level when ν ≥ 1. When we consider the second-order variogram, we

find that the empirical coverage approaches the nominal level for larger values of

ν than for the first-order variogram, with the empirical coverage noticeably lower

than the nominal level only when ν is about 2.

Key words and phrases: Fixed domain asymptotics, Gaussian processes, spatial

bootstrap, variogram.

1. Introduction

The spatial bootstrap has been studied by a number of researchers, Davi-

son and Hinkley (1997) give a brief overview of methods. Hall (1985) appears

to have been the first to use some kind of a block resampling procedure to

bootstrap spatial data. Künsch (1989) introduced the block-resampling boot-

strap to resample one-dimensional processes for finding the sample mean of

weakly stationary observations. With N observations in a line, he suggested

forming N − n + 1 blocks, each consisting of n consecutive observations, and

sampling from these blocks with replacement. Lahiri (1992) considered the
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second order properties of the moving block bootstrap procedure of Künsch

(1989) and showed that it was second-order correct under appropriate condi-

tions. Liu and Singh (1992) independently proposed a similar method in a paper

on bootstrapping m-dependent data, showing consistency of estimates under m-

dependence if the size of the blocks b → ∞ as the sample size N → ∞, with

b/N → 0. Politis and Romano (1992a) developed the method further and sug-

gested wrapping the data, which we call toroidal wrapping, before performing

block resampling. Shi and Shao (1988) and others proposed various versions of

the spatial bootstrap. Politis and Romano (1994) studied subsampling, which

involves calculating estimates using regions that are smaller than the obser-

vation window, and then rescaling the estimates. In his presentation of the

block bootstrap, Künsch (1989) provided a way to extend the method to a

block of blocks bootstrap method. See also Politis and Romano (1992b) and

Bühlmann and Künsch (1995). Loh and Stein (2004) introduced a very similar

method, called the marked point bootstrap, for resampling point processes where

marks are computed and assigned to observed points before performing the boot-

strap. The marks record the contributions made by neighboring points to the

estimate of interest. By using the marks in the calculation of bootstrap estimates,

the method aims to retain some of the structure inherent in the observations, that

might otherwise be partially destroyed by the regular block resampling methods.

Theoretical results that have been obtained are dependent on the underly-

ing process exhibiting only short range dependence. Lahiri (1993) showed that

with longer range dependence present, the block resampling method begins to

fail, since putting independent blocks together to generate the bootstrapped es-

timate destroys the long-range dependence present in the original observations.

Furthermore, these results consider increasing domain asymptotics, where the

observation region or domain increases as the number of observations increases.

In this work, we focus on fixed domain asymptotics and derive consistency

results for the block-of-blocks bootstrap in two specific cases. This bootstrap

method was introduced by Künsch (1989) and is briefly described in Section 2.

It is well known that estimates for dependent data need not be consistent when

the domain is fixed (Stein (1999)). We cannot expect resampling methods to

work well for estimates that are not consistent. Thus our results are necessarily

restricted to certain models and estimated quantities. We consider only Gaussian

processes, and for simplicity restrict theoretical results to one dimension.

In Section 3, we work with the variogram γ defined by

γ(t) = Var[Z(si + t) − Z(si)]

for distance t ≥ 0, where Z(s) represents a Gaussian process observed at point

s. In particular we consider t = hL/N where h is a fixed positive integer, L the
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length of the observation region and N the number of observations. We show a

consistency result for resampling the variogram γ of a process that has variogram

γ(t) = θt + S(t), where |S(t)| ≤ Dt2, and has a bounded second derivative on

(0, L]. For a smoother process, higher order differences can remove the long range

dependence inherent in the process (Kent and Wood (1997) and Istas and Lang

(1997)). In Section 4, we consider a model with variogram γ(t) = βt2+θt3+R(t),

where |R(t)| ≤ Dt4 and has a bounded fourth derivative on (0, L]. This variogram

is proportional to t2 near the origin and the process is exactly once mean square

differentiable. We show a consistency result for the block-of-blocks bootstrap

when we consider the second-order variogram, defined as

φ(t) = Var[Z(si + t) − 2Z(si) + Z(si − t)]. (1)

General asymptotic results for bootstrap of dependent data require the obser-

vation domain to increase as the number of observations increase, together with

some mixing condition for the process. This ensures that the resampling scheme

produces replicates that are asymptotically independent, identically distributed.

For the case of increasing observations in a fixed observation domain, there is

no general analogue to mixing conditions. Furthermore, it is well known (e.g.,

Stein (1999)) that quantities associated with the process often cannot be con-

sistently estimated. Since randomly selected blocks remain close to each other if

the domain has fixed size, it cannot be expected that a general asymptotic result

can be proven in the fixed domain setting.

However, there are some quantities related to the random process that can

be consistently estimated. For example, Ying (1991) showed that for the process

with variogram γ(t) = a[1−exp(−θt)], aθ can be consistently estimated. A quan-

tity that can be recovered with probability one from observations in a bounded

region is called microergodic (Matheron (1971, 1989) and Stein (1999)). For

microergodic quantities, it may be possible that bootstrap estimates of standard

errors are consistent under the fixed domain setting.

We are not aware of any previous results demonstrating the validity of boot-

strapping under fixed domain asymptotics. The results here exploit the fact

that first-order and non-overlapping second-order differences of the respective

processes we consider are nearly independent. Whether some version of the

bootstrap will work for more general microergodic quantities is unknown.

To investigate how well these various bootstrap procedures work in prac-

tice, and to investigate their potential validity for processes in two dimensions,

we simulated Gaussian processes on the unit interval and the unit square, and

examined the empirical coverage of nominal 95% confidence intervals for the
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first- and second-order variograms. We used the Matérn model with covariance

function given by

C(t) =
σ

2ν−1Γ(ν)

(2ν
1

2 t

ρ

)ν
Kν

(2ν
1

2 t

ρ

)

, (2)

where Γ is the Gamma function and Kν is a modified Bessel function. The

parameter ρ is related to the range of the correlation in the process while ν is

a smoothness parameter, so that the process is exactly m times mean square

differentiable if m < ν < m + 1. We considered values of ν = 0.25, 0.5, . . . , 2.0

and ρ = 0.01 and 0.15.

We found that, for the first-order variogram, the empirical coverage of con-

fidence intervals approaches the nominal level as the number of observations in-

creases for models with small ν. We see a gradual drop in empirical coverage as

ν is increased, with the coverage becoming substantially lower than the nominal

level when ν ≥ 1. With the second-order variogram, we find that the empiri-

cal coverage of confidence intervals approaches the nominal level with increasing

number of observations for larger values of ν, with the empirical coverage be-

coming noticeably lower than the nominal level only when ν is about 2. Section

5 gives details of our simulation procedure and findings.

2. The Block-of-Blocks Bootstrap Method

As an extension to the block bootstrap method for resampling one-dimen-

sional processes, Künsch (1989) introduced the block-of-blocks bootstrap in order

to reduce the effect of joining independent blocks. We describe the procedure

below, using a slightly different formulation from that in Künsch (1989).

Suppose Z is a random field with N observed values Z(si) at points si, i =

1, . . . , N , on a regular lattice of length L. Suppose further that a quantity of

interest θ can be estimated via a statistic that can be expressed in the form

θ̂ =
∑

i

Yi(Z).

The quantity Yi(Z) can include observations of Z other than at si, but generally

only observations that are near to si. Thus each point si has a quantity Yi(Z)

associated with it that is a function of values of the process Z near si.

The bootstrap procedure consists of first assigning marks Yi(Z) to each point

si. The points are then resampled, for example, by deciding in advance the length

and number of sampling intervals to use, then picking randomly starting positions

for these intervals. The observation points covered by these randomly placed

intervals form the bootstrap sample. Often the total length of the sampling

intervals is chosen to be equal to the actual length of the observation region,
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although this does not necessarily have to be the case. With the resampled

points s∗1, . . . , s
∗
N , the bootstrap estimate of θ is given by

θ̂∗ =
∑

i

Y ∗
i (Z). (3)

Note that Y ∗
i (Z) is the mark computed from the original observations of Z. This

is not equal to Y ∗
i (Z∗), which would be what is used if the resampled points s∗i

were put back on a lattice and a new estimate computed directly from the new

sample.

3. Resampling the Variogram in a Fixed Domain

Here we provide a consistency result for the block-of-blocks bootstrap when

we resample for the variogram of a process Z with variogram γ(t) = θt + S(t),

where |S(t)| ≤ Dt2 and has a bounded second derivative on (0, L]. Specifically,

suppose Z is observed at N equally spaced points in the interval (0, L], h fixed.

The observation points are denoted by s1 = L/N, s2 = 2L/N, . . . , sN = L.

For fixed integer h > 0, we consider estimating the quantity γ(hL/N) =

Var[Z(si+h) − Z(si)]. We write Z(si+h) as Zi+h for short. Note that as N in-

creases, we are estimating the variogram at smaller and smaller distances, specif-

ically the distance between points that are h number of neighbors away.

An unbiased estimate of γ(hL/N) is given by

γ̂
(hL

N

)

=
1

(N − h)

N−h
∑

i=1

(Zi+h − Zi)
2 =

1

N − h

N−h
∑

i=1

Yi, (4)

where Yi = (Zi+h −Zi)
2. Each point si, i = 1, . . . , N −h is assigned the mark Yi.

Set M = N − h.

We consider breaking the interval (0, L−h] into B blocks, where M/B is an

integer, and resampling the points by sampling these B blocks with replacement.

In block bootstrap terminology, we are using fixed rather than moving blocks.

It is conceptually straightforward to extend this to the moving block case. Note

that the use of blocks here is only to select the points that will be included in the

new sample. In computing the bootstrap estimate, the marks Yi computed from

the real sample are used. In the usual block bootstrap, the Z’s corresponding to

the resampled points are used to compute new values of Yi to give the bootstrap

estimate. It is this new computation of the Yi’s that affects the dependence

structure. Note also that we do not resample points N − h + 1 to N , since these

points have no marks. The observations at these points are used in the estimate,

however, since they are part of the marks assigned to other points.
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For the k-th block, k = 1, . . . , B, let

γ̂k =
B

M

M

B
∑

i=1

Yk,i,

where Yk,i is the i-th value of Y in the k-th block. Thus γ̂k is the average of the Y

values in the k-th block. If B blocks are drawn with replacement, the bootstrap

estimate of γ(hL/N) is given by

γ̂∗ =
1

B

B
∑

j=1

γ̂∗
j =

1

M

B
∑

j=1

M

B
∑

i=1

Y ∗
j,i.

Here, γ̂∗
j denotes the average of the Y values of the j-th sampled block, and

Y ∗
j,i the actual Y values of that block.

Let Uj , j = 1, . . . , B, be independent with P (Uj = γ̂k) = 1/B, k = 1, . . . , B.

Thus γ̂∗ =
∑

Uj/B and E(Uj |Z) = γ̂. Define σ̂2
∗ as

σ̂2
∗ = Var(γ̂∗|Z) =

1

B2

B
∑

k=1

(γ̂k − γ̂)2 =
1

B4

B
∑

k=1

(

Bγ̂k −
B

∑

j=1

γ̂j

)2

. (5)

We then have the following.

Theorem 1. With γ̂ and σ̂2
∗ defined in (4) and (5) respectively, γ̂ is unbiased

with

Var(Nγ̂) =
2θ2L2h(2h2 + 1)

3N
+ O(N−2), (6)

N [E(N2σ̂2
∗) − Var(Nγ̂)] = O(B−1) + O(BN−1), (7)

Var(N2σ̂2
∗) = O(B−2N−1). (8)

Proof. In what follows we suppress the term hL/N and write γ̂ and γ to denote

γ̂(hL/N) and γ(hL/N) respectively. It is clear that the estimator γ̂ is unbiased.

Furthermore,

Var(Mγ̂) =

M
∑

i=1

Var(Yi) + 2

M
∑

i<j

Cov (Yi, Yj)

= 2Mγ2 + 4

M
∑

i<j

Cov (Zi+h − Zi, Zj+h − Zj)
2, (9)
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using the fact that Zi+h − Zi ∼ N(0, γ) and the result that for (U, V ) bivariate

normal, Cov (U2, V 2) = 2Cov (U, V )2. For i, j such that j − i = k ≥ 0,

Ck ≡ Cov (Zi+h − Zi, Zj+h − Zj)

= [γ(
(k + h)L

N
) + γ(

|h − k|L
N

) − 2γ(
kL

N
)]2−1

=

{

O(N−2) if k ≥ h,

θL(h−k)
N + O(N−2) if k < h.

(10)

Putting the expressions for γ2 and Ck into (9) gives (6).

To find E(N2σ̂2
∗) we first define ∆k = Bγ̂k−

∑B
j=1 γ̂j. We note that E(∆k) =

0, so that

E(N2σ̂2
∗) =

N2

B4

B
∑

k=1

Var(∆k). (11)

From the expression

M

B
∆1 = (B − 1)(Y1 + · · · + YM

B

) − (YM

B
+1 + · · · + YM ), (12)

we have

Var

(

M

B
∆1

)

= M(B − 1)Var(Y1) + 4(B − 1)2

M

B
−1

∑

l=1

(

M

B
− l

)

C2
l

+ 4

M−M

B
−1

∑

l=1

(

M − M

B
− 1

)

C2
l

− 4(B−1)

[

M

B
∑

l=1

lC2
l +

M−M

B
∑

l= M

B
+1

M

B
C2

l +

M−1
∑

l=M−M

B
+1

(M − l)C2
l

]

, (13)

where Cl is as defined in (10). In the right-hand side of (13), the second and

third terms correspond to cross-terms within the respective bracketed terms in

(12), and the last term corresponds to cross-terms between terms in the two

brackets in (12). Rearranging the terms and noting that for l ≥ h, the sum of

the coefficients of C2
l is O(M2) while C2

l is O(N−4), we have

Var

(

M

B
∆1

)

= M(B−1)Var(Y1)+4

h−1
∑

l=1

{BM−M−(B2−B+1)l}C2
l

+O(N−2),

= 2MBθ2L2h(2h2 + 1)(3N2)1 + O(B2N−2) + O(N−1).
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Expressions for M∆k/B, k = 2, . . . , B − 1, are the same as the above, differing

only in the smaller order terms. Putting these into (11) yields

E(N2σ̂2
∗) =

2θ2L2h(2h2 + 1)

3N
+ O(N−1B−1) + O(BN−2),

which in turn gives (7).

Next, we have

Var(σ̂2
∗) =

1

B8

B
∑

k=1

Var(∆2
k) +

2

B8

B
∑

k,l:k<l

Cov (∆2
k,∆

2
l )

=
1

B8

B
∑

k=1

Var(∆2
k) +

2

B8

[ B−1
∑

k=1

Cov (∆2
k,∆

2
k+1)

+
B−2
∑

k=1

Cov (∆2
k,∆

2
k+2) + · · · + Cov (∆2

1,∆
2
B)

]

. (14)

The quantities Var(∆2
k),Cov (∆2

k,∆
2
k+1) and Cov (∆2

k,∆
2
k+l) for l = 2, . . . , B−1,

have terms of the form Cov (YiYj, YuYv). First consider the case where at least one

of {u, v} is less than h away from {i, j}. The covariance terms Cov (YiYj, YuYv)

can be classified into four types, represented by Cov (YiYi′ , Yi′′Yi′′′), Cov (YiYi′ ,

Yi′′Yj), Cov (YiYj, Yi′Yk) and Cov (YiYj, Yi′Yj′), where i′ denotes integers such

that |i− i′| < h, and similarly for i′′, i′′′. These are in turn bounded by Cov (Y 2
i ,

Y 2
i ), Cov (Y 2

i , YiYj), Cov (YiYj, YiYk) and Cov (YiYj, YiYj) respectively, where

each is O(N−4).

Using (12) and similar expressions for M∆k/B, we can find the sums of

the coefficients of each type for Var(M2∆2
k/B

2),Cov (M2∆2
k/B

2,M2∆2
k+1/B

2)

and Cov (M2∆2
k/B

2,M2∆2
k+l/B

2) for l = 2, . . . , B − 1. For Var(M2∆2
k/B

2), the

sum of the coefficients corresponding to Cov (YiYi′ , Yi′′Yi′′′), Cov (YiYi′ , Yi′′Yj),

Cov (YiYj, Yi′Yk) and Cov (YiYj , Yi′Yj′) are, respectively, O(MB), O(M2B2),

O(M3B) and O(M2). Similarly, these coefficients are O(MB + B4), O(MB3 +

M2B), O(M3 + M2B2) and O(M2) for Cov (M2∆2
k/B

2,M2∆2
k+1/B

2), and

O(MB), O(M2B), O(M3) and O(M2) for Cov (M2∆2
k/B

2, M2∆2
k+l/B

2), l =

2, . . . , B − 1. Thus the contribution of these terms to (14) is O(N−5B−2).

Repeating the same argument, we find that the contribution of terms Cov

(YiYj, YuYv) where both {u, v} are both at least h away from {i, j} add up to

O(N−6B−2). Combining these findings gives (8).

Together with the asymptotic normality of γ̂ (Kent and Wood (1997)), we

can further show asymptotic normality of (γ̂ − γ)/σ̂∗ as B increases with N , N
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increasing slightly faster than B:

γ̂ − γ

σ̂∗
=

γ̂ − γ
√

Var(γ̂)
×

(

Var(Nγ̂)

N2σ̂2
∗

)
1

2

=
γ̂ − γ

√

Var(γ̂)
[1 + Op(N

1

2 B−1) + O(BN−1)]
1

2 (using Theorem 1)

=
γ̂ − γ

√

Var(γ̂)
+ Op(N

1

2 B−1) + Op(BN−1),

where (γ̂ − γ)/
√

Var(γ̂) is asymptotically standard normal (Kent and Wood

(1997)). Specifically, (γ̂ − γ)/σ̂∗ is asymptotically normal if we let B = Nα such

that 0.5 < α < 1 and N → ∞.

3.1. Resampling in the presence of a trend

Theorem 1 still holds if the observed process has a trend, provided the trend

is sufficiently smooth. Specifically, suppose X(t) = µ(t) + Z(t), where Z is a

zero mean process with variogram γ(t) = θt + S(t), S(t) ≤ Dt2, with a bounded

second derivative on (0, L].

First, we note that Var(Xi+h −Xi) = γ(hL/N). Setting γ̂ =
∑N−h

i=1 (Xi+h −
Xi)

2/(N − h), we find that

E(γ̂) = γ

(

hL

N

)

+
1

N − h

N−h
∑

i=1

(µi+h − µi)
2.

If, for example, the first derivative of µ is bounded, then the second term in

the expression above is O(N−2). Then γ̂ is asymptotically unbiased and Var(Nγ̂)

is as given in (6), with the additional terms in µ being O(N−3). Furthermore,

the steps in the proof leading to Equations (7) and (8) carry through unchanged.

4. Resampling the Second-Order Variogram in a Fixed Domain

Kent and Wood (1997) showed that for processes with variogram given by

γ(t) = θtα + o(tα) as t → 0,

the fixed domain asymptotic behavior of estimates of α is different for α < 1.5

and α ≥ 1.5. This difference in asymptotic behavior can be attributed to longer

range dependence in processes with α ≥ 1.5. Kent and Wood (1997) also showed

that higher order differencing of the data can remove this long range dependence.

See also Istas and Lang (1997).
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In this section, we show how the idea of differencing to remove dependence

can apply to inference via resampling with a specific model where α = 2. Specif-

ically, we consider the model for a Gaussian process Z in one dimension, with

variogram given by

γ(t) = βt2 + θt3 + R(t) t ≥ 0, (15)

where |R(t)| ≤ Dt4 and γ(t) has a bounded fourth derivative.

We consider estimating the second-order variogram, which we denote by φ,

defined in (1). For this model, the second-order variogram φ(hL/N) = 6C(0) −
8C(hL/N) + 2C(2hL/N) has the form

N3φ = −8θh3L3 + 8N3R(
hL

N
) − 2N3R(

2hL

N
)

= −8θh3L3 + O(N−1), (16)

so that the first term of N3φ is independent of N . Note also that (16) does not

contain β. An estimator of φ is

φ̂

(

hL

N

)

=
1

M

M
∑

i=1

Yi, (17)

where Yi = [Zi+h − 2Zi + Zi−h]2, i = h + 1, . . . , N − h, and M = N − 2h. Using

the block-of-blocks bootstrap as in the previous section we get the following.

Theorem 2. The estimator φ̂ given in (17) is unbiased and

Var(N3φ̂) =
θ2L6

105N
P (h) + O(N−2), (18)

where P (h) = 29280h7 −47040h6 +42336h5 +3360h4−17920h3 +3360h2 +1744h

is a fixed polynomial in h, so that N3φ̂ has N−1 convergence. Furthermore,

N [E(N6σ̂2
∗) − Var(N3φ̂)] = O(B−1) + O(BN−1), (19)

Var(N6σ̂2
∗) = O(B−2N−1). (20)

Proof. The estimate φ̂ is clearly unbiased. Furthermore,

Var(φ̂) =
1

M
Var(Y1) +

4

M2

M
∑

i<j

Cov (Zi+h − 2Zi + Zi−h, Zj+h − 2Zj + Zj−h)2

=
2

M
φ

(

hL

N

)2

+
4

M2

M
∑

i<j

C2
|i−j|, (21)
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where

Ck = − 6γ

(

kL

N

)

+ 4γ

(

(k + h)L

N

)

− γ

(

(k + 2h)L

N

)

− γ

( |k − 2h|L
N

)

+4γ

( |k − h|L
N

)

. (22)

Using (15), we can evaluate (22) for the three cases k = |i − j| < h, h ≤ k < 2h

and k ≥ h, giving

Ck =















−θL3(6k3−12k2h+8h3)N−3 + O(N−4) for k < h,

−θL3(−2k3+12k2h−24kh2+16h3)N−3+O(N−4) for h≤k<2h,

O(N−4) for k ≥ 2h.

(23)

There are M − k pairs of Yi and Yj such that j − i = k, thus there are order

M2 terms with k ≥ 2h. The sum of the corresponding covariance terms within

the double sum in (21) for k ≥ 2h is of order N−6, whereas for k < 2h,

M
∑

i<j:|i−j|<2h

C2
|i−j| =

θ2L6

N6

[

h−1
∑

k=1

(6k3 − 12k2h + 8h3)2(M − k)

+

2h−1
∑

k=h

(−2k3+12k2h−24kh2+16h3)2(M−k)

]

+O(N−6).

Putting this together with (16) into (21) gives (18).

For the bootstrap calculations, many of the expressions for the bootstrap

variance estimator follow from the previous section. Here, we find that the terms

involving Ck for k ≥ 2h sum up to a lower order than the terms corresponding

to k < 2h. Specifically, for (13), there are O(M2) number of terms involving C2
l

with l ≥ 2h, of order O(N−8). Thus we find that, for M/B ≥ 2h,

Var

(

M

B
∆1

)

= M(B − 1)Var(Y1) +
4θ2L6

N6

h−1
∑

l=1

[MB−M−(B2−B+1)l]

×[(6l3 − 12l2h + 8h3)2 + O(N−1)]

+
4θ2L6

N6

2h−1
∑

l=h

[MB − M − (B2 − B + 1)l]

×[(−2l3+12l2h−24lh2+16h3)2+O(N−1)]+O(N−6)

=
MBθ2L6

105N6
P (h) + O(N−5) + O(B2N−6),
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where P (h) is defined just after (18). Putting this into

E(N6σ̂2
∗) =

N6

B4

B
∑

k=1

Var(∆k)

and comparing with Var(N3φ̂) in (18) gives (19).

To obtain (20), we note that the argument of the two paragraphs after (14)

applies here as well. The terms Cov (YiYj, YuYv), where at least one of {u, v} is

at most 2h away from {i, j}, are bounded by one of Cov (Y 2
i , Y 2

i ),Cov (Y 2
i , YiYj),

Cov (YiYj, YiYk) or Cov (YiYj, YiYj), which are O(N−12). The sums of coefficients

corresponding to these terms are of the same order as those in the previous

section. This gives (20), after noting that terms Cov (YiYj, YuYv) for u and v

both 2h or more away from i and j are O(N−14) and their total is o(B−2N−1).

As in Section 3.1, the bootstrap is consistent in the presence of a trend if the

trend is sufficiently smooth. Specifically, if the second derivative of µ is bounded,

φ̂ is asymptotically unbiased. Equations (18), (19) and (20) of Theorem 2 remain

unchanged.

Note that the second-order variogram φ contains θ but not β. Under fixed

domain asymptotics φ, and thus θ, can be consistently estimated and we showed

above that the block-of-blocks bootstrap yielded asymptotically correct inferences

under fixed domain asymptotics.

On the other hand, β cannot be consistently estimated using observations in a

fixed domain and we do not expect any bootstrap method to yield asymptotically

correct inferences for β under fixed domain asymptotics. The results of our

simulation study (Section 5, Figure 3) also show that as we consider smoother

processes, consistency is achieved only if we difference enough, e.g., by considering

the second-order variogram rather than the first-order variogram.

5. Simulation Study

We present here the results of a simulation study to bootstrap a Gaussian

random field using the block-of-blocks bootstrap. We performed simulations in

one and two dimensions, using equally spaced observations on the unit interval

and the unit square. In our simulations we used the Matérn model with covari-

ance function given by (2), with ρ = 0.01 and 0.15 and ν = 0.25, 0.5, . . . , 2.0.

The values ν = 0.5 and 1.5 correspond to models belonging to those considered

in Sections 3 and 4, respectively.

Normally a simulation of a realization of a random field requires perform-

ing a Cholesky decomposition of the covariance matrix and, for large data sets,

is very computationally intensive. However, for observations on a regular lat-

tice, simulations can be done very quickly using the Fast Fourier Transform.
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x

Figure 1. For each point x in the two dimensional simulations, the distances

at which the variograms are estimated are the distances to the 10 nearest

neighbors as shown here.

Wood and Chan (1994) and Dietrich and Newsam (1997) provide slightly dif-

ferent methods to do this (see also Stein (2002)). We used the method of

Dietrich and Newsam (1997).

With a realization of the process, we computed the first and second-order

variograms at distances corresponding to the 10 nearest neighbors of the ob-

servations. In one dimension, h = 1, . . . , 10, while in two dimensions, h =

1,
√

2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

18 (see Figure 1).

The bootstrap method described in Section 2 was then used to resample the

observations to obtain bootstrap estimates. For each realization, we obtained

R = 999 bootstrap samples. With the 999 bootstrap estimates, a nominal 95%

confidence interval is then constructed using what Davison and Hinkley (1997)

call the basic bootstrap interval.

Specifically, for each realization of a process, we have, for the first order

variogram, say, an estimate γ̂ = γ̂(h/N) and R bootstrap estimates γ̂∗
k, k =

1, . . . , R. If γ̂(R+1)(1−α/2) and γ̂(R+1)α/2 are respectively the (R + 1)(1 − α/2)th

and (R + 1)(α/2)th ordered values of γ̂∗
k , k = 1, . . . , R, the 100(1 − α)% basic

bootstrap interval is given by

[2γ̂ − γ̂(R+1)(1−α/2), 2γ̂ − γ̂(R+1)α/2]. (24)

The above interval is obtained by assuming that the sampling distribution of

γ̂∗− γ̂ is similar to that of γ̂−γ, so that the (1−α/2)th and (α/2)th quantiles of

γ̂−γ can be estimated by the (R+1)(1−α/2)th and (R+1)(α/2)th ordered values

of γ̂∗ − γ̂. The bootstrap procedure is performed 500 times, giving 500 nominal

95% confidence intervals. The empirical coverage of the confidence intervals can

then be examined.

We implemented a few modifications to the resampling scheme described in

the earlier sections. First, we used overlapping blocks instead of non-overlapping

ones. In analogy to the block bootstrap, this means we used moving blocks

instead of fixed blocks. Thus, in the one-dimensional simulations, block 1 consists
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Figure 2. This figure shows how toroidal wrapping is implemented in two
dimensions. The dots represent the observation points. The smaller square

is a resampling block that does not fully lie within the observation region.

The dotted portion is wrapped around and samples the observations on the

other side as well.

of observations 1 through N/B, block 2 of observations 2 through N/B+1, and so

on, and a new sample is obtained by sampling B of these blocks with replacement.

Also, to ensure that every point has equal probability of being selected,

we implemented a toroidal wrapping procedure and allow blocks to fall partly

outside the observation region. Such blocks are wrapped around so that they also

sample points on the other side of the observation region. So, for example, in one

dimension, block N consists of observations N, 1, . . . , N/B − 1. Figure 2 shows

toroidal wrapping implemented in two dimensions. Note that the marks are

calculated from the original observations without any toroidal wrapping. The

toroidal wrapping is only applied to the resampling of the points. Any other

procedure for selecting points with equal probability can be used, if desired. For

the simulations in one dimension, we use N equal to 32, 64, 128, 256, 512, 1024,

and 2, 048, and blocks of length 1/2, 1/4, 1/8, and 1/16. In two dimensions, we

use N = 162, 322, . . . , 10242 and blocks of area 1/22, 1/42, 1/82, and 1/162.

5.1. Results

Figure 3 shows the results of our simulation study in one dimension, specifi-

cally, plots of the empirical coverage of nominal 95% confidence intervals for the

first-order and second-order variograms for the Matérn process with ρ = 0.15

and ν from 0.25 to 2.0. The results for ρ = 0.01 are very similar and are not

shown. We only show plots for representative values of N and B, specifically,

N = 128 with B = 4, N = 512 with B = 8, and N = 2, 048 with B = 16. We

did not include plots for N = 32 as the empirical coverages attained for this N

are uniformly poor, especially for large r.

When estimating the first-order variogram, we find that the empirical cov-

erage of nominal 95% confidence intervals approaches the nominal level as N
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Figure 3. Plots of empirical coverage of nominal 95% confidence intervals for

the first-order variogram γ (thin lines) and second-order variogram φ (thick

lines), obtained by resampling using the block-of-blocks bootstrap method
for the Matérn models in one dimension, for ρ = 0.15, ν = 0.25, 0.5, . . . , 2.

Different numbers of observations N and block sizes 1/B were considered:

N = 128, B = 4 (solid), N = 512, B = 8 (dashed) and N = 2, 048, B = 16

(dotted).
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and B get larger, with N/B increasing, for small ν, specifically, ν = 0.25, 0.5

and 0.75. This holds for both ρ = 0.01 and 0.15. As we increase ν further, we
find a gradual degradation, with the empirical coverage becoming noticeably less

than 95% for all N when ν is about 1 and larger, especially so when ρ = 0.15.

Furthermore, there is little or no improvement in coverage probabilities when N

increases from 512 to 2,048.
From the results in the previous sections, we expect, for the ν = 1.5 model,

that the empirical coverage will be closer to the nominal level when we consider

the second-order variogram for larger values of N . We find from Figure 3 that

this is indeed the case. Again, we see a gradual drop in empirical coverage as ν is
increased to 2. For ν = 2, we find that the empirical coverage of 95% confidence

intervals for the second-order variogram does not approach the 95% level as the

number of observations is increased.

We also examine how the empirical coverage probabilities of nominal 95%
confidence intervals vary when B is varied, with N fixed. In general, we find that

for a particular value of N , empirical coverage improves as B increases. With

small B, the bootstrap samples tend to be more alike, so that bootstrap esti-
mates do not have the appropriate variance. However, we find that the empirical

coverage may drop if B is increased too much. Figure 4 shows the empirical

coverage of nominal 95% confidence intervals for the second-order variogram for

N = 32 (left), and N = 2, 048 (right), with the Matérn ν = 1.5, ρ = 0.15 model.
The right plot shows the common situation of empirical coverage increasing as B

increases. The left plot shows an example of empirical coverage dropping when

B gets too large.

This drop in empirical coverage when B is too large is slightly more pro-
nounced in our simulations in two dimensions. Figure 5 shows plots of the

empirical coverage of nominal 95% confidence intervals for φ of the Matérn

ν = 1.5, ρ = 0.15 model, with N = 322 and 5122. Notice that empirical cov-

erage drops when the smallest block sizes were used.
Figure 6 shows plots of the empirical coverage of nominal 95% bootstrap con-

fidence intervals of the first- and second-order variograms in the two-dimensional

case, with different combinations of the number of observations N and block area

1/B2: N = 322 with B = 2, N = 1282 with B = 4, and N = 5122 with B = 8.
In two dimensions, we see that we require larger sample sizes for the asymptotics

to become apparent. Note that the actual empirical coverages attained in the

one- and two-dimensional simulations are difficult to compare. For example, it

is not clear whether N = 128 in the one-dimensional case should be compared
with N = 128 or N = 1282 in two dimensions. It is also not clear whether to

make comparisons using block width or number of blocks.

We do find the same qualitative behavior of the empirical coverage as in

the one-dimensional case: as N and B are increased, with N/B increasing, the
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Figure 4. Plots of empirical coverage of nominal 95% confidence intervals

for the second-order variogram φ, obtained by resampling using the block-

of-blocks bootstrap method for the Matérn model with ν = 1.5, ρ = 0.15
in one dimension. The numbers of observations N are 32 (left) and 2,048

(right). For each plot, the different lines correspond to different block size

1/B: B = 2 (solid), B = 4 (dashed), B = 8 (dotted), and B = 16 (dotted

and dashed).
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Figure 5. Plots of empirical coverage of nominal 95% confidence intervals

for the second-order variogram φ, obtained by resampling using the block-

of-blocks bootstrap method for the Matérn model with ν = 1.5, ρ = 0.15
in two dimensions. The numbers of observations N are 32 × 32 (left) and

512×512 (right). For each plot, the different lines correspond to blocks with

area 1/B2: B = 2 (solid), B = 4 (dashed), B = 8 (dotted), and B = 16

(dotted and dashed).
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Figure 6. Plots of empirical coverage of nominal 95% confidence intervals
for the 1st order variogram γ (thin lines) and 2nd order variogram φ (thick

lines), obtained by resampling using the block-of-blocks bootstrap method in

two dimensions for the Matérn model with ρ = 0.15 and ν = 0.25, 0.5, . . . , 2.

Different numbers of observations N and block areas 1/B2 were considered:
N = 32 × 32, B = 2 (solid), N = 128 × 128, B = 4 (dashed), N = 512 ×
512, B = 8 (dotted and dashed).
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empirical coverage increases toward the nominal level provided ν < 1 for the

first-order variogram, and ν < 2 for the second-order variogram. This once again

suggests that consistency is achieved only if we difference enough. The results in

Chan and Wood (2000) show different asymptotic behavior of increment-based

estimators in one and two dimensions for a related setting. However, it is dif-

ficult to say anything conclusive about differences between the one- and two-

dimensional cases from our simulation study.

6. Conclusion

In spatial statistics, asymptotics can be considered in the context of an in-

creasing or fixed domain as the number of observations increases. As far as we

are aware, there has not been any asymptotic results for the spatial bootstrap

under the fixed-domain setting. In this work, we showed that the block-of-blocks

bootstrap gives asymptotically consistent results in the fixed domain case, when

appropriate quantities are considered. Specifically, we considered two Gaussian

processes, one with variogram of the form γ(t) = θt + S(t), |S(t)| ≤ Dt2 and the

other of the form γ(t) = βt2+θt3+R(t), |R(t)| ≤ Dt4, and showed that the block-

of-blocks bootstrap gives consistent results for the variogram and second-order

variogram respectively. The results here are not specific to the block-of-blocks

bootstrap and should apply to other similar resampling schemes.

In our simulations with Matérn processes, we find that as the smoothness

parameter ν is increased, the empirical coverage of nominal 95% confidence in-

tervals for the variogram decreased. For ν about 1 and larger, the coverage of

confidence intervals was noticeably lower than the nominal level even for large

N . For confidence intervals of the second-order variogram, however, the nominal

level is attained as N is increased, for larger values of ν, with the degradation

becoming noticeable at a higher value of ν than for the first-order variogram.

Following Matheron (1971), Stein (1999) defines the principal irregular

term as the first term in the expansion of the covariance function C(t) in t

about 0 that is not an even power of t. For example, for the processes considered

in Section 3 and 4, the principal irregular terms are θt and θt3 respectively. For

the Matérn model, the principal irregular term has power given by 2ν. With

the second-order variogram in Section 4, we removed the βt2 term in the ex-

pansion of the covariance function by taking second differences and were able to

make consistent inferences for the principal irregular term under fixed-domain

asymptotics.

Kent and Wood (1997) considered estimating α in γ(t) = θtα + o(tα). They

showed that estimates for α obtained from first differences of the process are

n1/2-consistent only if α ∈ (0, 1.5), but when second differences are used, n1/2-

consistent estimates are obtained for α ∈ (0, 2). Our simulations suggest a similar
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result for the bootstrap: the bootstrap can work reasonably well for a high enough
order of the variogram relative to the smoothness of the process.

Covariance functions with similar high frequency behavior of their spectral
densities yield very similiar predictions (Stein (1999)). The high frequency be-

havior is in turn related to the principal irregular term in the expansion of the
covariance function in t about 0. We showed here that the bootstrap estimate

is consistent for the standard error of the principal irregular term estimate, but
not necessarily for the empirical variogram.
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