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Abstract: For the same null hypothesis, there usually exist multiple valid test

statistics. In nearly all cases, any individual statistic is only powerful against specific

types of alternatives, and could be rather weak in picking up signals of other types.

It is thus crucial, especially in high-dimensional settings, to combine the information

contained in different test statistics in order to maintain robust power against a

wide range of alternatives, thus avoiding the worst-case scenario. Methods have

been proposed for similar purposes, but they are either computationally expensive

or lack theoretical justification. In this paper, we present a general and easy-to-

implement procedure for fusing multiple valid statistics using resampling methods,

such as bootstrap or permutation. The consistency of this procedure is proved

for three popular high-dimensional hypothesis testing problems. The results of

numerical studies show that this fusion procedure maintains robust performance

against a wide range of alternatives, whereas individual test statistics often suffer

from extremely low power.

Key words and phrases: Consistency of test, high-dimensional data, independence

test, permutation, two-sample mean comparison.

1. Introduction

Testing high-dimensional null hypotheses has been the subject of intensive

studies. One popular approach, which includes the works of Kosorok and Ma

(2007), Bancroft, Du and Nettleton (2013), and Liang (2016), breaks the null

hypothesis into multiple univariate tests, and focuses on the false discovery rate.

For studies on power, the family-wise error, Kim and Akritas (2010) note that

for any given null hypothesis, there usually exist multiple valid statistics, each of

which may detect certain types of signals, but suffer from very low power against

others. Thus the test statistic and types of alternatives are connected in terms

of power enhancement or boosting. For example, with the alternative restricted

to be sparse, Fan et al. (2015) shows how a given test statistic can be made

consistent and more powerful for cross-sectional data. This idea of possible power

enhancement against specific alternatives is later examined in a more general

framework by Kock and Preinerstorfer (2019). We study a similar problem of
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power boosting from a different, yet more practical angle. We propose an efficient

procedure for fusing statistics that could ensure robust power performance against

arbitrary alternatives, thus avoiding the worst-case scenario. In this sense, fusing

test statistics is particularly useful in practice when choosing between opposing

recommendations made based on different test statistics.

To formulate the setup, suppose {Tn,k, k = 1, . . . ,K} is a collection of

statistics, where K is a fixed integer, such that for any given k, H0 is rejected for

large Tn,k. Note that a naive form of combination, such as a weighted average∑K
k=1 akTn,k, with ak ≥ 0, is not a good choice, because it is difficult to specify

appropriate values for the coefficients ak so that the statistical significance of

one Tn,k is not obscured by trivial variations in other Tn,k of a larger scale.

This is one of the motivating factors behind the monotone transformation of

individual statistics to make them relatively comparable before being combined.

One example is Fisher’s combined p-value

Un := −2
K∑
k=1

log{1− Fn,k(Tn,k)}, (1.1)

where Fn,k(.) is the null distribution function of Tn,k. Its relative popularity

is largely because it follows a χ2(.) distribution if Tn,k, for k = 1, . . . ,K, are

independent. Another related example is an equivalence of the smallest p-value:

Un := max
k=1,...,K

Fn,k(Tn,k), (1.2)

and H0 is rejected whenever the p-value associated with some Tn,k is too small.

Examples of fusion statistics like (1.1) and (1.2) both suggest that transforming

Tn,k using its distribution function into a uniform (0, 1) is a reasonable choice.

However, be it (1.1) or (1.2), in practice, the unknown Fn,k(.) has to be replaced

with their respective estimates first in order to obtain an empirical version Ûn.

The biggest challenge in their use is to obtain an efficient approximation of the

null joint distribution of {Tn,k, k = 1, . . . ,K}. Using (1.2) in a high-dimensional

setting is discussed in Xu et al. (2016) for the two-sample mean comparison

problem, where the approximation of the null distribution is obtained using the

standard two-step procedure: first, derive the (asymptotic) form of Fn,k(.) and

Fn(.), the latter being the (null) joint distribution of {Tn,k, k = 1, . . . ,K}; second,
find the tail probabilities associated with these asymptotic (null) distributions

using numerical approximations (with plugged-in estimates of the parameters).

This classical two-step approach is not only computationally intensive, but also

suffers from low numerical efficiency.

In this study, we investigate how to use resampling methods, either bootstrap

or permutation, depending on the specific testing problem, to directly approx-

imate the null distributions of Un, or rather Ûn, for the purpose of fusing test



POWER BOOSTING VIA RESAMPLING 295

statistics in high-dimensional hypothesis testing, where the dimension of the data

is not negligible relative to the sample size. A streamlined setup is as follows,

with (1.2) as the fusion statistic. Let Xn
1 = {X1, . . . , Xn} denote the original

sample. With a sufficiently large number B, X
n,(b)
1 , for b = 1, . . . , B, denotes B

new samples generated using either bootstrap or permutation, for which H0 holds

true. For b = 1, . . . , B and k = 1, . . . ,K, let T
(b)
n,k denote the values of the test

statistic Tn,k calculated from the sampleX
n,(b)
1 . For any k = 1, . . . ,K, we estimate

Fn,k(.) by F̂n,k(.), the empirical distribution function based on {T (1)
n,k, . . . , T

(B)
n,k }.

An empirical version of (1.2) is then defined as

Ûn := max
k=1,...,K

F̂n,k(Tn,k). (1.3)

Next, we compare this with the empirical distribution function of its resampling

counterpart:

Û (b)
n := max

k=1,...,K
F̂n,k(T

(b)
n,k), b = 1, . . . , B. (1.4)

Lastly, at significance level α, we reject H0 if

B−1
B∑
b=1

I(Û (b)
n ≥ Ûn) ≤ α, (1.5)

where I(·) denotes the indicator function. We say a statistical test is consistent

if its type-I error is identical to the nominal significance level α, at least asymp-

totically. In this paper, we prove the consistency of the above fusion procedure,

namely, (1.3)–(1.5), in the context of three popular high-dimensional hypothesis

testing problems, discussed in, among others Chung and Romano (2016), Cai,

Liu and Xia (2014), and Heller, Heller and Gorfine (2013), for a selection of test

statistics. Our main results are summarized as follows:

(i) we show the consistency of the empirical bootstrap-based fusion procedure

for the one-sample mean test, where K is the number of statistics to be

fused, and can increase with n;

(ii) we show the consistency of the permutation-based fusion procedure for the

two-sample mean comparison, where K can also increase with n;

(iii) we show the consistency of the permutation-based fusion procedure for

the test of independence between two random vectors; as a byproduct,

we provide a theoretical justification for the practice in Heller, Heller and

Gorfine (2013), where the permutation distribution of the HHG statistic is

used to approximate its null distribution.

The rest of the paper is organized as follows. Section 2 and Section 3 present

the one-sample mean test and the two-sample mean comparison, respectively.
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Section 4 discusses testing the independence between two (high-dimensional)

random vectors. A brief discussion on possible extensions is given in Section

5. Numerical results are given in Section 6. Regulation conditions and proofs are

gathered in the Appendix.

2. Test of One-Sample Mean

Suppose Xi ∈ Rp, for i = 1, . . . , n, are independent copies of X =

(X1, . . . , Xp)⊤, with mean µ and covariance matrix ΣX . Without loss of

generality, suppose the diagonal elements of ΣX are all ones. Testing H0 : µ = 0,

referred to as the one-sample location model in Kock and Preinerstorfer (2019),

is based on the sample mean X̄n, usually standardized by the sample covariance

matrix. When p is large, so that the inversion of a p × p matrix is much less

feasible, if at all possible, a more popular replacement is given by

δn = (δn,1, . . . , δn,p)
⊤ = n1/2D̂−1/2

n X̄n,

where D̂n = diag(σ̂2
nj, j = 1, . . . , p) is a diagonal matrix of the sample variances.

The use of D̂n instead of the sample covariance matrix is to avoid having to

compute the inverse of a high-dimensional matrix; see, for example, Bai and

Saranadasa (1996), Srivastava and Du (2008), and Kong et al. (2022). For any

integer k ≥ 1, let Ak(·) be a function so that for any vector ν ∈ Rp, Ak(ν)

returns the average of its largest (in absolute value) k elements. Apparently,

for any k ≥ 1, Ak(δn) is a pivotal statistic, so that we reject H0 if Ak(δn) is too

large. However, as noted in Cai, Liu and Xia (2014), Kim and Akritas (2010), and

Gregory et al. (2015), no statistic is uniformly more powerful than others (against

all possible alternatives). For example, when the signals are sparse, but strong,

A1(δn), namely, the supremum statistic considered in Chernozhukov, Chetverikov

and Kat (2019) and Cai, Liu and Xia (2014), has greater power than Ak(δn) with

a large k, because the latter is not greatly influenced by a small number of large

differences. Similarly, in the case of dense, but weak alternatives, Ak(δn) with

a small k is not likely to be extreme enough to serve as evidence to reject H0.

Furthermore, as demonstrated in Kong et al. (2022), in the latter case, it is also

beneficial to consider Ak(δn) with k = sn, where sn is some positive integer that

can increase with n.

Without loss of generality, suppose 1 ≤ l1 ≤ l2 ≤ · · · ≤ lK ≤ sn is a sequence

of positive integers. For k = 1, . . . ,K, let

Tn,k = Tn,k(δn) = Alk(δn), (2.1)

be the corresponding sequence of statistics. We now show that they can be

combined using the empirical bootstrap-based fusion procedure (1.3)–(1.5). For

b = 1, . . . , B, let X
n,(b)
1 = {Xn,(b)

1 , . . . , Xn,(b)
n } be an empirical bootstrapped
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sample, that isX
n,(b)
i , for i = 1, . . . , n, are independent and identically distributed

(i.i.d) draws (with replacement) from Xn
1 = {Xi, i = 1, . . . , n}. Let X̄(b)

n =

n−1
∑

iX
n,(b)
i denote the bootstrapped sample mean, and D̂(b)

n the bootstrap

version of D̂n. Write δ(b)n = n1/2(D̂(b)
n )−1/2(X̄(b)

n − X̄n),

T
(b)
n,k = Alk(δ

(b)
n ), k = 1, . . . ,K, b = 1, . . . , B,

and carry out steps (1.3)–(1.5). For any nondecreasing function Gn,k(.), for k =

1, . . . ,K,

I

[
K⋂
k=1

{Gn,k(Tn,k(δn)) ≤ u}
]
= I

[
K⋂
k=1

{Tn,k(δn) ≤ G−1
n,k(u)}

]
. (2.2)

Thus, the consistency of this bootstrap-based fusion procedure is a direct conse-

quence of the theorem below. Let Fn(.) denote the joint distribution of {Tn,k, k =

1, . . . ,K} under H0, and F ∗
n(.|Xn

1 ) denote their joint bootstrap distribution,

namely, the joint distribution of {Tn,k, k = 1, . . . ,K}, calculated using the

bootstrap samples derived from Xn
1 , as described above.

Theorem 1. Suppose Conditions (C1)–(C3) in the Appendix hold. Then,

sup
t1,...,tk∈R

∣∣∣∣∣Fn(t1, . . . , tK)− P

[
K⋂
k=1

{Tn,k(Z) ≤ tk}
]∣∣∣∣∣ = o(1),

sup
t1,...,tk∈R

∣∣∣∣∣F ∗
n(t1, . . . , tK |Xn

1 )− P

[
K⋂
k=1

{Tn,k(Z) ≤ tk}
]∣∣∣∣∣ = op(1),

where Z ∼ N(0,ΣX) denotes the multivariate normal distribution with mean zero

and covariance matrix ΣX , and Tn,k(Z) is as defined in (2.1), with δn replaced

with Z.

Remark 1. Chernozhukov, Chetverikov and Kat (2019) discuss testing H0 based

on the supremum statistic, where its null distribution is also approximated using

an empirical bootstrap, with the only difference being that the same sample

D̂n, instead of its bootstrapped version, is used to standardize the bootstrapped

sample mean, that is, δ(b)n is defined as n1/2(D̂n)
−1/2(X̄(b)

n − X̄n). The second

identity in Theorem 1 about the bootstrap distribution still holds in this case;

nevertheless, a simulation study indicates that doing so tends to incur larger

type-I errors; see Kong et al. (2022).

3. Two-Sample Mean Comparison

Suppose p-dimensional random vectors X1, . . . , Xm are independent copies

of X ∼ P1(.), with mean µX and variance ΣX , and Y1, . . . , Yn are independent

copies of Y
i.i.d.∼ P2(.), with mean µY and variance ΣY . The null hypothesis of
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interest is H0 : µX = µY , which is referred to as the two-sample location model

in Kock and Preinerstorfer (2019). The procedure and the main results in this

section are stated for equal sample sizes, that is, m = n. A brief discussion is

given at the end of this section on how the method can be adapted to the samples

of unequal sizes.

As in the one-sample case, nearly all existing statistics for testing H0 are

based on the sample-mean difference δn = X̄m − Ȳn; see, for example, Xue and

Yao (2020), Cai, Liu and Xia (2014), and Zhang, Guo and Cheng (2020). For

any k = 1, . . . ,K, let Tn,k(δn) be as defined in (2.1), and reject H0 if Tn,k(δn)

is too large. For any of these tests to be consistent, valid approximations to its

null distribution are essential. Xue and Yao (2020) use an empirical bootstrap

to determine the critical values for the supremum statistic. A different option

is to use the permutation method. Chung and Romano (2016) prove that for

a multivariate two-sample mean comparison, certain statistics are proper, in

the sense that its permutation distribution function converges (uniformly) to

its null distribution. The permutation method is also popular in practice; see,

for example, Nettleton, Recknor and Reecy (2008), Chang and Tian (2016), and

Efron and Tibshirani (2007). Its theoretical properties are examined in Kong et

al. (2022) for the problem of a high-dimensional two-sample mean comparison,

and it is shown to outperform the bootstrap method by a significant margin.

In the present context, the permutation procedure for fusing the sequence

of statistics {Tn,k(δn), k = 1, . . . ,K} goes as follows. Following the notation

used in Chung and Romano (2016), write N = 2n and the pooled-sample ZN =

{Z1, . . . , ZN}, where Zi = Xi, for i = 1, . . . , n, and Zn+j = Yj, for j = 1, . . . , n.

Thus, X̄n can be interpreted as the average of the first half of the sample, {Z1, . . .,

Zn}, and Ȳn is the average of the second half of the sample, {Zn+1, . . . , ZN}.
Let GN denote the set of all permutations of {1, . . . , N}. For any π =

(π(1), . . . , π(N)) ∈ GN , let Z
N
π denote the rearranged ZN through permutation π,

and ZNπ(i), for i = 1, . . . , N , be the ith entry of ZNπ . Recompute X̄n and Ȳn for ZNπ ,

and denote the difference between them as δn(Z
N
π ). Note that we use the notation

δn(Z
N
π ) to highlight its dependence on the permutated sample ZNπ , whereas the

simple δn is reserved for the sample mean difference calculated for the original

(unpermutated) sample. For any k = 1, . . . ,K, let Tn,k(Z
N
π ) denote the value

of Tn,k(.), as in (2.1), when evaluated for δn(Z
N
π ); its marginal (permutation)

distribution of Tn,k(Z
N
π ) conditional on ZN is thus

F̂n,k(t|ZN) =
1

N !

∑
π∈GN

I
{
Tn,k(Z

N
π ) ≤ t

}
, t ∈ R. (3.1)

In this case, Ûn of (1.3) is given by Ûn = maxk=1,...,K F̂n,k(Tn,k(δn)|ZN). We
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reject H0 if

1

N !

∑
π∈GN

I
{

max
k=1,...,K

F̂n,k(Tn,k(Z
N
π )) < Ûn

}
> 1− α. (3.2)

As a result of (2.2), the consistency of the above procedure (3.1) and (3.2) is a

direct consequence of the next theorem. Let Fn(.) denote the joint distribution of

{Tn,k(δn), k = 1, . . . ,K} under H0, and F
∗
n(.|ZN) denote their joint permutation

distribution, that is,

F ∗
n(t1, . . . , tK |ZN) :=

1

N !

∑
π∈GN

I

[
K⋂
k=1

{Tn,k(ZNπ ) ≤ tk}
]
, t1, . . . , tK ∈ R,

the joint distribution of {Tn,k(ZNπ ), k = 1, . . . ,K} calculated for the randomized

sample derived from ZN(via permutation π uniformly distributed on GN).

Theorem 2. Suppose Conditions (C1)–(C3) in the Appendix hold and that the

same set of conditions also hold when (Y,ΣY ) replaces (X,ΣX). Then,

sup
t1,...,tK∈R

∣∣∣F ∗
n(t1, . . . , tK |ZN)− Fn(t1, . . . , tK)

∣∣∣→ 0, in probability. (3.3)

Remark 2. Similarly to Section 2, we can also consider cases where the test

statistics {Tn,k(δn), k = 1, . . . ,K} are evaluated for marginal-standardized δn,

that is, δn = n1/2(D̂n)
−1/2(X̄n − Ȳn), where D̂n = diag(Σ̂n), the diagonal matrix

consisting of the diagonal elements of

Σ̂n =
1

2n

n∑
i=1

(Xi − X̄n)(Xi − X̄n)
⊤ +

1

2n

n∑
i=1

(Yi − Ȳn)(Yi − Ȳn)
⊤.

In this case, D̂n is recomputed for each permutated sample, and Theorem 2

continues to hold if D̂n is accurate enough, as per Assumption (A6) of Kong et

al. (2022).

Remark 3. When the two samples are of unequal sizes (m ̸= n), Kong et al.

(2022) prove that the limit of the permutation distribution of the statistics, be

it Tn,k(δn) or its marginally standardized version, does not coincide with their

respective (null) distributions, unless ΣX = ΣY . One solution is to apply the

binning procedure in Kong et al. (2022) to obtain pseudo samples of equal sizes,

and then proceed as before. If m/(m + n) = c + O(N−1/2), for some c ∈ (0, 1),

then similarly to Theorem 2, we can prove the consistency of the fusion procedure

(3.1) and (3.2) based on these pseudo samples.
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4. Test of Vector Independence

Let X and Y stand for random vectors of dimension p and q, respectively,

with DX and DY as their respective domains. Suppose we have n independent

copies {(Xi, Yi)}ni=1 of (X,Y ), and we are interested in testing the null hypothesis

H0: X and Y are independent. WriteXn
1 = {X1, . . . , Xn} andYn

1 = {Y1, . . . , Yn}.
In the univariate case, DiCiccio and Romano (2017) consider the test of H0

based on the sample correlation ρn(.), and prove that its null distribution can be

approximated by random permutations of Yn
1 or Xn

1 .

Compared with ρn(.), the HHG statistic of Heller, Heller and Gorfine (2013)

is able to identify nonlinear association. The notion behind it is simple: suppose

dX(.) and dY (.) are two distance metrics, such as the Euclidean distance; if H0

is false, then there must exist two distinct points (x1,y1), (x2,y2) ∈ D = DX ×
DY , so that the two binary random variables I{dX(X,x1) ≤ dX(x1,x2)} and

I{dY (Y,y1) ≤ dY (y1,y2)} are correlated. The HHG statistic is then based on

the Pearson’s correlation for the corresponding 2× 2 contingency table:

Tn(x1,y1,x2,y2; dX(.), dY (.)) = n1/2A1,1 −A1.A.1
(A1.A.1)1/2

, (4.1)

where

A1,1 := A1,1(x1,y1,x2,y2; dX(.), dY (.))

=
1

n

n∑
i=1

I
{
dX(Xi,x1) ≤ dX(x1,x2)

}
I
{
dY (Yi,y1) ≤ dY (y1,y2)

}
,

A1. := A1.(x1,x2; dX(.)) =
1

n

n∑
i=1

I
{
dX(Xi,x1) ≤ dX(x1,x2)

}
,

A.1 = A.1(y1,y2; dY (.)) =
1

n

n∑
i=1

I
{
dY (Yi,y1) ≤ dY (y1,y2)

}
. (4.2)

In Heller, Heller and Gorfine (2013), the null distribution of the statistic (4.1) is

approximated by random permutations ofYn
1 . This practice is intuitively correct,

but no theoretical justification has been provided yet. Because A1. and A.1, the

two marginal terms in (4.1), are both invariant to permutations (of Yn
1 ), it is

the numerator, A1,1 − A1.A.1, that determines the permutation distribution of

(4.1). Thus, henceforth, we do not discriminate between (4.1) and its numerator.

Variations of (4.1), while retaining its contingency-table-derived form, can be

constructed by altering choices for the following two factors:

(i) values specified for (x1,y1) and (x2,y2). Apparently, the statistic (4.1)

associated with any specific values of (x1,y1) and (x2,y2) is more sensitive

to dependency that occurs close to the specified locations. Violations of H0

in locations further away might not be strong enough to yield significant
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changes. By combining statistics associated with varied choices of (x1,y1)

and (x2,y2) scattered in D, we can gather evidence (of dependence) from

different locations.

(ii) types of distance metrics for dX(·) and dY (·). This factor, as noted in

Heller, Heller and Gorfine (2013), could be designed to capture the localized

dependency between X and Y . For example, we could consider distance

metrics dX(·) that depend only on a certain sub-vector XS of X, so that the

resulting statistic is more powerful against alternatives when the association

between (X,Y ) is largely due to that between the sub-vector XS and Y .

These variations of (4.1), notwithstanding belong to a general class of statistics

of the following form:

n−1
n∑
i=1

{a(Xi)− ān}{d(Yi)− d̄n}, (4.3)

where a(·) and d(·) are both square integrable functions, with d(·) being categor-

ical (i.e., taking only a finite number of possible values), and ān = n−1
∑
a(Xi)

and d̄n = n−1
∑
d(Yi) are their respective sample averages. To see this is the

case, set

a(X) = I
{
dX(X,x1) ≤ dX(x1,x2)

}
, d(Y ) = I

{
dY (Y,y1) ≤ dY (y1,y2)

}
.

Then, (4.3) reduces to the numerator in (4.1).

Without loss of gerality, suppose for k = 1, . . . ,K, ak(·) and dk(·) are

functions satisfying the requirements above specified for (4.3). Write

Tn,k(X
n
1 ,Y

n
1 ) = n−1/2

n∑
i=1

{ak(Xi)− ā(k)n }{dk(Yi)− d̄(k)n }, k = 1, . . . ,K, (4.4)

where, ā(k)n and d̄(k)n , for k = 1, . . . ,K, are the sample averages of ak(Xi) and

dk(Yi), respectively. In the language of Hajek, Sidak and Sen (1999), ak(Xi)

is referred to as the coefficient, and dk(Yi) are the scores. We focus on the

combination of statistics of this general form using the fusion procedure, where

the resampling is done via random permutations of Yn
1 .

For any π ∈ Gn, let {π(1), . . . , π(n)} denote the rearranged {1, . . . , n}
through permutation π, andYn,π

1 = {Yπ(1), . . . , Yπ(n)}. For k = 1, . . . ,K, evaluate

Tn,k(·) for the permuted sample as

Tn,k(X
n
1 ,Y

n,π
1 ) = n−1/2

n∑
i=1

{ak(Xi)− ā(k)n }{dk(Yπ(i))− d̄(k)n }, (4.5)

with their marginal and joint permutation distributions given by
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F̂n,k(t|Xn
1 ,Y

n
1 ) =

1

n!

∑
π∈Gn

I
{
Tn,k(X

n
1 ,Y

π(n)
1 ) ≤ t

}
, t ∈ R, (4.6)

F̂n(t1, . . . , tK |Xn
1 ,Y

n
1 ) :=

1

n!

∑
π∈Gn

I

[
K⋂
k=1

{Tn,k(Xn
1 ,Y

π(n)
1 ) ≤ tk}

]
, (4.7)

respectively. Let Ûn be as defined in (1.3), with F̂n,k(.|Xn
1 ,Y

n
1 ) replacing F̂n,k(·),

for k = 1, . . . ,K. Similarly to (3.2), we reject H0 if R̂U
n (Ûn|Xn

1 ,Y
n
1 ) ≥ 1 − α,

where

RÛ
n (u|Xn

1 ,Y
n
1 ) :=

1

n!

∑
π∈Gn

I

[
K⋂
k=1

{Fn,k(Tn,k(Xn
1 ,Y

π(n)
1 )|Xn

1 ,Y
n
1 ) ≤ u}

]
. (4.8)

Let Fn(·) denote the joint distribution of {Tn,k(Xn
1 ,Y

n
1 ), k = 1, . . . ,K} under H0.

Theorem 3. Under H0, with probability one,

sup
t1,...,tK∈R

∣∣F̂n(t1, . . . , tK |Xn
1 ,Y

n
1 )− Fn(t1, . . . , tK)

∣∣ = o(1). (4.9)

Based on Theorem 3, the consistency of the fusion procedure (4.6)–(4.8) is a

straightforward result.

Corollary 1. Under H0, with probability one,

sup
u∈(0,1)

|R̂U
n (u|Xn

1 ,Y
n
1 )− P(Ûn ≤ u)| = o(1).

Remark 4. Based on Theorem 3 and the continuous mapping theorem, it is

straightforward to see that the fusion procedure (4.6)–(4.8) is also consistent

if the fusion statistic Un of (1.2) is replaced with any continuous function of

{Tn,k(·), k = 1, . . . ,K}. For example, suppose {(xk,yk) : k = 1, . . . ,K} is a

collection of (fixed) grid points in D. We could then consider the summation, or

the maximum, of the squared (4.1) taken over these grid points; that is,

Ũn =
K∑

k,l=1

T 2
n(xk,yk,xl,yl; dX(·), dY (·)), (4.10)

Ũn = max
k,l

T 2
n(xk,yk,xl,yl; dX(·), dY (·)). (4.11)

Note that (4.10) is the Cramér–von-Mises-type of statistic studied in Heller,

Heller and Gorfine (2013); Heller et al. (2016). Thus, as a byproduct, Theorem

3 also provides theoretical justifications for the practice in Heller, Heller and

Gorfine (2013); Heller et al. (2016) of approximating the null distributions of

these aggregations numerically by using their permutation distributions.

For the same reason, the consistency of the fusion procedure (4.6)–(4.8) also

holds for the Kolmogorov–Smirnov-type statistic (4.11), or when Tn(·) in (4.10)
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or (4.11) is replaced by the G likelihood-ratio,

A1,1 log

(
A1,1

A1.A.1

)
+A1,2 log

(
A1,2

A1.A.2

)
+A2,1 log

(
A2,1

A2.A.1

)
+A2,2 log

(
A2,2

A2.A.2

)
,

(4.12)

where Ai,j, Ai,., A.,j, for i, j = 1, 2, are as given in (4.2). These four fused statistics

can go through one more round of the fusion procedure, and the resulting test

procedure would still be consistent.

Remark 5. For the proof of Theorem 3, the permutation distribution is derived

based on the notion that when π is uniformly distributed on Gn, π(i) can be

interpreted as the rank of Ui, for i = 1, . . . , n, where U1, . . . , Un are i.i.d. U(0, 1).

In this sense, Tn,k(X
n
1 ,Y

n,π
1 ) of (4.5) falls into the category of simple linear rank

statistics (Hajek, Sidak and Sen, 1999). The theoretical tools currently available

are enough to derive the limiting distribution of individual rank statistics, but not

for their joint limiting distributions, as required in our case. It is for this extension

to the multivariate case that we require the function dk(·) to be categorical.

Removing of such restrictions is left to future research.

5. Extensions

Engaging fusion statistics other than (1.2) is perfectly possible. Indeed, the

results in Theorems 1–3 continue to hold if Fn,k(·) in the definition of (1.3) is

replaced with any monotone function.

As observed in Sections 2 to 4, the consistency of the fusion procedure (1.3)–

(1.5), depends on both the sequence of the test statistics {Tn,k, k = 1, . . . ,K}
to be fused and the fusion statistic, Un, itself. For the fusion statistic (1.2), the

fusion procedure is consistent as long as the joint bootstrap (or permutation)

distribution function of {Tn,k, k = 1, . . . ,K} is a valid approximation of their

joint null distribution. Were we to consider a sequence of test statistics other than

those studied here, then the consistency of the fusion procedure needs to be re-

evaluated, because the bootstrap (or permutation) distribution is not necessarily

always a valid approximation of the null, even in the non-high-dimensional (fixed-

dimensional) setting; see, for example, Chung and Romano (2013, 2016).

Having said that, certain variations (or extensions) of the proposed procedure

can be verified in a relatively straightforward manner. For example, Fn,k(·) in

(1.2) or F̂n,k(·) in (1.3) can be replaced with an arbitrary monotone function,

and the results in Theorem 1, Theorem 2, and Theorem 3 will continue to hold.

Another possibility is to allow K, the number of statistics to be fused, to also

increase with n. For example, in the two-sample mean comparison problem of

Section 3, we do not known a priori the number of coordinates where µX and

µY differ from each other. Thus, Tn,k(δn) is calculated for as many k as possible,

hoping that one of these k-values is close to the true count. Without loss of
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generality, for k = 1, . . . , sn(≤ p), define

Tn,k = Ak(δn);

we can then repeat the fusion procedure (3.1) and (3.2) with K replaced by sn.

The proof of the consistency of the procedure is similar to when K is fixed, if the

rate at which sn → ∞ is slow enough. Specifically, if sn is allowed to be as large

as p, then p is at most of order o(n1/7), rather than the exponential rate implied

by Condition (C3) in the Appendix.

we cannot make general recommendations for choosing between different

fusion statistics, because the existence of an optimal fusion statistic is, to the

best of our knowledge, still an open question. For the sequence of test statistics

of (2.1), a general form of the type of fusion statistic for which the consistency

of the corresponding fusion procedure still holds is

Un = F (fk(Tn,k), k = 1, . . . ,K), (5.1)

where F (·) : RK → R and fk(·) : R → R, for k = 1, . . . ,K. For the overall

function to be convex, it is sufficient that either

• fk(·) are all convex; F (·) is convex and nondecreasing in each argument, or

• fk(·) are all concave; F (·) is convex and nonincreasing in each argument.

As a result, we have for any u ∈ R, there exists some sn-sparsely convex set

A ⊂ Rp (Definition 3.1 of Chernozhukov, Chetverikov and Kato (2017)), such

that

I(Un ≤ u) = I(δn ∈ A).

Write T n = (Tn,k(δn), k = 1, . . . ,K), T (b)
n = (Tn,k(δ

(b)
n ), k = 1, . . . ,K). Under

certain regularity conditions, we can apply Proposition 3.2 of Chernozhukov,

Chetverikov and Kato (2017) and prove, similarly to Theorem 1, that

sup
A∈Asp(sn)

∣∣∣P∗
n(T

(b)
n ∈ A|Xn

1 )− P(T n ∈ A)
∣∣∣ = op(1),

where Asp(sn) denotes the class of all sn sparsely convex sets in Rp, and P∗
n(·|·)

denotes the bootstrap distribution conditional on Xn
1 . An analogue of Theorem

2, and consequently the consistency of the corresponding fusion procedure, can

then be proved similarly.

Asymptotically the empirical version of the aforementioned Fisher’s com-

bined p-value of (1.1) can be written in the form of (5.1). To see this, first

note that, based on Theorem 1, we have for any given k, Tn,k(·) converges in

distribution to Tn,k(Z), which, as shown in the proof of Theorem 1, is equivalent

to the maximum of a Gaussian vector of dimension 2k
(
p
k

)
. Second, Theorem

1 of Cai, Liu and Xia (2014) states that under certain regularity conditions,
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the maximum of a p-dim Gaussian vector with unit variances has its limiting

distribution as the type-I extreme value distribution, that is,

exp

(
− π−1/2 exp

{
− t2 − 2 log p+ log log p

2

})
.

Finally, it is easy to check that

− log

(
1− exp

(
− π−1/2 exp

{
− t2 − 2 log p+ log log p

2

}))
is indeed convex in t.

6. Simulation Studies

In this section, we examine the performance of the fusion procedure (1.3)–

(1.5), denoted by fused, when it is applied to the three testing problems discussed

in Sections 2–4.

We use the following notation: Ip, the p × p identity matrix; Np(µ,Σ), the

p-dim normal with mean µ and covariance matrix Σ; and Tp(k, µ,Σ), the p-

dim t-distribution with k degrees of freedom, mean µ, and covariance Σ. The

significance level α is fixed as 5%. Empirical sizes are calculated based on 5,000

repetitions, and the empirical powers are based on 1,000 repetitions. Within each

repetition, the bootstrap (or permutation) distributions are calculated based on

B(= 10000) resampling via bootstrap (or permutation).

6.1. One-sample mean test

In testing H0 : µ = 0, the performance of the fusion procedure is compared

with that of the individual test statistics, namely, Tn,1 and Tn,p of (2.1). Also

included in the comparison are the statistics of Bai and Saranadasa (1996),

denoted by TBS, and Srivastava and Du (2008), denoted by TSD. These

two summation-type statistics were originally proposed for a two-sample mean

comparison, and are now adopted for the current purpose. Their p-values should

be decided based on their asymptotic distributions, but because these tend to be

over-inflated, we use the bootstrap.

The sample size is fixed at 100. We consider two designs for X: Np :=

Np(µ,Σ) and Tp := Tp(5, µ,Σ) with Σ = D1/2RD1/2, where D and R are

generated as follows:

Σ1: D = Ip, R = (ρi,j), where ρi,i = 1, and ρi,j = 0.25, if i ̸= j.

Σ2: D = diag(σ2), where σj, j = 1, . . . , p,
i.i.d.∼ U(2, 3); R = (ρi,j) with ρi,j =

0.25|i−j|.

Σ3: D is the same as in Σ2; R is the same as in Σ1.
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Table 1. Empirical sizes(%) of different tests.

(Dist.,Σ) p Tn,1 Tn,p fused TBS TSD

(Np,Σ1)

100 4.88 4.88 5.08 5.12 5.60

200 5.20 4.70 5.14 4.92 5.46

500 5.40 5.50 5.24 5.50 6.06

1,000 4.98 4.90 4.86 5.06 5.60

(Tp,Σ1)

100 3.48 4.16 3.66 4.22 4.78

200 3.36 4.26 3.66 4.34 4.76

500 3.36 4.32 3.90 4.38 5.00

1,000 3.08 4.30 3.58 4.50 4.92

(Np,Σ2)

100 4.88 4.88 4.96 5.30 5.30

200 5.34 5.34 5.44 5.76 5.76

500 5.44 5.44 5.56 6.06 6.06

1,000 4.84 4.84 4.88 5.14 5.14

(Np,Σ3)

100 5.22 4.94 5.32 5.16 5.58

200 5.28 4.88 5.12 5.02 5.64

500 5.62 5.44 5.54 5.50 6.02

1,000 5.28 4.68 4.88 4.86 5.42

The results for the empirical sizes, for different combinations of distributions,

Σ and dimension p, are given in Table 1. The size of fused is fairly close to

the nominal size in nearly all settings, and is relatively more stable than its

competitors.

Examples of alternatives are generated by specifying nonzero values for some

entries of µ in the above examples. Specifically, for d = 0.1, 0.5, 0.9, ⌊dp⌋
components of µ are randomly selected and are independently assigned values

drawn from U(−s, s), for some s > 0, and the other entries of µ remain zero. Here,

d controls the sparsity of the signal, and s determines the signal strength. Table 2

reports the empirical power for p = 1000, different combinations of distributions

(Dist), Σ and (d, s), for the four competing methods. What is immediately

obvious is that the fused statistics enjoy universally higher power than when

using Tn,1 or Tn,p alone. It also significantly outperforms both TBS and TSD.

6.2. Two-sample mean comparison

In this section, in addition to Tn,1 and Tn,p, we compare the proposed fusion

procedure with the statistics considered in Xu et al. (2016) and Chen, Li and

Zhon (2019), referred to as TXLPW and TCLZ , respectively. The statistics studied

in Aoshima and Yata (2018), Chen and Qin (2010), and Zhang, Guo and Cheng

(2020) are similar to TCLZ in definition, require similar assumptions, and show

similar performance, and thus are excluded from the comparison. Simulation

examples are taken from Xu et al. (2016), where the two p-dim random vectors
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Table 2. Empirical powers(%) of different tests.

(Dist.,Σ) (d, s) Tn,1 Tn,p fused TBS TSD

(Np,Σ1)

(0.1, 0.31) 89.7 9.9 92.1 10.2 11.7

(0.5, 0.22) 82.7 42.7 92.9 45.1 53.0

(0.9, 0.19) 77.2 85.2 94.3 87.3 91.0

(Tp,Σ1)

(0.1, 0.41) 89.2 10.1 92.7 9.9 11.8

(0.5, 0.28) 78.0 43.4 87.8 39.8 49.4

(0.9, 0.25) 76.2 84.7 91.4 81.7 88.3

(Np,Σ2)

(0.1, 7.20) 92.8 4.4 93.6 5.0 5.0

(0.5, 6.50) 94.8 5.4 94.9 5.9 6.2

(0.9, 6.20) 93.5 7.0 93.5 7.1 7.3

(Np,Σ3)

(0.1, 0.75) 90.0 9.5 92.1 9.7 11.0

(0.5, 0.55) 87.8 50.1 96.8 45.6 59.4

(0.9, 0.45) 77.3 75.2 91.6 70.5 83.0

X and Y are generated according to

X = (ξ1, ξ2), Y = (η1, η2) + µY , µY = (µY1 , 0);

here, ξ1, η1 are both of length p/2, both with entries being independent U(−1, 1),

and ξ2 and η2 are independent Tp/2(3, 0,Σ), with Σ = (0.6|i−j|). When evaluating

empirical sizes, µY1 = 0; for the empirical power comparison, with any given

β ∈ (0, 1) and s ∈ (0, 1), p0 = min(⌊pβ⌋, p/2) components of µY1 are randomly

selected and set to equal s, so that s is an indicator of the signal strength, and

the sparsity of the signals is controlled by β.

With n = 100, Table 3 shows the results for the empirical sizes of the

various methods for different p. The two columns labelled T aXLPW and T aCLZ
are the empirical sizes of TXLPW and TCLZ , respectively, when the critical value

is obtained based on the theoretical asymptotic null distributions, with plugged-in

parameter estimates, as given in Xu et al. (2016) and Chen, Li and Zhon (2019),

respectively. Obviously, empirical sizes obtained in this manner are unduly high,

but if the critical values are approximated using permutations, then the results for

TXLPW and TCLZ and the other three statistics are all fairly close to the nominal

5%. Note that the computation times required by the first three methods are

much shorter than those of TXLPW and TCLZ , especially when p gets larger.

With p = 500 and β ∈ {0.9, 0.8, 0.6, 0.5, 0.4, 0.2}, the empirical power of each

method versus the signal strength s is as depicted in Figure 1. For TXLPW and

TCLZ , because of their aforementioned unduly high type-I errors induced by the

asymptotic distributions, we only report their power when the critical value is

obtained using the permutation distribution. The general pattern is that as the

degree of sparsity increases, the best method switches from Tn,p to Tn,1. This is in

line with the observation we made at the beginning of Section 2. In comparison,
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Table 3. Size(%) (computation time in seconds) of different tests.

p Tn,1 Tn,p fused TXLPW TCLZ T aXLPW T aCLZ

100
5.26 5.26 5.78 5.22 5.32 7.40 7.02

(0.04) (0.03) (0.29) (1.57) (1.91) (0.66) (0.001)

200
5.28 4.96 5.18 5.22 4.72 7.07 6.94

(0.05) (0.05) (0.43) (5.33) (6.36) (2.56) (0.01)

500
4.70 5.06 4.92 4.50 4.66 9.93 7.65

(0.10) (0.09) (0.93) (31.70) (39.68) (15.55) (0.04)

1,000
5.16 4.78 5.18 5.24 4.62 14.81 7.42

(0.19) (0.16) (1.79) (127.73) (164.40) (91.34) (0.24)

fused is always among the top two best methods, regardless of the sparsity of

the signals.

6.3. Independence test of random vectors

The code developed by Heller, Heller and Gorfine (2013) calculates four HHG-

type statistics: hhg.sc of (4.10), hhg.mc of (4.11), hhg.sl, and hhg.ml. The

first two are defined as in (4.10) and (4.11), respectively, and the last two are

also defined according to (4.10) and (4.11), but with T 2
n replaced with the G

likelihood-ratio of (4.12). Also included in the comparison is fused of these

four statistics, the corresponding testing procedure based on which, as noted in

Section 4, continues to be consistent. Among the existing tests of independence,

we select the two popular methods, namely, the Hilbert–Schmidt independence

criterion (HSIC) of Pfister et al. (2018) and the distance correlation (DC) of Huo

and Székely (2016), for comparison.

Observations of X and Y are generated according to the following models,

some taken from Zeng, Xia and Tong (2018). M1–M4 are univariate, and M5 and

M6 are multidimensional.

M0 (Independent). X ∼ Np(0, I) and Y ∼ Np(0, I) are independent.

M1 (Linear with additive noise). Y = X + 2.6ϵ, where X, ϵ
i.i.d∼ N(0, 1).

M2 (Circle with additive noise). X = sin(2πθ) + 0.35ϵ, Y = cos(2πθ) +

0.35ε, where ϵ, ε
i.i.d∼ N(0, 1), θ ∼ U(0, 1).

M3 (Quadratic with additive noise). Y = (X − 0.5)2 + 0.76ϵ, X, ϵ
i.i.d∼

U(0, 1).

M4 (Cloud with contaminated noise). (X,Y ) = Z×{0.2µ+0.2(ϵ1, ε1 + 0.5)}+
(1−Z)(ϵ2, ε2), where Z = 1 or 0 with probability 0.82 and 0.18, respectively,

µ is evenly selected from {µ1 = (0, 0), µ2 = (2, 0), µ3 = (4, 0), µ4 =

(1, 1), µ5 = (3, 1), µ6 = (0, 2), µ7 = (2, 2), µ8 = (4, 2), µ9 = (1, 3), µ10 =

(3, 3)}, ϵ1, ϵ2, ε1, ε2
i.i.d∼ U(0, 1), and are independent of µ and Z.
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Figure 1. Power against signal strength s with different sparsity d and dimension p = 500:
—•— for Tn,1, —■— for Tn,p, —+— for fused, —▲— for TXLPW , —♦— for TCLZ .

M5 (Multivariate conditional variance). X = (X1, . . . , Xp) and ϕ = (ϕ1, . . . ,

ϕp) are independent Np(0, Ip); with p1 = ⌊0.7p⌋, Yj = ϕj(Xj + 0.6), j =

1, . . . , p1, Yj = ϕj, j = p1, . . . , p.

M6 (Multivariate cloud with additive noise). ϕ = (ϕ1, . . . , ϕp) and ψ =

(ψ1, . . . , ψp) are independent Np(0, Ip). With p1 = ⌊0.8p⌋ and µ as specified

in (M4), (Xj, Yj) = µ + 0.2(ϕj, ψj), j = 1, . . . , p1, (Xj, Yj) = (ϕj, ψj), j =

p1 + 1, . . . , p.
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Table 4. Empirical sizes (%).

(n, p) 1 2 3 4 1 ∼ 4 HSIC DC

(100, 1) 5.08 4.48 4.92 4.68 4.78 5.06 5.54

(200, 1) 3.64 3.80 4.26 4.02 4.30 3.36 4.72

(100, 4) 5.32 4.92 3.72 4.58 4.10 5.80 5.42

(100, 12) 5.02 4.76 4.92 5.26 5.52 5.12 5.22

(100, 20) 3.58 3.32 5.12 5.72 4.24 5.14 4.92

1 , . . . , 4 represent the statistics hhg.sc, hhg.sl, hhg.mc, and hhg.ml, respectively. 1 ∼ 4 represents

the fusion of statistic 1 to statistic 4 .

Table 5. Empirical powers (%).

(n, p) M 1 2 3 4 1 ∼ 4 HSIC DC

(100, 1)

1 70.7 69.5 38.2 36.0 62.2 94.6 65.9

2 49.9 54.5 53.3 51.6 53.6 6.4 53.6

3 51.7 49.6 43.1 51.6 52.4 24.7 33.3

4 4.2 3.8 29.4 28.2 24.0 0.0 0.0

(200, 1)

1 96.6 96.3 73.1 75.0 94.3 100.0 94.4

2 93.6 94.6 87.6 89.7 91.7 16.4 93.8

3 90.8 90.5 88.4 95.7 94.7 62.6 72.9

4 60.6 59.4 93.7 95.9 93.8 0.6 0.6

(100, 4)
5 89.7 87.8 53.1 46.2 85.7 48.4 25.4

6 52.2 41.3 88.1 87.9 85.2 0.0 0.0

(100, 12)
5 92.1 90.7 41.0 42.8 87.8 29.4 20.1

6 18.3 11.0 60.6 87.6 74.7 0.0 0.0

(100, 20)
5 91.9 90.8 40.5 41.8 86.5 24.5 20.5

6 20.4 10.0 63.7 96.3 91.5 0.0 0.0

1 , . . . , 4 represent the statistics hhg.sc, hhg.sl, hhg.mc, hhg.ml, respectively. 1 ∼ 4 stands for the

fusion of statistics 1 to statistic 4 .

For Model M0, where X and Y are independent, Table 4 contains the

empirical sizes of all test statistics. All methods maintain reasonable control

over the type-I error. For Models M1–M6, their power is given in Table 5. In

the univariate case, the fused statistic based on 1 ∼ 4 consistently delivers high

power across all four models, whereas each of its six competitors has strengths

and weakness; for example, both HSIC and DC are powerless in detecting

the dependency in M4. As for the multivariate case, HSIC and DC become

unreliable for M6. As for the four HHG-type statistics, the two maximum-

type statistics, 3 and 4 , perform better with M6 than with M5, and vice

versa for the two summation-type statistics 1 and 2 . Again, our fused of

the four HHG statistics, that is, 1 ∼ 4 , maintains satisfactory power for both

models, supporting our claim that when testing against an unknown alternative,

the fused statistic is, in general, a better choice than any individual statistic.
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7. Real-Data Examples

Genome-wide association studies (GWAS) identify risk genetic variants for

major human diseases by genotyping millions of single nucleotide polymorphisms

(SNPs) in large cohorts. With data collected by the Wellcome Trust Case Control

Consortium (WTCCC), we apply the two-sample mean comparison procedures

of Section 3 to analyze the association between the SNPs and two diseases: type-

2 diabetes (T2D), and rheumatoid arthritis (RA). In the case of T2D, there are

1,952 observations with 307,089 SNPs, and for RA, there are 1,969 observations

with 305,394 SNPs. For either disease, the data are split into two groups:

individuals with the disease (X), and individuals without the disease (Y ). If

the means of these two groups are different, then this indicates an association

between the said disease and the SNPs. The p-values of the existing methods

mentioned in Section 3 are all highly significant, suggesting an overwhelmingly

strong association that it could be picked up by any valid tests, regardless of

whether the test is sparse or dense sensitive.

In order for the data to be suitable for assessing the competitiveness of

different tests, we need to first reduce the strength of the signals by thinning

out the SNPs. This is realized through the following steps. First, calculate the p-

value of each SNP, as in the case of a univariate mean-comparison problem, and

rank the SNPs according to their p-values in ascending order. The now ordered

SNPs are then divided into 1,000 roughly equal-sized groups, with about 300

SNPs in each group. Randomly select one SNP from each group to obtain a total

of 1,000 SNPs. Finally, calculate the p-values of all competing methods using

data on these 1,000 randomly selected SNPs. Repeat this procedure 200 times.

The boxplot of the 200 p-values for each method is depicted in Figure 2, with the

left panel occupied by those related to T2D, and the right panel by RA.

The first thing revealed by these plots is that the pattern related to the power

of the various methods is largely in line with what we have seen in the simulation

studies. These plots also highlight the potential use of the fusion statistic to

choose between recommendations made by different testing methods. Specifically,

for example, in the case of T2D, with a significance level set anywhere between

5% and 1%, the two statistics Tn,1 and Tn,p make opposite recommendations for

a majority of of the 200 occasions, with Tn,p recommending rejection, and Tn,1
suggesting otherwise. In these occasions, the fused statistic can then be used to

decide which recommendation is more likely to be correct.

Appendix: Assumptions and Proofs

A.1. Further notations and regularity conditions for Sections 2 and 3

For any ν = (v1, . . . , vp) ∈ Rp, let |ν|∞ denote the supremum norm and

|ν|1 = (|v1|+ · · ·+ |vp|)/p, the L1 norm.

https://www.genome.gov/genetics-glossary/Genome-Wide-Association-Studies
https://www.wtccc.org.uk/
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Figure 2. Boxplots of p-values for different statistics; the horizontal gray dashed line is
the significance level.

For ease of exposition, suppose there exists some sequence of constants

Bn ≥ 1, such that |X|∞ ≤ Bn, i = 1, . . . , n, k = 1, . . . , p, with probability

one. Moreover, for any p−dim vector with at most sn nonzero elements being

either 1 or −1, standardize it so that it has unit L1 norm; let C(p, sn) denote the

collection of all such p−dim vectors, obviously with a cardinality no more than

(2p)sn .

(C1) The diagonal elements of ΣX are bounded both from below and above.

The minimum eigenvalue of ΣX is bounded from below by some constant

c3 > 0.

(C2) There exist finite constants cn,1 > 0 such that for any ν ∈ C(p, sn),

E

{
exp

(
|ν⊤X|
cn,1

)}
≤ 2, E{|ν⊤X|2+k} ≤ ckn,1, k = 1, 2. (A.1)

(C3) sn = o(p), and Bnsn log p = o(n1/7).

Conditions (C1)–(C3) could be found in Chernozhukov, Chetverikov and Kato

(2017) so that the high-dimensional central limit theorem holds for simple convex
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sets; see also Kong et al. (2022). Among them, (C3) dictates how large sn and

P could get relative to n.

A.2. Proof of Theorem 1

Let D = diag(Σ) = (σ2
j )j=1,...,p, where σ

2
j = V ar(Xj). For a random variable

Z, and any r > 0, let |Z|r = {E(|Z|r)}1/r, and its Orlicz norm be defined as

|Z|ψ = inf

{
C > 0 : Eψ

(∣∣∣Z
C

∣∣∣) ≤ 1

}
, where ψ(t) = et − 1.

A useful inequality is that |Z|r ≤ r!|Z|ψ. Condition (C2) implies that |Xj|ψ ≤ cn1,

for all j = 1, . . . , p. Then by Lemma 2.2.2 of van der Vaart and Wellner (1996),

|maxj=1,...,pX
j|ψ ≤ cn1 log p. Consequently, |maxj=1,...,pX

j|4 ≤ cn1 log p, and

based on Lemma D.3 of Chernozhukov, Chetverikov and Kat (2019), we have for

any c ∈ (0, 1),

P

(
max
j=1,...,p

∣∣∣ σ̂nj
σj

− 1
∣∣∣ ≥ n−(1−c)/2c2n1 log

3 p

)
≤ n−c,

whence an = supj |σ̂nj − σj| = op{(log p)−1}. Let δ̃n = D−1/2X̄n . Then for any

ϵ > 0, and k = 1, . . . ,K,

P(Tn,k(δn) ≤ t) ≤ P(Tn,k(X̄n) ≤ t+ ϵ) + P

(
|X̄n|∞ ≥ ϵ

an

)
, (A.2)

P(Tn,k(δn) ≤ t) ≥ P(Tn,k(X̄n) ≤ t− ϵ) + P

(
|X̄n|∞ ≥ ϵ

an

)
. (A.3)

Note that I(Tn,k(X̄n)) ≤ t) ⇔ I(n1/2X̄n ∈ A), for some m − generated set A,

namely a set generated by the intersection of m−half spaces (Chernozhukov,

Chetverikov and Kato, 2017), where the half spaces are defined via vectors

belonging to C(p, sn), whence m ≤ (2p)sn . To see this is case, note that for

any p−dim vector µ, Tn,k(µ) ≤ t is equivalent to: for any ν ∈ C(p, sn), µ⊤ν ≤ t,

i.e. the intersection of half-spaces defined via vectors in C(p, sn).
The terms on the RHS of (A.2) and (A.3) concerning Tn,k(X̄n) could then

be dealt with through similar arguments used in proving Theorem 3 of Kong

et al. (2022), mostly involving high-dimensional Gaussian approximation, i.e.,

Proposition 2.2 of Chernozhukov, Chetverikov and Kato (2017), followed by

anti-concentration inequalities. The probability to the RHS of (A.2) or (A.3)

concerning |X̄n|∞ is op(1), and could be similarly proved by making use of the

fact that an = op{(log p)−1}.
The bootstrapped sample has mean X̄n and variance matrix Σ̂n = n−1

∑
i(Xi−

X̄n)(Xi − X̄n)
⊤. Thus the convergence of the bootstrap distribution could

be proved through similar arguments in conjunction with Proposition 4.3 of

Chernozhukov, Chetverikov and Kato (2017).
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A.3. Proof of Theorem 2

Similar to the arguments below (A.3), with Tn,k(·) as defined in (2.1), we

have

I

[
K⋂
k=1

{Tn,k(ZNπ ) ≤ tk}
]
= I{n1/2δn(Z

N
π ) ∈ A},

where A ⊂ Rp is some m− generated set with m ≤ (2p)sn . Through arguments

similar to those used in proving Theorem 3 of Kong et al. (2022), we have

sup
A

|P∗{n1/2δn(Z
N
π ) ∈} − P{N(0,ΣX +ΣY ) ∈ A}| → 0, in probability

sup
A

|P{n1/2δn(Z
N) ∈ A} − P{N(0,ΣX +ΣY ) ∈ A}| → 0,

where the supremum is taken over all m − generated set with m ≤ (2p)sn ,

while the probability P ∗ is taken conditional on ZN , with respect to π uniformly

distributed on GN .

A.4. Proof of Theorem 3

Let a = (ak, k = 1, . . . ,K)⊤, d = (dk, k = 1, . . . ,K)⊤, where ak = E{ak(X)},
dk = E{dk(Y )}. ān = (ā(k)n , k = 1, . . . ,K)⊤; and d̄n = (d̄(k)n , k = 1, . . . ,K)⊤.

Let (Z1, . . . , Zk) ∼ N(0,Σ), the K−dim Gaussian with covariance matrix Σ =

[σk,lsk,l], where σk,l = Cov(ak(X), al(X)), sk,l = Cov(dk(Y ), dl(Y )).

The proof of Theorem 3 is broken down into the following two lemmas, which

deals with the (joint) null distribution and the joint permutation distribution,

respectively.

Lemma 1.

max
k=1,...,K

sup
tk∈R

|Fn,k(tk)− P(Zk ≤ tk)| = o(1),

sup
t1,...,tK∈R

∣∣∣∣Fn(t1, . . . , tsn)− P

(
K⋂
k=1

{Zk ≤ tk
})∣∣∣∣ = o(1),

Proof of Lemma 1. For fixed K, the assertion is simply the multivariate CLT.

Here, we prove these two statements under a more general set-up where K = sn,

the number of statistics, is allowed to grow as n increases, while the function

ak(X) and dk(Y ), k = 1, . . . , sn, could be any measurable functions satisfying the

moment conditions (A1)-(A3) below.

(A1) infk=1,...,sn E[{ak(X)dk(Y )}2] > 0.

(A2) There exists some sequence of constants Bn ≥ 1, possibly growing to

infinity as n→ ∞, such that for all i = 1, . . . , n, and k = 1, . . . , sn,

E

[
exp

{
|ak(X)dk(Y )|

Bn

}]
≤ 2, E{|ak(X)dk(Y )|2+l} ≤ Bl

n, l = 1, 2. (A.4)
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(A3) B1/3
n {log(nsn)}7/6 = o(1).

For ease of exposition, write Tn,k := Tn,k(X
n
1 ,Y

n
1 ), and

Tn,k = Sn,k − n1/2(ā(k)n − ak)(b̄
(k)
n − dk), Sn,k = n−1/2

∑
i

(a
(k)
n,i − ak)(d

(k)
n,i − dk).

For any tk ∈ R, k = 1, . . . , sn, and ϵ > 0

P(Tn,k ≤ t) ≤ P(Sn,k ≤ t+ ϵ2)

+P{n1/2|(ān − a)|∞ ≥ n1/4ϵ}+ P{n1/2|(d̄n − d)|∞ ≥ n1/4ϵ}, (A.5)

P{n1/2|(ān − a)|∞ ≥ n1/4ϵ}

= P(|W1|∞ ≥ n1/4ϵ) + o(1) = O

{
n−1/4(log sn)

1/2

ϵ

}
+ o(1), (A.6)

P(n1/2|(d̄n − d)|∞ ≥ n1/4ϵ)

= P(|W2|∞ ≥ n1/4ϵ) + o(1) = O

{
n−1/4(log sn)

1/2

ϵ

}
+ o(1), (A.7)

sup
t∈R

|P(Sn,k ≤ t+ ϵ2)− P(Zk ≤ t+ ϵ2)| = O(n−1/2B3/2
n ) (A.8)

where W1 (or W2) is sn−dim zero-mean Gaussian vector with covariance matrix

identical to that of n1/2ān ( or n1/2d̄n), while Zk is N(0, σk,ksk,k); here (A.6) and

(A.7) follow from Proposition 2.1 of Chernozhukov, Chetverikov and Kato (2017),

Lemma D.3 of Chernozhukov, Chetverikov and Kato (2015) and the Chebyshev

inequality, while (A.8) is a result of the Berry-Esseen Bounds and (A.4).

Reverse the direction of the inequality in (A.5), we have

P(Tn,k ≤ t) ≥ P(Sn,k ≤ t− ϵ2)− P{n1/2|(ān − a)|∞ ≥ n1/4ϵ}
−P{n1/2|(d̄n − d)|∞ ≥ n1/4ϵ};

for the three terms to the RHS, results parallel to (A.6)–(A.8) could be similarly

proved. Thus

max
k=1,...,sn

sup
t∈R

|P(Tn,k ≤ t)− P(Zk ≤ t)|

= O

{
ϵ2 + n−1/2B3/2

n +
n−1/4(log sn)

1/2

ϵ)

}
+ o(1),

where the right hand side is o(1), if n−1/4(log sn)
1/2 = o(1). This proves the first

assertion on the (null) marginal distribution.

As for the joint (null) distribution, first note that similar to (A.6),

P

(
sn⋂
k=1

{Tn,k ≤ tk}
)

≤ P

(
sn⋂
k=1

{Sn,k ≤ t+ ϵ2}
)
+ P{n1/2|(ān − a)|∞ ≥ n1/4ϵ}

+P{n1/2|(d̄n − d)|∞ ≥ n1/4ϵ}.
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We could then again apply Proposition 2.1 of Chernozhukov, Chetverikov and

Kato (2017) and Nazarov’s inequality (Nazarov, 2003) to see that

sup
t1,...,tsn∈R

∣∣∣∣P
(

sn⋂
k=1

{Sn,k ≤ tk
})

− P

(
sn⋂
k=1

{Zk ≤ tk}
)∣∣∣∣

= O

{
B2
n log

7(nsn)

n

}1/6

= o(1),

sup
t1,...,tsn∈R

∣∣∣∣P
(

sn⋂
k=1

{Zk ≤ tk
})

− P

(
sn⋂
k=1

{Zk ≤ tk + ϵ2}
)∣∣∣∣ ≤ Cϵ2(log sn)

1/2.

The proof is thus complete if ϵ could be chosen such that ϵ = o{n−1/4(log sn)
1/2}

and ϵ = o{(log sn)−1/4}.

Lemma 2. With probability one,

sup
t1,...,tK∈R

∣∣∣∣Rn(t1, . . . , tK |Xn
1 ,Y

n
1 )− P

(
K⋂
k=1

{Zk ≤ tk
})∣∣∣∣ = o(1).

Proof of Lemma 2. For ease of exposition, the conclusion will be proved for

the case where {d(k)(·), k = 1, . . . ,K} are all binary. The proof could be trivially

adapted for the more general cases, where k = 1, . . . ,K, d(k)(·) is categorical

taking a finite number of values.

For k = 1, . . . ,K, and i = 1, . . . , n, write

a
(k)
n,i = ak(Xi), c

(k)
n,i = n−1/2(a

(k)
n,i − ā(k)n ), d

(k)
n,i = dk(Yi).

Re-arrange the n observations {(Xi, Yi) : i = 1, . . . , n} via the following steps:

firstly, move the rows with d
(1)
n,i = 0 ahead of those rows with d

(1)
n,i = 1; secondly,

for rows with the same value of d
(1)
n,i, sort them according to the value of {d(2)n,i, i =

1, . . . , n} (again in ascending order); repeat this process until the last step where

the rows with the same value of d
(k)
n,i , for all k = 1, . . . ,K−1, are sorted according

to their respective value of d
(K)
n,i . To illustrate, in the case of K = 3, there are

eight possibilities for the rows of n × 3 matrix, and they are arranged in the

following order:
(1) 0 0 0 (5) 1 0 0

(2) 0 0 1 (6) 1 0 1

(3) 0 1 0 (7) 1 1 0

(4) 0 1 1 (8) 1 1 1

For the re-arranged observations, without loss of generality, we still use c
(k)
n,i

and d
(k)
n,i i = 1, . . . , n, k = 1, . . . ,K, to denote the corresponding ‘coefficients’ and

‘scores’. As a result of the strong law of large numbers (SLLN), there exist square



POWER BOOSTING VIA RESAMPLING 317

integrable functions ϕk(·), k = 1, . . . ,K, on (0,1), such that

sup
n→∞

∫ 1

0

{
ϕk(u)− d

(k)
n,1+[nu]

}2

du = 0, k = 1, . . . ,K. (A.9)

For illustration purposes, here we only give the specific forms for ψ1(·) and ψ2(·);
the explicit form of other ϕk(·) could be derived through similar arguments. Let

B1 = {y ∈ Rq : d1(Y ) = 0}, B2 = {y ∈ Rq : d2(Y ) = 0}, q1 = Pr(Y ∈ B1),

q2 = Pr(Y ∈ B2), q1,2 = Pr(Y ∈ B1 ∩B2). Then ψ1(·) and ψ2(·) could be defined

as:

ϕ1(u) =

{
0, u ∈ (0, q1)

1, o.w.
, ϕ2(u) =


0, u ∈ (0, q1,2)

1, u ∈ [q1,2, q1)

0, u ∈ [q1, q1 + q2 − q1,2)

1, u ∈ [q1 + q2 − q1,2, 1).

For these ‘score’ functions, it holds that for any k, l = 1, . . . ,K,

ψ̄k :=

∫ 1

0

ψk(u)du = 1− qk,

∫ 1

0

ϕk(u)ψl(u)du = 1− qk − ql + qk,l, k ̸= l.

In view of (A.9), when π is uniformly distributed on Sn, so that π(i) is the rank

of Ui, with U1, . . . , Un i.i.d. U(0, 1), we could apply Theorem 6.1 of Hajek, Sidak

and Sen (1999) and claim that for all k = 1, . . . ,K,

Tn,k(X
n
1 ,Y

n,π
1 ) =

∑
i

c
(k)
n,id

(k)
n,π(i) =

∑
i

c
(k)
n,i{ψk(Ui)− ψ̄k}+ op(1). (A.10)

Thus conditional on (Xn
1 ,Y

n
1 ), {Tn,k(Xn

1 ,Y
n,π
1 ), k = 1, . . . ,K} are jointly normal

with covariance matrix given by

Cov

[∑
i

c
(k)
n,iψk(Ui),

∑
i

c
(l)
n,iψl(Ui)

]
=
∑
i

c
(k)
n,ic

(l)
n,i(qk,l − qkql).

Moreover, by SLLN, with probability one,∑
i

c
(k)
n,ic

(l)
n,i =

1

n

∑
i

(a
(k)
n,i − ā(k)n )(a

(l)
n,i − ā(l)n ) → σk,l,

and the proof is thus complete.

Acknowledgments

We thank the associate editor and two anonymous referees for their con-

structive comments and suggestions. Kong and Liu are joint first authors.

Kong was supported by the National Natural Science Foundation of China

(12271081 and 11931014). Liu is supported by the Natural Science Foundation of



318 KONG, LIU AND XIA

Sichuan Province (2023NSFSC1357). Xia was supported by the National Natural

Science Foundation of China (72033002 and 11931014) and the MOE’s Academic

Research Fund (A-8000021-00-00) of Singapore.

References

Aoshima, M. and Yata, K. (2018). Two-sample tests for high-dimension, strongly spiked

eigenvalue models. Statistica Sinica 28, 43–62.

Bai, Z. and Saranadasa, H. (1996). Effect of high dimension: By an example of a two sample

problem. Statistica Sinica 6, 311–329.

Bancroft, T., Du, C. and Nettleton, D. (2013). Estimation of false discovery rate using sequential

permutation p-values. Biometrics 69, 1–7.

Cai, T., Liu, W. and Xia, Y. (2014). Two-sample test of high dimensional means under

dependence. Journal of the Royal Statistical Society. Series B (Statistical Methodology)

76, 349–372.

Chang, W. and Tian, W. (2016). GSA-Lightning: Ultra-fast permutation-based gene set

analysis. Bioinformatics 32, 3029–3031.

Chen, S., Li, J. and Zhong, P. (2019). Two-sample and ANOVA tests for high dimensional

means. The Annals of Statistics 47, 1443–1474.

Chen, S. and Qin, Y. (2010). A two sample test for high dimensional data with applications to

gene-set testing. The Annals of Statistics 38, 808–835.

Chernozhukov, V., Chetverikov, D. and Kato, K. (2015). Comparison and anti-concentration

bounds for maxima of Gaussian random vectors. Probability Theory and Related Fields

162, 47–70.

Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). Central limit theorems and bootstrap

in high dimensions. The Annals of Probability 45, 2309–2352.

Chernozhukov, V., Chetverikov, D. and Kato, K. (2019). Inference on causal and structural

parameters using many moment inequalities. Review of Economic Studies 86, 1867–1900.

Chung, E. and Romano, J. P. (2013). Exact and asymptotically robust permutation tests. The

Annals of Statistics 41, 484–507.

Chung, E. and Romano, J. P. (2016). Multivariate and multiple permutation tests. Journal of

Econometrics 193, 76–91.

DiCiccio, C. and Romano, J. (2017). Robust permutation tests for correlation and regression

coefficients. Journal of the American Statistical Association 112, 1211–1220.

Efron, B. and Tibshirani, R. (2007). On testing the significance of sets of genes. The Annals of

Applied Statistics 1, 107–129.

Fan, J., Liao, Y. and Yao, J. (2015). Power enhancement in high-dimensional cross-sectional

tests. Econometrica 83, 1497–1541.

Gregory, K. B., Caroll, R. J., Baladandayuthapani, V. and Lahiri, S. N. (2015). A two-sample

test for equality of means in high dimension. Journal of the Aemrican Statistical Association

110, 837–849.

Hajek, J., Sidak, Z. and Sen, P. K. (1999). Theory of Rank Tests. 2nd Edition. Academic, New

York.

Heller, R., Heller, Y. and Gorfine, M. (2013). A consistent multivariate test of association based

on ranks of distances. Biometrika 100, 503–510.

Heller, R., Heller, Y., Kaufman, S., Brill, B. and Gorfine, M. (2016). Consistent distribution-

free K-sample and independence tests for univariate random variables. Journal of Machine

Learning Research 17, 978–1031.



POWER BOOSTING VIA RESAMPLING 319
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