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Abstract: In this paper we develop a general theory for some non-homogeneous
density-dependent birth-death processes with special applications to stochastic lo-
gistic growth. Approximations to the mean and variance of the logistic process are
derived. It is shown that these processes can be closely approximated by diffu-
sion processes. Using this method, new results are developed for approximating the
absorption probabilities and the moments of first absorption times for the logistic
process.
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1. Introduction

In biomedical and ecological research, scientists are frequently confronted
with the problem of modeling the growth of cell populations (Eisen (1979), Chap-
ter 2; Pielou (1977), Chapter 1). Because of the limitations of space and food,
the logistic growth model is often more realistic than the simple exponential.
Examples of the successful use of the logistic model include the growth of human
breast cancer cells (Moolgavkar (1986)) and the growth of Chinese hamster ovary
cells in the CHO/HGPRT bioassay for testing mutagenicity of chemicals (Tan
(1983)).

In the modeling of the growth of cell populations by the logistic function
(Eisen (1979)), to date, only deterministic logistic growth has been used. How-
ever, in the real world, stochastic fluctuations in growth appear to be prevalent.
Pielou (1977) has attempted to construct a stochastic version of logistic growth,
however a general theory is still nonexistent. In this paper, we develop a theory
for some very general density-dependent non-homogeneous birth-death processes.
The general theory of stochastic logistic growth is developed as a special case.
This theory is useful for developing stochastic models in many areas of biomedical
research such as stochastic models of carcinogenesis.
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In Section 2 we consider the general theory for a non-homogeneous density-
dependent birth-death process. By using results from Tan (1984) in Section 3
we give some general formulas for the absorption probabilities and the means
and variances of the first absorption time for stochastic logistic growth. As an
alternative approach in Section 4 we develop a diffusion approximation for the
general process and develop approximation for the ultimate absorption probabil-
ities and the moments of first absorption times. Finally in Section 5 we provide
some numerical illustrations.

2. Stochastic Growth Models

Consider a population of individuals with M as the maximum population
size. Let X(t), t > 0, be the size of the population at time ¢. For describing
probabilistically the growth in this population, we make the following assump-
tions.

(i) {X(t),t > 0} is a Markov process. For many biological and cell popula-
tions, this assumption is expected to hold since the population size X(t) usually
depends only on most recent events, independent of past history.

(ii) Given j individuals at time ¢, the probabilities that there are j+ 1, 7 — 1, or
j individuals at time ¢ + At are given respectively by

Pr{X(t + At) = j + 1|X(t) = j} = b;(t)At + o(At),
Pr{X(t + At) = j — 1|X(t) = j} = d;(t)At + o(At), and
Pr{X(t + At) = j|X(t) = j} = 1 - [b;(2) + d;(2)]At + o(Al),

where b;(t) > 0, d;(t) > 0 and lima;—,o o(At)/At = 0 for all j = 0,1,...,M,
with do(t) = 0 and bas(t) = 0.

Given the above specifications, it is easy to see that the state space of X(t)
is § = {0,1,2,... ,M}. If bj(t) > 0 and dj(t) > O for j = 1,... ,M — 1 and
if dp(t) = 0 and bo(t) = 0, then the states 0 and M are absorbing states
while j = 1,...,M — 1 are transient states. If b;(t) = jb(t)[1 - (j/M)] and
dj(t) = jd(t)[1 — (§j/M)] for j = 0,1,2,... ,M and b(t) > 0 and d(t) > 0, the
above model is called a stochastic logistic birth-death process with birth rate
b(t), death rate d(t) and maximum population size M. We shall use the notation
X(t) ~ SL(b(t),d(t); M). If b(t) = b and d(t) = d, then X(t) ~ SL(b,d; M) is a
stochastic version of a two parameter logistic growth law considered by Jensen
(1975).

Let P,.(s,t) = Pr{X(t) =v | X(s) = u}, t > s, and let Q(u,z;s,t) =

Eﬁl:o 2" P,y(s,t) be the probability generating function of X (t) given X(s)=u.
By using Kolmogorov forward equation, it is straightforward to show that
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Q(u, z; 3,t) satisfies

8 M M
3 @(w7:8,8) = (2-1) 3 2%, (1) Pus(8,8)+ (271 =1) D 2% dy(t) Pun(s, 1). (2:1)

v=0 v=0

In the case of X(t) ~ SL(b(t), d(t); M), Equation (2.1) reduces to

z z 0?
%Q(u,z; 5,8) = (2= D)[zb(t) - O (1- =) g- - ﬁg’-’;,-}mu, z5,1). (2.2)

For 0 < M < oo, obtaining the solution of (2.2) is very difficult if not
impossible. Instead of solving (2.2) directly, we use (2.2) to obtain the cumulants
k;(t) of X(t) given X (to) = mo and derive a diffusion approximation for Y (¢) =
X(t)/M. Given below are the differential equations for the first two cumulants
of X(t) ~ SL(b(t),d(t); M). The differential equations for the third and fourth
cumulants of X(t) ~ SL(b(t),d(t); M) are available from Tan and Piantadosi
(1988).

Lm(t) = €O {m(®) - MO + @1},

where k1 (o) = mo and €(t) = b(t) — d(t);

%nz(t) = ko (t){2e(t)[1 — (261(t)/M)] — [w(t)/M]}
+ ra((){1 - [xa(8)/ M} - 2D)xa(8)/ M),
where k2(%p) = 0 and w(t) = b(¢) + d(t). If xi(t) = O(M) for ¢ = 1,2, then

2 k1(t) = ) {m() - A/M((0)) + ma(0)]}
2 (Om(B1 - (I/M)a(D)],  Kato) = mo.

It follows that if x;(t) = O(M) for i = 1,2, a close approximation to &;(t) is
given by

t t -1
k1(t) & mg exp { / e(z)dz} . {1 — (mo/M) + (mo/M)exp [/ E(z)dz]} .
t : t
° ’ (2.3)
Equation (2.3) refers to the non-homogeneous logistic growth function.
When b(t) = b and d(t) = d, (2.3) provides a very close approximation for most

of the situations which correspond to doubling time of bacteria and cell popula-
tions (Section 5). Similarly, if x;(t) = O(M), i = 1,2, and if €(t)k3(t) = O(M),
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then

2 k2(t) & Ka(£){2ha (1) + ()M} + ks (o(O){1 — ks (0)/M])
= ka(O)A(D) + Fal8), (24)

where k;(to) = 0, fi(t) = 2hy(t)+[w(t)/M] and fo(t) = k1 (t)w(t){1-[s1(t)/M]}.
From (2.4),

Ka(t) & exp { ‘/;t fl(z)dz} ttfz(a:)exp [— /: fl(s)ds] dz
= o 1= 52)r() [ wlalon(a)ie 9)

where

a1(8) = o { [ 26(a)- o)l }-{1-Cma Mo M) exp | ] d(@)ds] )

and
g2(t) = exp {-/tt[e(a:)—-jll-w(a:)]dz}-{1—(mo/M)+(mo/M) exp [/: e(a:)da:] }2.

When b(t) = b and d(t) = d, (2.5) provides a very close approximation
for many plausible values of the doubling time of bacteria and cell populations
(Section 5).

3. Absorption Probabilities, Mean Absorption Time and the Variance
of First Absorption Time

Consider the stochastic growth model in Section 2 with b,(t) >0 and d;(¢) >0
for 1 < j < M —1 and with bg(t) = dap(t) = 0. Then starting with any stage j
(0 < j < M), with probability one the process will eventually be absorbed into
either 0 or M. In cancer prevention studies, it is often of interest to obtain these
absorption probabilities and the first absorption time.

Let Fjo(t), F; p(t) and F;(t) denote respectively the probabilities of absorp-
tion into 0, M and the set C = (0, M) at or before time ¢ starting with the state
7 (0<j < M)at time ¢ (t < t). Let U; be the mean absorption time into 0 or
M starting with the state j (0 < j < M) at time t; and V; the variance of first
absorption time into 0 or M starting with the state j (0 < j < M) at time t.
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Let r = M — 1 and put

E@®) = (F(t), F2(t),... , Fe(t)),

Eo(t) = (F1,(2), Fpo(t),---, Fr,o(t))”

Ep(t) = (F1,o(t), Fp(?),..., FT.D(t)),’

U= (u1,u,...,u,) and Y =(W,Va,...,V;).

To obtain F(t), Eo(t), Ep(t), U and Y for stochastic logistic growth, we let
B, = (bgl,,)) and B; = (bfﬁ,)) be r x r matrices defined by

b = —ull — (u/M)] if v=u+1l(u= 1,...,r—1),
=u[ll-(u/M)] fv=u(u=1,...,r),
=0 if v=u and v=u+1;
bR = —u[l —(u/M)] if v=u-1(u=2,...,r),
=ull-(u/M)] fv=u(u=1,...,7),
=0 if v=u and v=u—-1.
Let 1., be the r x 1 column of 1’s and define the matrix function

explH ()] = 3 5 (1),
3=0

By results given in Tan (1984) we have for stochastic logistic growth

E(t) = {I; — exp[-B10:1() — B20,(2)]} L~
where 0,(t) = f:o b(z)dz and ©,(t) = fti d(z)dz,

Eo(t) = [B1b(t) + Bad(t)] {1, - exp[~B1 01 (t) ~ B,0,(t)]}[Bad(t)] L,
Ep(t) = [B1b(t) + Bad(t)]™* {I, — exp[- B1©1(t) — B202(2)] }[B1b(t)] L,

= [ wEO=t1+ e

where g = ft?{exp[—BlG)l(t) — B30,(t)} L-}dt = (a1,ay,... ,a,), and

Y= /t°° PdE(t) - g, =2 t°°(t— to){exp[—B10,(t) — B20,(t)] L, }dt — a,,
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where u, = (ul,ul,...,u?)and g, = (a,d},...,a?)". Note that

lim F(f)= L,

t—o00

o= lim FEo(t) = [Bib(oo) + Bad(00)]*[Byd(c0)] L and
Ep = Jim Ep(t) = [Bib(co) + Byd(00)| ™ [Bib(co)] L,

where b(c0) = lim; o b(t) and d(oo0) = lim; o d(t). Po and Pp are the
ultimate absorption probability vectors into 0 and M respectively. If b(t) = b
and d(t) = d, then, one may take ¢, = 0 so that

U= (Bib+ Byd)™' 1, and YV =2(Bib+ Bad)™ [ — u,.

These are the results first obtained by Tan (1976).

If M is very large, computing [/, V and the absorption probabilities re-
quires the inversion of large matrices. In the next section we will show that
to order O(M ~?), the stochastic logistic growth processes can be approximated
by diffusion processes. Using the diffusion approximation, computations of the
absorption probabilities and [/ are considerably simplified. Furthermore, the
diffusion approximation also makes it possible to obtain absorption probabili-
ties and moments of first absorption time for the very general density-dependent
birth-death processes considered in Section 2.

4. Diffusion Approximation

Let Y(t) = X(t)/M, 2 = u/M, y=v/M and dt = M~1. Since M is usu-
ally very large, one may approximate the transition probabilities by Pr{X(t)=
v| X(s)=u} =Pr{Y(t)=y | Y(3) = 2} = f(z,y;s,t)dt, where f(z,y;s,t) is a

continuous function of z and y. In fact, we have

Theorem 4.1. Ifb,(t)=M3_71, L(D)/M) and dy(t)= M3il, ui(t) /M),
then, to order O(M ~?), Pr{X(t) = v|X(s) = u} is approzzmated by f(z,y;s,t)dt
which satisfies the partial differential equation
1
atf(x Y S, t) ———-{m(y,t)f(z,y,.s t)} + 537 oM 6 2 {V(y’t)f(x,%s t)}a
f(z,y;8,8) = 5(y —z)

where §(z) is Dirac’s §-function,

(4.1)

m(y,t) = Zﬂ:(t)y "Zl‘](t)y and V(y,t)—Zﬂ](t)y +El‘1(t)y

j=0 j=0
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Remarks. If So(t) = uo(t) = 0, Bi(t) = b(t), B2(t) = —b(t), p1(t) = d(t) and
pa(t) = —d(t), the results of Theorem 4.1 reduce to the results for stochastic
logistic birth-death process.

Proof. A proof of Theorem 4.1 is given in Tan and Piantadosi (1988).
Using the Kolmogorov backward equation, one may similarly prove

Theorem 4.2. Given the conditions of Theorem 4.1, to order O(M~?),
f(z,y;s,t) also satisfies the partial differential equation

2 1(a330,1) = m(z, ) 2 flz, 1) + hcV (2,9) oog (@, 033,),
f(:t, Y338 s) - 6(3/ - z)'

(4.2)

Equations (4.1) and (4.2) imply that to order O(M ~2), Y () = X(t)/M is
approximated by a non-homogeneous diffusion process with coefficients m(y, t)
and V(y,t). In the case of X(t) ~ SL(b,d; M), f(z,y;s,t) = f(z,y;t — s) and
(4.1) and (4.2) reduce to

6t (:t Y5 t) _6—{y(1 - y)f(xa Ys t)} + 557 2M a 9 {y(l y)f(zay; t)}’(4'3)

92
f(a:,y, t) = ex(1 - z)a flz, ;) + — 2M z(1 - z)b—z-;f(z,y;t), (4.4)

with f(z,4;0)=6(y—z),e=b~dandw=>0+4d.

The solution of (4.4) is available from Crow and Kimura (1970, pp. 396-398)
in infinite series involving Gegenbauer polynomials. Unfortunately, the solution
is too complicated to be of practical use. However, using (4.2) and (4.4), we can
obtain absorption probabilities and the moments of first absorption times.

4.1. Absorption probabilities

Let Uy(s,z) (z = u/M) be the ultimate absorption probability into M given
X(s) = » (0 < w < M) and Up(s,z) the ultimate absorption probability into 0
given X(s) = u (0 < u < M). Then, to order O(M ~?),

1
Ui(s,z) = mtl_l_)rgo f(z,1;8,t) and Up(s,z) = -Al—lt]irono f(z,0;s,1).

In the backward Equation (4.2), putting y = 0 or 1 and letting t — oo, we
obtain
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Theorem 4.3. To order O(M~?), Ui(s,z) (i = 0,1) satisfies

m(z, s)(9 Ui(s, ) + V(z .s)a 2U.(.s z) = 29 U.'(s,z) (i=0,1) (4.5)
with Ul(s,l) =1= Uo(s, 0) and Ul(s,O) =0= Uo(s, 1)

If B;(t) = B; and p;(t) = ki, then m(z,s) = m(z), V(z,s) = V(z) and
Ui(s,z) = Ui(z) are independent of s. In this case, (4.5) reduces to

m(z)d Ui(z) +3 V(:c)d 7Ui(z) =0, i=0,1, (4.6)
with U;(1) = 1 = Up(0) and U3 (0) = 0 = Up(1). On solving (4.6) we obtain
Ui(z) = n(z)/n(1) and Uo(z) = 1 — Uy(z), where n(z) = [ exp[— [ #(z)dz]dy
with ¢(y) = 2Mm(y)/V (y).

In the special case of homogeneous logistic growth SL(b,d; M), Ui(z) =
[1 — exp(—Noz)])/[1 — exp(—Np)] and Up(z) = 1 — Uy(z) where Ny = 2Me/w.

4.2. The moments of first absorption times
Let B;(t) = B; and p;(t) = p; so that m(z,s) = m(z) and V(z,s) = V(z)

and let f,(z;t) be the probability density function of the first absorption time
T, given Y (0) = u/M = z. Then, to order O(M ~2), f,(z;1) satisfies

9 i 1 9?

ng(z’t) = m(z)b:fq(z’t) + mV(z)wfq(z,t), fo(%;0) =0 (4.7)
(For proof, see Ewens (1969, p. 53)).

Let Tj(z) = [;° t/ fo(z;t)dt, j = 1,2,..., be the jth moment of T, around

the origin. For computing T;(z) we prove

Theorem 4.4. Let To(z) = 1. Then, to order O(M ~2), Tj(z) satisfies

m(z)E—T,(z) + V(z) T,-(a:) = —jTj-1(z), (4.8)
i=123,..., with T; _1(0) T;- -1(1) =

Proof. Integrating by parts,

[ e gtEi=tg@n| - [T = -t
0 0 Y




STOCHASTIC GROWTH PROCESS WITH APPLICATIONS 535

By multiplying both sides of Equation (4.7) by t/ and integrating ¢ from 0 to oo
we obtain

—iTj-1(z) = /:o tj-aa—tfq(a:; t)dt
= m(z)—a—/o td fo(z; t)dt + 2MV(I)6 5 / t? fo(z; t)dt
= m(:c)——T (z) + V(z) T ().

Let ¥(z) = exp{— [;[2M m(y)/V(y)]dy}. By the method of variation of
parameters, it can be shown that with Tg(z) = 1 the solution of (4.8) is given by

Ty(a) = @i)0a(e) | VO Ta)] [ ¥)ds]dy
1 1
+ (2§)V (=) / [PV ) T-1()| / ¥()dzdy for j=1,2,....
x Yy
In the special case of X(t) ~ SL(b,d; M), we have
Ti(2) = a) = [Ua(a)/M4 [ (exp(Nos) = Div(1 = I ey

1
+ [Ua(z)/M€) / {1 - expl=No(g - ¥)}y(1 - )] "dy (4.9)

and

Ty(z) = [2U(z)/M¢] / *Ty(@)lexp(Moy) = 1v(1 — y)]'dy

1
+202()/N] [ Ti)l1 - exp(-Nog + Noy)lly(1 - ) dy.  (4.10)

5. Some Numerical Illustrations

To illustrate some basic results of this paper, we examined computer simu-
lations of a homogeneous stochastic logistic birth-death process. For given time
t, we chose At = .01 so that the interval [0,¢] was divided into ¢/0.01 increments.
The values chosen for b and d were (b,d) = (0.05,0.01) and (0.03, 0.005). Note
that (b,d) = (0.05,0.01) corresponds to the doubling time of 16-18 days for bac-
teria or cell growth (Tan (1982, 1983)) while (b,d) = (0.03,0.005) corresponds
to the doubling time of approximately 27-29 days for human tumor cells (see
Coldman and Goldie (1983)). We examined the behavior of the model for other
values of (b,d) as well and found the results similar to those given here. The
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initial and final population sizes were mg = 100 and M = 1,000. M was in-
tentionally chosen to be modest in size because otherwise mo/M is very small
and the process reduces to exponential growth. For each set of parameter val-
ues chosen, 100 replications of the simulation were performed. Mean values and
variances for the population size and absorption times were calculated.

A comparison of the mean simulated population size with the approximation
given by (2.3) shows excellent agreement at all time points for a variety of pa-
rameter values (Figures 1-2). Similarly, Figures 3 and 4 show that the variance
of the simulated values agrees very well at all time points with the approximation
given by (2.5).

The ultimate absorption probabilities U;(z), as a function of z, are shown
in Figure 5. Note that if b = d, then U;(z) = z and Up(z) = 1 — z. The
approximated mean absorption times using (4.9) agree very well with the mean
simulated absorption time (Table 1).

Table 1. Simulated and approximated mean absorption times pu(z) for z = mo/M

Approximate mean
Simulated mean  absorption time

b d mg M  absorption time (u(z))
0.05 0.01 100 1000 55.2 54.9
0.03 0.005 100 1000 86.4 87.8
0.01 0.001 1000 10000 90.3 90.0
0.01 0.001 4000 10000 197.7 200.0

8. Conclusions

We have developed a general theory for certain non-homogeneous density-
dependent birth-death processes. The stochastic logistic growth process is a
special case of our general theory. In addition, approximations to the first two
moments of the stochastic logistic process have been derived. Using computer
simulation of the logistic process, we have demonstrated that the approximations
are quite accurate. Also, we have developed approximations for the absorption
probabilities and the moments of the first absorption times using a diffusion
approximation. The theory outlined in this paper should be useful for building
stochastic models in many areas of biomedical research.
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Figure 1. Average of simulated (+) and approximated (solid line) mean population
sizes for stochastic logistic growth with b = 0.05, d = 0.01, M = 1,000, and various
values for mgp.
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Figure 2. Average of simulated (+) and approximated (solid line) mean population
sizes for stochastic logistic growth with b = 0.03, d = 0.005, M = 1,000, and various

values for mg.
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Figure 3. Average of simulated (+) and approximated (solid line) variance of population
sizes for stochastic logistic growth with b = 0.05, d = 0.01, M = 1,000, and various
values for mg.
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Figure 4. Average of simulated (+) and approximated (solid line) variance of population
sizes for stochastic logistic growth with b = 0.03, d = 0.005, M = 1,000, and various
values for mg.
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Probability of Ultimate Absorption

0 .0025 .005
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Figure 5. Ultimate absorption probabilities into M = 1000 for b = 0.05, d = 0.01 (solid
line) and for b = 0.03, d = 0.005 (dashed line).
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