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Abstract: The standard L2-norm support vector machine (SVM) is a widely used
tool for classification problems. The L1-norm SVM is a variant of the standard L2-
norm SVM, that constrains the L1-norm of the fitted coefficients. Due to the nature
of the L1-norm, the L1-norm SVM has the property of automatically selecting
variables, not shared by the standard L2-norm SVM. It has been argued that the
L1-norm SVM may have some advantage over the L2-norm SVM, especially with
high dimensional problems and when there are redundant noise variables. On the
other hand, the L1-norm SVM has two drawbacks: (1) when there are several highly
correlated variables, the L1-norm SVM tends to pick only a few of them, and remove
the rest; (2) the number of selected variables is upper bounded by the size of the
training data. A typical example where these occur is in gene microarray analysis.
In this paper, we propose a doubly regularized support vector machine (DrSVM).
The DrSVM uses the elastic-net penalty, a mixture of the L2-norm and the L1-norm
penalties. By doing so, the DrSVM performs automatic variable selection in a way

similar to the L1-norm SVM. In addition, the DrSVM encourages highly correlated
variables to be selected (or removed) together. We illustrate how the DrSVM can
be particularly useful when the number of variables is much larger than the size
of the training data (p � n). We also develop efficient algorithms to compute the
whole solution paths of the DrSVM.

Key words and phrases: Grouping effect, p � n, quadratic programming, SVM,
variable selection.

1. Introduction

The support vector machine (SVM) is a widely used tool for classification
(Vapnik (1995)). It was first motivated by the geometric consideration of max-
imizing the margin (Boser, Guyon and Vapnik (1992) and Cortes and Vapnik
(1995)). If given a set of training data (x1, y1), . . . , (xn, yn), where the input
xi ∈ R

p is a vector with p predictor variables, and the output yi ∈ {1,−1} de-
notes the class label, the SVM finds a hyperplane that separates the two classes
of data points by the largest distance:

max
β0,β

1

‖β‖22
, subject to yi(β0 + xT

iβ) ≥ 1− ξi, ξi ≥ 0,
n∑

i=1

ξi ≤ B,

where ξi are slack variables that describe the overlap between the two classes,
and B is a tuning parameter that controls the overlap.
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Many researchers have noted the relationship between the SVM and regu-
larized function estimation, i.e., the above optimization is equivalent to

min
β0,β

n∑

i=1

[1− yi(β0 + xT

iβ)]+ +
λ

2
‖β‖22, (1)

where λ is the tuning parameter, playing the same role as B. The classification
rule for a new input x is then given by sign(β0+xTβ). Notice that (1) has the form
loss+penalty; hence λ controls the balance between the loss and the penalty. The
function (1−·)+ is called the hinge loss, and is plotted in Figure 1. Notice that it
has a non-differentiable point at 1. The penalty is the L2-norm of the coefficient
vector, the same as that used in ridge regression (Hoerl and Kennard (1970)).
The idea of penalizing by the sum of squares of the parameters is also used in
neural networks, where it is known as weight decay. The ridge penalty shrinks
the fitted coefficients toward zero. It is well known that this shrinkage has the
effect of controlling the variance of fitted coefficients, hence possibly improving
the fitted model’s prediction accuracy via the bias-variance trade-off, especially
when there are many highly correlated variables. An overview of the SVM as
regularized function estimation can be found in Burges (1998), Evgeniou, Pontil
and Poggio (1999), Wahba (1999) and Hastie, Tibshirani and Friedman (2001).
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Figure 1. The hinge loss of the SVM. Elbow indicates the point 1− yf = 0,
Left indicates the region to the left of the elbow, and Right indicates the
region to the right of the elbow.

1.1. The L1-norm support vector machine

Instead of using the L2-norm penalty, several researchers have considered

replacing it in (1) with the L1-norm penalty, and fitting an L1-norm SVM
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model (Bradley and Mangasarian (1998), Song, Breneman, Bi, Sukumar, Ben-

nett, Cramer and Tugcu (2002) and Zhu, Rosset, Hastie and Tibshirani (2004)):

min
β0,β

n∑

i=1

[1− yi(β0 + xT

iβ)]+ + λ‖β‖1.

The L1-norm penalty was first used for signal processing and regression problems

by Mallat and Zhang (1993), Tibshirani (1996) and Chen, Donoho and Saunders

(1998). Similar to the L2-norm penalty, the L1-norm penalty also shrinks the

fitted coefficients toward zero, which also benefits from the reduction in the fitted

coefficients’ variance. Another important property of the L1-norm penalty is that

because of its L1 nature, making λ sufficiently large will cause some of the fitted

coefficients be exactly zero. Thus, as λ varies, the L1-norm penalty performs

a kind of continuous variable selection, while this is not the case for the L2-

norm penalty. It is interesting to note that the L2-norm penalty corresponds

to a Gaussian prior for the βj ’s, while the L1-norm penalty corresponds to a

double-exponential prior. The double-exponential density has heavier tails than

the Gaussian density. This reflects the greater tendency of the L1-norm penalty

to produce some large fitted coefficients and leave others at 0, especially in high

dimensional problems. See Figure 2 for contours of the L2-norm penalty and the

L1-norm penalty.

1.2. The doubly regularized support vector machine

It has been argued that the L1-norm penalty has advantages over the L2-

norm penalty under certain scenarios (Donoho, Johnstone, Kerkyachairan and

Picard (1995), Friedman, Hastie, Rosset, Tibshirani and Zhu (2004) and Ng

(2004)), such as when there are redundant noise variables. However, the L1-

norm penalty also suffers from two serious limitations (Zou and Hastie (2005)).

1. When there are several highly correlated input variables in the data set, and

they are all relevant to the output variable, the L1-norm penalty tends to pick

only one or few of them and shrinks the rest to 0. For example, in microar-

ray analysis, expression levels for genes that share one biological pathway are

usually highly correlated, and these genes all contribute to the biological pro-

cess, but the L1-norm penalty usually selects only one gene from the group

and does not care which one is selected. The ideal method should be able to

eliminate trivial genes, and automatically include the whole group of relevant

genes.

2. In the p > n case, as shown in Rosset, Zhu and Hastie (2004), the L1-norm

penalty can keep at most n input variables. Again, we use microarray as an

example: the sample size n is usually on the order of 10 or 100, while the
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dimension of the input p is typically on the order of 1, 000 or even 10, 000.

Using the L1-norm penalty can, at most, identify n non-zero fitted coefficients,
but it is unlikely that only 10 genes are involved in a complicated biological

process.

Zou and Hastie (2005) proposed the elastic-net penalty to fix these two lim-

itations. The elastic-net penalty is a mixture of the L1-norm penalty and the

L2-norm penalty, combining good features of the two. Similar to the L1-norm
penalty, the elastic-net penalty simultaneously performs automatic variable selec-

tion and continuous shrinkage; the new advantages are that groups of correlated

variables now can be selected together, and the number of selected variables is

no longer limited by n.
In this paper, we apply the elastic-net penalty to the support vector machine.

Specifically, we consider the following doubly regularized support vector machine,

which we call the DrSVM:

min
β0,β

n∑

i=1

[1− yi(β0 + xT

iβ)]+ +
λ2

2
‖β‖22 + λ1‖β‖1, (2)

where both λ1 and λ2 are tuning parameters. The role of the L1-norm penalty is

to allow variable selection, and the role of the L2-norm penalty is to help groups

of correlated variables get selected together. We show that for classification

problems, the L2-norm penalty tends to make highly correlated input variables
have similar fitted coefficients, which is the grouping effect. We also see that

the number of selected input variables is not limited by n anymore. Figure 2

compares contours of the L2-norm, the L1-norm, and the elastic-net penalty.
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Figure 2. 2-dimensional contour plots. The L2-norm ‖β‖22 = 1, the L1-norm
‖β‖1 = 1, and the elastic-net 0.5‖β‖22 + 0.5‖β‖1 = 1.
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To get a good classification rule that performs well on future data, it is

important to select appropriate tuning parameters λ1 and λ2. In practice, people

can pre-specify a finite grid of values for λ1 and λ2 that covers a wide range, then

use either a separate validation data set or cross-validation to do a grid search to

find values for the (λ1, λ2) pair that give the best performance across the given

grid. In this paper, we illustrate that the solution path for a fixed value of λ2,

denoted as βλ2
(λ1), is piece-wise linear as a function of λ1 (in the R

p space); and

for a fixed value of λ1, the solution path, denoted as βλ1
(λ2), is piece-wise linear

as a function of 1/λ2. We further propose efficient algorithms to compute the

exact solution paths. This helps us understand how the solution changes with

λ1 and λ2, and facilitates the adaptive selection of the tuning parameters.

Before delving into the technical details, we illustrate the concept of grouping

effect and piece-wise linearity of the solution paths βλ2
(λ1) and βλ1

(λ2) with a

simple example. We generate 30 training data in each of two classes. Each input

xi is a p = 30 dimensional vector. For the “+” class, xi has a normal distribution

with mean and covariance matrix

µ+ = (1, . . . , 1
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

25

)T,

Σ =

(
Σ∗

5×5 05×25

025×5 I25×25

)

,

where the diagonal elements of Σ∗ are 1 and the off-diagonal elements are all

equal to ρ = 0.8. The “−” class has a similar distribution, except that

µ− = (−1, . . . ,−1
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

25

)T.

So x1, . . . , x5 are highly correlated, the Bayes optimal classification boundary is

given by x1 + · · · + x5 = 0 and the Bayes error is 0.138. Figure 3 compares the

result from the standard L2-norm SVM, the L1-norm SVM, and the DrSVM. The

solid paths are for x1, . . . , x5, which are the relevant variables; the dashed paths

are for x6, . . . , x30, which are the irrelevant variables. As we can see, the L2-

norm SVM kept all variables in the fitted model, the L1-norm SVM did variable

selection, but failed to identify the group of correlated variables; the DrSVM

successfully selected all five relevant variables, and shrunk their coefficients close

to each other.

In Section 2, we show the grouping effect of the DrSVM. In Section 3, we

describe algorithms that compute the whole solution paths of the DrSVM. In

Section 4, we present numerical results on both simulation and real-world data.

We conclude the paper with a discussion section.
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Figure 3. Comparison of different SVMs on a simple simulation data. The

solid curves correspond to relevant variables, and the dashed curves corre-

spond to irrelevant variables. The relevant variables are highly correlated.

The upper left panel is for the L2-norm SVM, the upper right panel is for

the L1-norm SVM, the bottom panels are for the DrSVM. The bottom left

panel fixes λ1 = 15, and changes λ2; the bottom right panel fixes λ2 = 160,

and changes λ1. We can see the DrSVM identifies all (correlated) relevant

variables, and shrinks their coefficients close to each other.

2. Grouping Effect of the DrSVM

In this section, we illustrate how the DrSVM has the grouping effect for

correlated variables. The result holds not only for the hinge loss function of the

SVM, but also for general Lipschitz continuous loss functions.
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Consider the following more general optimization problem:

min
β0,β

n∑

i=1

φ(yi, f(xi)) +
λ2

2
‖β‖22 + λ1‖β‖1, (3)

where f(x) = β0 + xT

iβ, φ(y, f) = φ(yf) is a function of the margin. We fur-

ther assume that φ(t) is Lipschitz continuous, i.e., |φ(t1) − φ(t2)| ≤ M |t1 − t2|
for some positive finite M . It is simple to verify that this condition holds for

many commonly used loss functions for classification, for example, the hinge loss

function (SVM) and the binomial deviance (logistic regression). Then we have

the following theorem.

Theorem 1. Denote the solution to (3) as β̂0 and β̂. If the loss function φ is

Lipschitz continuous then, for any pair (j, l), we have

∣
∣
∣β̂j − β̂l

∣
∣
∣ ≤ M

λ2
‖xj − xl‖1 =

M

λ2

n∑

i=1

|xij − xil|. (4)

Furthermore, if the input variable xj ,xl are centered and normalized, then

∣
∣
∣β̂j − β̂l

∣
∣
∣ ≤
√

nM

λ2

√

2(1− ρ), (5)

where ρ = cor(xj,xl) is the sample correlation between xj and xl.

Proof. Consider another set of coefficients

β̂∗
0 = β̂0, β̂∗

j′ =

{
1
2(β̂j + β̂l), if j′ = j or j′ = l,

β̂j′ , otherwise.

By the definition of β̂0 and β̂, we have

n∑

i=1

φ(yi, β̂
∗
0 + xT

i β̂
∗
) +

λ2

2
‖β̂∗‖22 + λ1‖β̂

∗‖1

−
n∑

i=1

φ(yi, β̂0 + xT

i β̂)− λ2

2
‖β̂‖22 − λ1‖β̂‖1 ≥ 0, (6)

where

n∑

i=1

[

φ(yi, β̂
∗
0 + xT

i β̂
∗
)− φ(yi, β̂0 + xT

i β̂)
]

≤
n∑

i=1

∣
∣
∣φ(yi, β̂

∗
0 + xT

i β̂
∗
)− φ(yi, β̂0 + xT

i β̂)
∣
∣
∣
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≤
n∑

i=1

M
∣
∣
∣yi(β̂

∗
0 + xT

i β̂
∗
)− yi(β̂0 + xT

i β̂)
∣
∣
∣ (7)

=

n∑

i=1

M
∣
∣
∣x

T

i (β̂
∗ − β̂)

∣
∣
∣

=

n∑

i=1

M

∣
∣
∣
∣

1

2
(xij − xil)(β̂j − β̂l)

∣
∣
∣
∣

=
M

2

∣
∣
∣β̂j − β̂l

∣
∣
∣

n∑

i=1

|xij − xil|

=
M

2

∣
∣
∣β̂j − β̂l

∣
∣
∣ · ‖xj − xl‖1. (8)

We also have

‖β̂∗‖1 − ‖β̂‖1 = |β̂∗
j |+ |β̂∗

l | − |β̂j | − |β̂l| = |β̂j + β̂l| − |β̂j | − |β̂l| ≤ 0, (9)

‖β̂∗‖22 − ‖β̂‖22 = |β̂∗
j |2 + |β̂∗

l |2 − |β̂j |2 − |β̂l|2 = −1

2
|β̂j − β̂l|2. (10)

Now combining (8), (9) and (10), (6) implies that

M

2

∣
∣
∣β̂j − β̂l

∣
∣
∣ · ‖xj − xl‖1 −

λ2

2
|β̂j − β̂l|2 ≥ 0. (11)

Hence, (4) is obtained.

For (5), we simply use the inequality

‖xj − xl‖1 ≤
√

n
√

‖xj − xl‖22 =
√

n
√

2(1 − ρ). (12)

We used Lipschitz continuity in (7), where it was applied to loss functions

for classification, i.e., functions of the margin. For the hinge loss, it is easy to see

that the Lipschitz constant M = 1, hence Theorem 1 holds for the DrSVM. It is

also worth noting that the theorem holds for all λ1 ≥ 0, so the grouping effect is

from the L2-norm penalty.

3. The DrSVM Algorithms

In this section, we propose efficient algorithms that can solve the whole

solution path βλ2
(λ1) (when λ2 is fixed) and βλ1

(λ2) (when λ1 is fixed). Our

algorithms hinge on the following two results.

Theorem 2. When λ2 is fixed, the solution βλ2
(λ1) is a piecewise linear function

of λ1.

Theorem 3. When λ1 is fixed, the solution βλ1
(λ2) is a piecewise linear function

of 1/λ2.



THE DOUBLY REGULARIZED SUPPORT VECTOR MACHINE 597

Figure 4 illustrates the point. Any segment between two adjacent vertical

lines is linear. When λ2 is fixed, the basic idea of our algorithm is to start with

λ1 equal to ∞, find the direction of the linear path, move the solution in that

direction until it hits a joint (the asterisk points in Figure 4, then adjust the

direction of the path, and move on. The algorithm when λ1 is fixed operates in

a similar manner (the right panel of Figure 4).
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Figure 4. The simulation setup is the same as in Section 1, except the size
of the training data is n = 8+8, the number of input variables is p = 5, and

only the first variable x1 is relevant to the optimal classification boundary.
The solid line corresponds to β̂1, the dashed lines correspond to β̂2, . . . , β̂5.
The left panel is for β̂λ2

(λ1) (with λ2 = 30), and the right panel is for

β̂λ1
(λ2) (with λ1 = 6).

3.1. Proof of Theorem 2

The optimization problem (2) for the DrSVM is equivalent to the quadratic
programming problem:

min
β0,β

n∑

i=1

εi +
λ2

2
‖β‖22 (13)

subject to 1− yifi ≤ εi, (14)

εi ≥ 0, i = 1, . . . , n, (15)

‖β‖1 = |β1|+ · · · + |βp| ≤ s, (16)

where fi = β0 +
∑p

j=1 βjxij. Notice the hinge loss is replaced by a linear con-
straint, the L1-norm penalty is replaced by an L1-norm constraint, and the tuning



598 LI WANG, JI ZHU AND HUI ZOU

parameter λ1 is replaced by s. The optimization problem (2) and the quadratic

programming problem are equivalent in the sense that, for any value of λ1, there

exists a value of s such that the solution to (2) and the solution to the quadratic

programming problem are identical. To solve the quadratic programming prob-

lem, we write:

n∑

i=1

εi +
λ2

2
‖β‖22 +

n∑

i=1

αi(1− yifi − εi)−
n∑

i=1

γiεi + η(

p
∑

j=1

|βj | − s),

where αi ≥ 0, γi ≥ 0 and η ≥ 0 are Lagrange multipliers. Taking derivatives

with respect to β0,β and εi, we have

• ∑n
i=1 αiyi = 0,

• λ2βj −
∑n

i=1 αiyixij + ηsign(βj) = 0 for j ∈ V,

• 1− αi − γi = 0, i = 1, . . . , n,

where V = {j : βj 6= 0}. Notice the value of βj is fully determined by the

values of αi and η. We also have the Karush-Kuhn-Tucker (KKT) conditions

from quadratic programming:

• αi(1− yifi − εi) = 0, i = 1, . . . , n,

• γiεi = 0, i = 1, . . . , n,

• η(
∑p

i=1 |βj | − s) = 0.

We use L (Left) to denote the set of data points for which 1−yifi > 0, R (Right)

for 1 − yifi < 0, and E (Elbow) for 1 − yifi = 0 (See Figure 1). Inspecting the

KKT conditions, we find

• i ∈ L =⇒ γi = 0, αi = 1;

• i ∈ R =⇒ γi = 1, αi = 0;

• i ∈ E =⇒ 0 ≤ γi, αi ≤ 1 and γi + αi = 1.

So, for data points in L and R, their αi are determined. To solve for βj , we

also need αi values for data points in E , and especially how these values change

(between 0 and 1) when s increases.

When s is small enough, the constraint (16) is active, i.e., ‖β‖1 = s. When

s increases to a certain value, say s∗, this constraint will become inactive, and

the solution will not change beyond the value of s∗. This corresponds to λ1 = 0

in (2). Suppose for a value s < s∗, the solution is (β0,β), hence V,L,R and E
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are also known. Then (β0,β) have to satisfy the following equations:

λ2βj −
n∑

i=1

αiyixij + ηsign(βj) = 0, j ∈ V, (17)

n∑

i=1

αiyi = 0, (18)

yi(β0 +
∑

j∈V

βjxij) = 1, i ∈ E , (19)

‖β‖1 =
∑

j∈V

sign(βj)βj = s. (20)

This linear system consists of |E|+ |V|+2 equations and |E|+ |V|+2 unknowns:

αi’s, βj ’s, β0 and η. They can be further reduced to |E|+ 2 equations in |E|+ 2

unknowns by plugging (17) into (19) and (20). If the system is nonsingular, the

solution is unique. In the case of singularity, the optimal solution is not unique,

but the optimal region can still be determined.

When s increases by a small enough amount, by continuity, the sets V,L,R
and E will not change, and the structure of the above linear system will not

change. Taking right derivatives with respect to s, we have

λ2
∆βj

∆s
−

∑

i∈E

∆αi

∆s
yixij + sign(βj)

∆η

∆s
= 0, j ∈ V, (21)

∑

i∈E

∆αi

∆s
yi = 0, (22)

∆β0

∆s
+

∑

j∈V

∆βj

∆s
xij = 0, i ∈ E , (23)

∑

j∈V

sign(βj)
∆βj

∆s
= 1, (24)

which does not depend on the value of s. This implies that the solution, αi’s,

βj ’s, β0 and η, will change linearly in s. When the increase in s is big enough, one

of the V,L,R and E sets will change and the structure of the linear system will

change, corresponding to a different linear piece on the solution path. Hence, the

solution path is piecewise linear in s. Notice that η is equivalent to λ1; therefore

β0,β and αi are also piecewise linear in λ1, and Theorem 2 holds.

To identify changes in the structure of the linear system (or the asterisk

points in Figure 4), we define four types of events, corresponding to the changes

in V,L,R and E .
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1. A data point leaves E to L or R. This happens when an αi changes from
within the region (0, 1) to the boundary 1 or 0.

2. A data point reaches E from L or R. This happens when a residual (1− yifi)
reaches 0.

3. An active variable in V becomes inactive. This happens when a non-zero
coefficient βj 6= 0 becomes 0.

4. An inactive variable joins the active variable set V. To identify this event, we
define the generalized correlation for variable j as

cj = λ2βj −
n∑

i=1

αiyixij. (25)

From (17), we can see that all active variables in V have the same absolute
generalized correlation value, which is η. Therefore, an inactive variable will
join the active variable set when its absolute generalized correlation reaches
η.

In the next two sections, we describe the algorithm that computes the whole
solution path βλ2

(λ1) in detail. The basic idea is to start at s = 0 (or equivalently
λ1 =∞), find the right derivatives of β0 and βj with respect to s, increase s until
an event happens, then adjust the linear system (21)−(24), and find the new right
derivatives. The algorithm stops when no further events happen.

3.2. Initial solution

In this section, we compute the initial right derivatives of β0 and βj . Let n+

be the number of training data points in the “+” class, and n− be the number
of training data points in the “−” class. We distinguish between two cases: the
balanced case (n+ = n−) and the unbalanced case (n+ 6= n−).

The Balanced Case

When s = 0, β = 0, and the objective function (13) becomes

min
β0

n∑

i=1

(1− yiβ0)+.

Since n+ = n−, there is no unique solution for β0, and any value of β0 ∈ [−1, 1]
will give the same minimum.

Although β0 is not unique, all the αi are equal to 1. Using (25), the general-
ized correlation of variable xj is −∑n

i=1 yixij. When s increases by an infinites-
imal amount, some variable(s) will join the active variable set V, and V can be
identified as

V =
{

j :
∣
∣
∣

n∑

i=1

yixij

∣
∣
∣ = max

j

∣
∣
∣

n∑

i=1

yixij

∣
∣
∣

}

.
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The signs of the corresponding coefficients are given by sign(
∑n

i=1 yixij). Then,

using (21) and (24), one can solve for the right derivatives of βj , j ∈ V and η

with respect to s.

When s increases, by continuity and the balance between n+ and n−, all αi

will stay at 1 before an event happens. Therefore 1 − (β0 +
∑

j∈V βjxij) ≥ 0,

i ∈ I+, and 1+(β0 +
∑

j∈V βjxij) ≥ 0, i ∈ I−, where I+ and I− contain indices of

the “+” class points and the “−” class points, respectively. The above inequalities

imply that the solution for β0 is not unique, and β0 can be any value in the interval

[

max
i∈I−

(−1−
∑

j∈V

βjxij), min
i∈I+

(1−
∑

j∈V

βjxij)
]

.

When s increases, βj changes, and the length of this interval will shrink toward

zero, which corresponds to two data points (from different classes) hitting the

elbow simultaneously.

The Unbalanced Case

Without loss of generality, we assume n+ > n−. When s = 0, the solution is

β0 = 1 and β = 0, which implies all the I− points are in L and all the I+ points

are in E . When s increases by an infinitesimal amount, some variable(s) will join

the active variable set V. By continuity, all the I− points will still stay in L, but

the I+ points will split: some will join L, some will join R, and the rest will stay

at E . From (21)−(24), we can see in order to determine the right derivatives of

β0, βj , αi and η with respect to s, it is crucial to identify the active variable set

V and the elbow set E . For the initial solution, it turns out that V and E can be

identified via the following linear programming problem:

min
β0,β

∑

i∈I+

εi +
∑

i∈I−

(1− yifi)

subject to 1− yifi ≤ εi, i ∈ I+,

εi ≥ 0, i ∈ I+,

‖β‖1 = |β1|+ · · · + |βp| ≤ s.

Notice the loss for “−” class points has been changed from (1−yf)+ to (1−yf).

This allows us to use any value of s, and always get the same V and E via

the linear programming. Once the V and the E are identified, the initial right

derivatives of β0, βj , αi and η with respect to s can be solved from (21)−(24).

3.3. Main program

After the initial right derivatives of β0, βj , αi and η are identified, the main

algorithm proceeds as follows.
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1. Compute

• the derivative of the residual for every non-elbow point

∆ri

∆s
= −yi

(∆β0

∆s
+

∑

j∈V

xij
∆βj

∆s

)

, i /∈ E ,

where ri is the current residual (1− yifi) for point i.

• the derivative of the generalized correlation for every inactive variable

∆cj

∆s
= −

∑

i∈E

∆αi

∆s
yixij , j /∈ V,

where cj is the current generalized correlation value for variable xj, given

by (25).
2. Compute how much increase of s is needed to get to each type of event:

• an elbow point leaves the elbow, δ1
s = mini∈E max((0 − αi)/(∆αi/∆s),

(1− αi)/(∆αi/∆s));
• a non-elbow point hits the elbow, δ2

s = mini∈Ec

+
((0− ri)/(∆ri/∆s)), where

Ec
+ = {i : (0− ri)/(∆ri/∆s) > 0, i /∈ E};

• an active variable becomes inactive, δ3
s = minj∈V+

((0− βj)/(∆βj/∆s)),
where V+ = {j : (0− βj)/(∆βj/∆s) > 0, j ∈ V};
• an inactive variable joins the active set, δ4

s = minj /∈V max((−η − cj)/

(∆cj/∆s + ∆η/∆s), (η − cj)/(∆cj/∆s−∆η/∆s));
• the generalized correlation of active variables reduces to zero, δ5

s = (0−η)/

(∆η/∆s).
The first four items correspond to the four types of events introduced in

Section 3.1; the last item corresponds to one termination criterion of the

algorithm.
3. Find which event happens first, δs = min(δ1

s , δ2
s , δ3

s , δ
4
s , δ5

s ), and update

αi←− αi + δs
∆αi

∆s
, i ∈ E ,

β0←− β0 + δs
∆β0

∆s
,

βj ←− βj + δs
∆βj

∆s
, j ∈ V,

η←− η + δs
∆η

∆s
.

4. Update L,R, E and V.
5. If any one of the following termination criterion is satisfied, stop the algo-

rithm.

• The generalized correlation reduces to zero.
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• Two classes have been perfectly separated.

• A pre-specified maximum iteration number is reached.

Otherwise, use (21)−(24) to compute the new derivatives, and go back to

step 1.

3.4. Solution path for fixed λ1

We have described an algorithm for solving the solution path of the DrSVM

when λ2 is fixed. In this section, we briefly describe a similar algorithm that solves

the solution path of the DrSVM when λ1 is fixed. We first prove Theorem 3.

Proof of Theorem 3. When λ1 is fixed and λ2 changes, the solution has to

satisfy (17)−(19) in Section 3.1, which are derived from the Lagrange and KKT

conditions. If D = 1/λ2 and α∗
i = Dαi, (17)−(19) become

βj −
n∑

i=1

α∗
i yixij =−λ1Dsign(βj), j ∈ V,

n∑

i=1

α∗
i yi = 0,

yi

(

β0 +
∑

j∈V

xijβj

)

= 1, i ∈ E .

This system consists of |E|+ |V|+ 1 equations in |E|+ |V|+ 1 unknowns: β0, βj

(j ∈ V), α∗
i (i ∈ E). Therefore, using the same argument as in Section 3.1, one

can show the solution (β0,β) is piecewise linear in D (or 1/λ2).

Similarly, one can show that αi are also piecewise linear, but piecewise linear

in λ2, rather than 1/λ2. These facts help us design an efficient algorithm to

compute the solution path of the DrSVM when λ1 is fixed. The idea is similar to

the algorithm in Section 3.3, with minor modifications in computing how much

increase of D (or decrease of λ2) is needed to get to the next event:

• an elbow point leaves the elbow, δ1
λ2

= maxi∈E min((0− αi)/(∆αi/∆λ2),

(1− αi)/(∆αi/∆λ2));

• a non-elbow point hits the elbow, δ2
D = mini∈Ec

+
((0− ri)/(∆ri/∆D)), where

Ec
+ = {i : (0− ri)/(∆ri/∆s) > 0, i /∈ E};

• an active variable becomes inactive, δ3
D = minj∈V+

((0− βj)/(∆βj/∆D)),

where V+ = {j : (0− βj)/(∆βj/∆s) > 0, j ∈ V};
• an inactive variable joins the active set, δ4

λ2
= maxj /∈V min((−λ1 − cj)/

(∆cj/∆λ2), (λ1 − cj)/(∆cj/∆λ2));

• the tuning parameter λ2 reduces to zero, δ5
λ2

= −λ2.
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Again, the first four items correspond to the four types of events in Section 3.1;
the last item corresponds to one termination criterion of the algorithm. Which
event happens first can then be determined by

δλ2
= max

( −λ2
2δ

1
D

1 + λ2δ1
D

, δ2
λ2

,
−λ2

2δ
3
D

1 + λ2δ3
D

, δ4
λ2

, δ5
λ2

)

.

The rest of the algorithm is the same as in Section 3.3.

3.5. Computational complexity

The major computational cost is associated with solving the linear system
(21)−(24) at each step, which involves |E| + 2 equations and unknowns (after
plugging (21) in (23) and (24)). Solving such a system involves O(|E|3) com-
putations. However, for any two consecutive steps, the linear systems usually
differ by only one row or one column (corresponding to one of the four types of
events); therefore, the computational cost can be reduced to O(|E|2) via inverse
updating/downdating. The computation of ∆βj/∆s in (21) requires O(|E| · |V|)
computations after getting ∆αi/∆s. Notice, due to the nature of (21)−(24), |E|
is always less than or equal to min(n, p) and, since |V| ≤ p, the computational
cost at each step can be estimated (bounded) as O(min2(n, p) + pmin(n, p)).

It is difficult to predict the number of steps on the solution path for ar-
bitrary data. Our experience so far suggests that the total number of steps is
O(min(n, p)). This can be heuristically understood in the following way: if n < p,
the training data are perfectly separable by a linear model, then it takes O(n)
steps for every data point to pass through the elbow to achieve the zero loss;
if n > p, then it takes O(p) steps to include every variable in the fitted model.
Overall, this suggests the total computational cost is O(pmin2(n, p)+min3(n, p)).

4. Numerical Results

In this section, we use both simulation data and real-world data to illustrate
the DrSVM. In particular, we want to show that with high dimensional data, the
DrSVM is able to remove irrelevant variables, and identify relevant (sometimes
correlated) variables.

4.1. Simulation

We first consider the scenario where all input variables are independent. The
“+” class has a normal distribution with mean µ+ = (0.5, . . . , 0.5

︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

p−5

)T,

Σ = Ip×p. The “−” class has a similar distribution except that µ− =
(−0.5, . . . ,−0.5
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

p−5

)T. So the Bayes optimal classification rule only depends

on x1, . . . , x5, and the Bayes error is 0.132, independent of the dimension p.
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We consider both the n > p and n � p. In the n > p case, we generate

100 = 50 + 50 training data, each input xi is a p = 10-dimensional vector;

in the n � p case, we generate 50 = 25 + 25 training data, each input xi is

a p = 300-dimensional vector. We compare the L1-norm SVM, the L2-norm

SVM, and the DrSVM. For fairness, we use 20, 000 validation data to select the

tuning parameters for each method, then apply the selected models to a separate

20, 000 testing data set. Each experiment is repeated 30 times. The means of

the prediction errors and the corresponding standard errors (in parentheses) are

summarized in Table 1. As we can see, the prediction errors of the L1-norm

SVM and the DrSVM are similar: both are close to the optimal Bayes error

when n > p, and degrade a little bit when n � p. This is not the case for

the L2-norm SVM: in the n > p case, the prediction error is only slightly worse

than that of the L1-norm SVM and the DrSVM, but it degrades dramatically in

the n � p case. This is due to the fact that the L2-norm SVM uses all input

variables, and its prediction accuracy is polluted by the noise variables.

Table 1. Comparison of the prediction performance when all input variables

are independent; p0 is the number of relevant variables.

n p p0 Test Error

L2 SVM 0.145 (0.007)

L1 SVM 100 10 5 0.142 (0.008)
DrSVM 0.139 (0.005)

L2 SVM 0.323 (0.018)

L1 SVM 50 300 5 0.199 (0.031)

DrSVM 0.178 (0.021)

Besides the prediction error, we also compare the selected variables of the

L1-norm SVM and the DrSVM (The L2-norm SVM keeps all input variables).

In particular, we consider qsignal = number of selected relevant variables, and

qnoise = number of selected noise variables. The results are in Table 2. Again,

we see that the L1-norm SVM and the DrSVM perform similarly; both are able

to identify the relevant variables (the L1-norm SVM missed one on average) and

remove most of the irrelevant variables.

Now we consider the scenario when the relevant variables are correlated.

Similar as the independent scenario, the “+” class has a normal distribution,

with mean and covariance µ+ = (1, . . . , 1
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

p−5

)T,

Σ =

(
Σ∗

5×5 05×(p−5)

0(p−5)×5 I(p−5)×(p−5)

)

,
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where the diagonal elements of Σ∗ are 1 and the off-diagonal elements are

all equal to ρ = 0.8. The “−” class has a similar distribution except that

µ− = (−1, . . . ,−1
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

p−5

)T. So the Bayes optimal classification rule depends

on x1, . . . , x5, which are highly correlated. The Bayes error is 0.138, independent

of the dimension p.

Table 2. Comparison of variable selection when all input variables are in-

dependent; p0 is the number of relevant variables; qsignal is the number of

selected relevant variables, and qnoise is the number of selected noise vari-

ables.

n p p0 qsignal qnoise

L1 SVM 100 10 5 5.00 (0.00) 2.43 (1.52)

DrSVM 5.00 (0.00) 1.80 (1.30)

L1 SVM 50 300 5 3.87 (0.82) 4.33 (4.86)

DrSVM 4.53 (0.57) 6.37 (4.35)

Again, we consider both the n > p and n� p. In the n > p case, n = 50+50

and p = 10. In the n � p case, n = 25 + 25 and p = 300. Each experiment is

repeated 30 times. The result for the prediction errors are shown in Table 3. Now

when changing from the n > p case to the n � p case, the performance of the

L1-norm SVM, as well as the L2-norm SVM, degrades, but the DrSVM performs

about the same. Table 4 compares the variables selected by the L1-norm SVM

and the DrSVM, which sheds some light on what happened. Both the L1-norm

SVM and the DrSVM are able to identify relevant variables. However, when the

relevant variables are highly correlated, the L1-norm SVM tends to keep only a

small subset of the relevant variables, and overlook the others, while the DrSVM

tends to identify all of them, due to the grouping effect. Both methods seem to

work well in removing irrelevant variables.

Table 3. Comparison of the prediction performance when the relevant vari-

ables are highly correlated; p0 is the number of relevant variables.

n p p0 Test Error

L2 SVM 0.142 (0.003)

L1 SVM 100 10 5 0.144 (0.003)

DrSVM 0.140 (0.001)

L2 SVM 0.186 (0.012)

L1 SVM 50 300 5 0.151 (0.007)

DrSVM 0.139 (0.004)
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Table 4. Comparison of variable selection when the relevant variables are

highly correlated; p0 is the number of relevant variables; qsignal is the num-

ber of selected relevant variables, and qnoise is the number of selected noise

variables.

n p p0 qsignal qnoise

L1 SVM 100 10 5 3.73 (0.69) 0.30 (0.53)

DrSVM 5.00 (0.00) 0.10 (0.31)

L1 SVM 50 300 5 2.17 (0.83) 0.30 (0.60)

DrSVM 4.90 (0.40) 0.97 (2.03)

In the last, we consider a scenario where the relevant variables have dif-

ferent contributions to the classification, and the pairwise correlations are not

all equal. The basic setup is similar to the above two scenarios, except that

µ+ = (1, . . . , 1
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

p−5

)T, µ− = (−1, . . . ,−1
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

p−5

)T, and

Σ∗ =









1 0.8 0.82 0.83 0.84

0.8 1 0.8 0.82 0.83

0.82 0.8 1 0.8 0.82

0.83 0.82 0.8 1 0.8

0.84 0.83 0.82 0.8 1









.

The Bayes optimal classification boundary is given by 1.11x1 +0.22x2 +0.22x3 +

0.22x4+1.11x5 = 0, and the Bayes error is 0.115. Notice that the true coefficients

β2, β3 and β4 are small compared with β1 and β5. To test our algorithm for the

unbalanced case, we let n = 60+40 when p = 10, and n = 30+20 when p = 300.

Each experiment is repeated 30 times. The results are summarized in Tables 5

and 6. As we can see, the DrSVM still dominates the L1-norm SVM in terms of

identifying relevant variables.

Table 5. Comparison of the prediction performance when the relevant vari-

ables have different class means and the pairwise correlations are not all

equal; p0 is the number of relevant variables.

n p p0 Test Error

L2 SVM 0.128 (0.008)

L1 SVM 100 10 5 0.117 (0.004)

DrSVM 0.115 (0.003)

L2 SVM 0.212 (0.022)

L1 SVM 50 300 5 0.125 (0.010)

DrSVM 0.120 (0.006)
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Table 6. Comparison of variable selection when the relevant variables have
different class means and the pairwise correlations are not all equal; p0 is
the number of relevant variables; qsignal is the number of selected relevant
variables, and qnoise is the number of selected noise variables.

n p p0 qsignal qnoise

L1 SVM 100 10 5 3.70 (0.84) 1.48 (0.67)

DrSVM 4.53 (0.57) 0.53 (1.04)

L1 SVM 50 300 5 3.03 (0.72) 1.23 (1.87)

DrSVM 4.23 (0.94) 2.93 (4.72)

4.2. Microarray analysis

In this section, we apply the DrSVM to classification of gene microarrays.

Classification of patient samples is an important aspect of cancer diagnosis and

treatment. The L2-norm SVM has been successfully applied to microarray cancer

diagnosis problems (Guyon, Weston, Barnhill and Vapnik (2002) and Mukherjee,

Tamayo, Slonim, Verri, Golub, Mesirov and Poggio (1999)). However, one weak-

ness of the L2-norm SVM is that it only predicts a cancer class label but does not

automatically select relevant genes for the classification. Often a primary goal

in microarray cancer diagnosis is to identify the genes responsible for the classi-

fication, rather than class prediction. The L1-norm SVM has an inherent gene

(variable) selection property due to the L1-norm penalty, but the maximum num-

ber of genes that the L1-norm SVM can select is upper bounded by n, which is

typically much smaller than p in microarray problems. Another drawback of the

L1-norm SVM, as seen in the simulation study, is that it usually fails to identify

groups of genes that share the same biological pathway, which have correlated

expression levels. The DrSVM overcomes these difficulties, and achieves the goals

of classification of patients and (group) selection of genes simultaneously.

We use a leukemia dataset (Golub, Slonim, Tamayo, Huard, Gaasenbeek,

Mesirov, Coller, Loh, Downing and Caligiuri (2000)) to illustrate the point.

This dataset consists of 38 training data and 34 test data for two types of

acute leukemia, acute myeloid leukemia (AML) and acute lymphoblastic leukemia

(ALL). Each datum is a vector of p = 2, 308 genes. The tuning parameters are

chosen according to 10-fold cross-validation, then the final model is fitted on

all the training data and evaluated on the test data. The results are summa-

rized in Table 7. As we can see, the DrSVM seems to have the best prediction

performance. However, notice this is a very small (and “easy”) dataset, so the

difference may not be significant. It is also worth noting that the 22 genes se-

lected by the L1-norm SVM is a subset of the 78 genes selected by the DrSVM.

Figure 5 shows the heatmap of the selected 78 genes. We have ordered the genes

by hierarchical clustering, and similarly for all 38+34 samples (based on the
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Table 7. Results on the Leukemia dataset

CV Error Test Error # of Genes

Golub 3/38 4/34 50
L2-norm SVM 0/38 1/34 2,308

L1-norm SVM 3/38 1/34 22

DrSVM 0/38 0/34 78

Heatmap of Chosen Genes

PSfrag replacements

-0.05

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.10

0.15

-1.5

-1.0

-0.5

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.0

1.5

2.0

2.5

-1

0

1

2

3

5

10

15

20

30

40

50

60

1/

λ1

λ2

-Norm SVM

DrSVM (fixed

)

Loss

yf

Right

Elbow

Left

β

β1

β2

Mixture

L1

L2

1.9

L1

L2

‖β‖1

Samples

Figure 5. Heatmap of the selected 78 genes. The genes are ordered by

hierarchical clustering, and similarly for all 38 + 34 samples.
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selected genes). Clear separation of the two classes is evident. Roughly speaking,

the top set of genes overexpress for ALL and underexpress for AML; for the

bottom set of genes, this is reversed.

4.3. Handwritten digit recognition

In this section, we consider a classical handwritten digit recognition example.

Recognition of generic object categories is one of the major challenges in computer

vision. Most current methods can roughly be divided into brightness-based and

feature-based. Brightness-based methods use the raw pixels as the input vector

(usually after certain normalization so that all images have approximately the

same size and orientation). Feature-based methods first extract information from

the image, such as shape, texture and color, then use this information as the input

vector.

We work with feature-based methods for they are closer to the biological

vision system than brightness-based methods. In particular, we concentrate on

shape features, for in biological vision, shape cue is arguably the strongest among

all types of cues (shape, texture, color, etc.) for visual object recognition (Palmer

(1999)).

There are two distinct challenges here.

• The size of the training dataset is small (a person does not need to see many

images to generalize the notion of the new object to a novel image). On the

other hand, due to the richness of information from a single image, shape

features alone could be on the order of 1, 000 real numbers, such as edge

locations and directions, corner locations, arrangement of features, etc. So

the feature set is rich. This falls into the p > n framework.

• Besides predicting the correct object category for a given image, another chal-

lenge is to identify the relevant features that contribute most to the classifica-

tion. For example, when looking at a slate of handwritten digits (Figure 6),

despite the variation in writing style, one can still see the distinctive parts of

the shape which best separate one class from the other.

The proposed DrSVM method naturally applies here. We compare the

L2-norm SVM, the L1-norm SVM and the DrSVM on a subset of the MIN-

IST database (LeCun, Jackel, Bottou, Cortes, Denker, Drucker, Guyon, Muller,

Sackinger, Simard and Vapnik (1995)). The standard L2-norm SVM has been ap-

plied to this database before and shown good performance (LeCun et al. (1995)),

on par with human performance. However, once again, a weakness of the L2-

norm SVM is that it only predicts an object class but does not automatically
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Figure 6. Some examples of handwritten digits 6 and 9.

select relevant features for the classification. The L1-norm SVM has the inherent

feature selection property, but tends to overlook correlated features. The DrSVM

overcomes these two difficulties. We use digit 6 versus digit 9 as an example. We

randomly sampled 250 + 250 training data and 750 + 750 test data from the

MINIST database. Each digit (sample) consists of 804 shape features based on

the so called shape context distance (Belongie, Malik and Puzicha (2002) and

Zhang and Malik (2003)). Tuning parameters were selected using 10-fold cross-

validation. Numerical results are summarized in Table 8. The DrSVM performed

a little better than the standard L2-norm SVM in terms of misclassification error,

and it automatically selected 128 shape features, while the standard L2-norm

SVM used all 804 features. See Figure 7.

Table 8. Results for 6 versus 9 from the MINIST database. Training size is

250+250, test size is 750+750, and each digit consists of 804 shape features.

CV Error Test Error # of Features

L2 SVM 6/500 22/1500 804

L1 SVM 6/500 17/1500 49

DrSVM 1/500 15/1500 128
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Figure 7. The center of each circle indicates the position of the selected fea-
ture, and the size of each circle is proportional to the corresponding feature’s
importance.

5. Discussion

We have applied the elastic-net penalty to the hinge loss, and proposed the

DrSVM method for classification problems. This method is especially useful with

high dimensional data, with respect to effectively removing irrelevant variables

and identifying relevant variables. Unlike previously developed support vector

machines, e.g. the L1-norm SVM, the DrSVM is able to select groups of variables

that are correlated, and the number of selected variables is no longer bounded

by the size of the training data, thus being able to deal with the p� n problem.

We also proposed efficient algorithms that can compute the whole solution paths

of the DrSVM, which facilitates selection of the tuning parameters.

There are several interesting directions in which the DrSVM can be extended:

• How to efficiently utilize the solution paths? Computing one solution path

is very efficient, but cross-validation can be computationally expensive. The

ideal situation is to have a model selection criterion that can be calculated

along the solution path; then once the solution path is computed, the best

tuning parameter can be identified. The GACV (Wahba, Lin and Zhang

(2000)) is a computable proxy for the generalized Kullback-Liebler distance,

and seems to be a good model selection criterion for the support vector ma-

chine. Since the DrSVM has two tuning parameters, λ1 and λ2, combining

the GACV criterion and a two-step procedure seems to be promising: In the

first step, one can fix a (relatively large) value for λ2, compute the solution

path βλ2
(λ1), and use the GACV criterion to select a value for λ1; this step

corresponds to setting an appropriate threshold to remove noise variables. In

the second step, one fixes λ1 at the value selected in step one, computes the
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solution path βλ1
(λ2), and again uses the GACV criterion to identify a value

for λ2; this corresponds to getting the correct grouping effect for correlated

variables. The advantage of this strategy is that it avoids a two-dimensional

grid search. Our preliminary results are encouraging, and we will explore this

further.

• The algorithm proposed in Section 3 is efficient. However, when both n and

p are large, the initial solution (in the balanced case) may require substantial

computational efforts. This is due the fact that the hinge loss function is not

differentiable at the point yf = 1, and a linear programming is called upon to

solve the initial solution. So the question is how one can modify the DrSVM

to improve the computational efficiency? We can consider placing the hinge

loss with the Huberized hinge loss (Rosset and Zhu (2004)). The Huberized

hinge loss is

φ(yf) =







1−δ
2 + (δ − yf), if yf ≤ δ,

(1−yf)2

2(1−δ) , if δ < yf ≤ 1,

0, otherwise,

where δ < 1. Figure 8 compares the Huberized hinge loss and the hinge loss.

The Huberized hinge loss is differentiable everywhere, and it is straightforward

to get the initial solution. The Huberized hinge loss has a similar shape as

the hinge loss; therefore, one might expect the prediction performance of the

Huberized hinge loss to be similar to that of the hinge loss.
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