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Abstract: For the same null hypothesis, there usually exist multiple valid test
statistics. In nearly all cases, any individual statistic is only powerful against specific
types of alternatives, and could be rather weak in picking up signals of other types.
It is thus crucial, especially in high-dimensional settings, to combine the information
contained in different test statistics in order to maintain robust power against a
wide range of alternatives, thus avoiding the worst-case scenario. Methods have
been proposed for similar purposes, but they are either computationally expensive
or lack theoretical justification. In this paper, we present a general and easy-to-
implement procedure for fusing multiple valid statistics using resampling methods,
such as bootstrap or permutation. The consistency of this procedure is proved
for three popular high-dimensional hypothesis testing problems. The results of
numerical studies show that this fusion procedure maintains robust performance
against a wide range of alternatives, whereas individual test statistics often suffer
from extremely low power.
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1. Introduction

Testing high-dimensional null hypotheses has been the subject of intensive
studies. One popular approach, which includes the works of [Kosorok and Ma)
(2007), [Bancroft, Du and Nettleton (2013), and |Liang (2016, breaks the null
hypothesis into multiple univariate tests, and focuses on the false discovery rate.
For studies on power, the family-wise error, |[Kim and Akritas (2010)) note that
for any given null hypothesis, there usually exist multiple valid statistics, each of
which may detect certain types of signals, but suffer from very low power against
others. Thus the test statistic and types of alternatives are connected in terms
of power enhancement or boosting. For example, with the alternative restricted
to be sparse, Fan et al| (2015 shows how a given test statistic can be made
consistent and more powerful for cross-sectional data. This idea of possible power
enhancement against specific alternatives is later examined in a more general
framework by [Kock and Preinerstorfer| (2019). We study a similar problem of
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power boosting from a different, yet more practical angle. We propose an efficient
procedure for fusing statistics that could ensure robust power performance against
arbitrary alternatives, thus avoiding the worst-case scenario. In this sense, fusing
test statistics is particularly useful in practice when choosing between opposing
recommendations made based on different test statistics.

To formulate the setup, suppose {7,k = 1,...,K} is a collection of
statistics, where K is a fixed integer, such that for any given k, Hy is rejected for
large T), . Note that a naive form of combination, such as a weighted average
Zle a1, ., with ap > 0, is not a good choice, because it is difficult to specify
appropriate values for the coefficients a, so that the statistical significance of
one T, is not obscured by trivial variations in other 7), ; of a larger scale.
This is one of the motivating factors behind the monotone transformation of
individual statistics to make them relatively comparable before being combined.
One example is Fisher’s combined p-value

K
U, = —QZlog{l — Fox(Thk)}, (1.1)
k=1

where F,, (.) is the null distribution function of T, ;. Its relative popularity
is largely because it follows a x?(.) distribution if T}, for k = 1,..., K, are
independent. Another related example is an equivalence of the smallest p-value:

U, := kyla.XKF"’k(T"’k)’ (1.2)

[RRRE}

and H, is rejected whenever the p-value associated with some T, 5 is too small.
Examples of fusion statistics like and both suggest that transforming
T, using its distribution function into a uniform (0, 1) is a reasonable choice.
However, be it or , in practice, the unknown F,, x(.) has to be replaced
with their respective estimates first in order to obtain an empirical version U,,.
The biggest challenge in their use is to obtain an efficient approximation of the
null joint distribution of {7}, s,k =1,...,K}. Using in a high-dimensional
setting is discussed in [Xu et al. (2016)) for the two-sample mean comparison
problem, where the approximation of the null distribution is obtained using the
standard two-step procedure: first, derive the (asymptotic) form of F, ,(.) and
F,(.), the latter being the (null) joint distribution of {7}, s,k = 1,..., K}; second,
find the tail probabilities associated with these asymptotic (null) distributions
using numerical approximations (with plugged-in estimates of the parameters).
This classical two-step approach is not only computationally intensive, but also
suffers from low numerical efficiency.

In this study, we investigate how to use resampling methods, either bootstrap
or permutation, depending on the specific testing problem, to directly approx-
imate the null distributions of U,, or rather Un, for the purpose of fusing test
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statistics in high-dimensional hypothesis testing, where the dimension of the data
is not negligible relative to the sample size. A streamlined setup is as follows,
with as the fusion statistic. Let X7 = {Xj,...,X,} denote the original
sample. With a sufficiently large number B, X’f’(b), forb=1,...,B, denotes B
new samples generated using either bootstrap or permutation, for which Hy holds
true. Forb=1,...,Band k =1,...,K, let TT(:’,)C denote the values of the test
statistic 1), , calculated from the sample X?’(b). Forany k =1,..., K, we estimate
F, () by E,.(.), the empirical distribution function based on {Tél,z, e ,Tr(f,?}.
An empirical version of is then defined as

A~ ~

= F. (T, .). 1.
Un k::Hll,a}fK n,k( n,k) ( 3)
Next, we compare this with the empirical distribution function of its resampling
counterpart:

O = max F(T0), b=1,...,B. (1.4)

B
By 1(UY >U,) <a, (1.5)

where I(-) denotes the indicator function. We say a statistical test is consistent
if its type-I error is identical to the nominal significance level «, at least asymp-
totically. In this paper, we prove the consistency of the above fusion procedure,
namely, 7, in the context of three popular high-dimensional hypothesis
testing problems, discussed in, among others |Chung and Romano| (2016)), (Cai,
Liu and Xia (2014)), and Heller, Heller and Gorfine (2013]), for a selection of test
statistics. Our main results are summarized as follows:

(i) we show the consistency of the empirical bootstrap-based fusion procedure
for the one-sample mean test, where K is the number of statistics to be
fused, and can increase with n;

(ii) we show the consistency of the permutation-based fusion procedure for the
two-sample mean comparison, where K can also increase with n;

(iii) we show the consistency of the permutation-based fusion procedure for
the test of independence between two random vectors; as a byproduct,
we provide a theoretical justification for the practice in [Heller, Heller and
Gorfine| (2013), where the permutation distribution of the HHG statistic is
used to approximate its null distribution.

The rest of the paper is organized as follows. Section 2 and Section 3 present
the one-sample mean test and the two-sample mean comparison, respectively.
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Section 4 discusses testing the independence between two (high-dimensional)
random vectors. A brief discussion on possible extensions is given in Section
5. Numerical results are given in Section 6. Regulation conditions and proofs are
gathered in the Appendix.

2. Test of One-Sample Mean

Suppose X; € RP, for ¢ = 1,...,n, are independent copies of X =
(X',...,X?)T, with mean p and covariance matrix X*. Without loss of
generality, suppose the diagonal elements of XX are all ones. Testing Hy : u = 0,
referred to as the one-sample location model in Kock and Preinerstorfer| (2019),
is based on the sample mean X,,, usually standardized by the sample covariance
matrix. When p is large, so that the inversion of a p x p matrix is much less
feasible, if at all possible, a more popular replacement is given by

O = (Op1,...y0np) =n'2D7Y2X,,

where D,, = diag(&ij, j=1,...,p) is a diagonal matrix of the sample variances.
The use of D, instead of the sample covariance matrix is to avoid having to
compute the inverse of a high-dimensional matrix; see, for example, Bai and
Saranadasal (1996), [Srivastava and Du | (2008), and Kong et al.| (2022). For any
integer k > 1, let Ax(-) be a function so that for any vector v € RP, Ay(v)
returns the average of its largest (in absolute value) k elements. Apparently,
for any k > 1, Ax(d,) is a pivotal statistic, so that we reject Hy if Ax(d,) is too
large. However, as noted in (Cai, Liu and Xia| (2014]), Kim and Akritas|(2010), and
Gregory et al.| (2015), no statistic is uniformly more powerful than others (against
all possible alternatives). For example, when the signals are sparse, but strong,
A1(6,), namely, the supremum statistic considered in|Chernozhukov, Chetverikov
and Kat| (2019) and |Cai, Liu and Xia (2014), has greater power than Ay (6,) with
a large k, because the latter is not greatly influenced by a small number of large
differences. Similarly, in the case of dense, but weak alternatives, A (d,) with
a small k is not likely to be extreme enough to serve as evidence to reject Hy.
Furthermore, as demonstrated in [Kong et al. (2022), in the latter case, it is also
beneficial to consider Ay(d,) with k = s,,, where s,, is some positive integer that
can increase with n.

Without loss of generality, suppose 1 <[} <, <--- <lg < s, is a sequence
of positive integers. For £k =1,..., K, let

T = Tok(0n) = A, (6n), (2.1)

be the corresponding sequence of statistics. We now show that they can be
combined using the empirical bootstrap-based fusion procedure ([1.3)—(1.5). For
b =1,...,B, let X7® = {XIL’(b),...,Xﬁ’(b)} be an empirical bootstrapped
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sample, that is X/"”), fori = 1, ..., n, are independent and identically distributed
(i.i.d) draws (with replacement) from X? = {X;,i = 1,...,n}. Let X =
nty, Xi"’(b) denote the bootstrapped sample mean, and D) the bootstrap
version of D,,. Write §) = n'/2(D®)~1/2(X®) — X)),

(6", k=1,...,K, b=1,...,B,

k

& _
Tn,k - Al

and carry out steps (1.3)—(1.5). For any nondecreasing function G, x(.), for k =
1,... K,

(HTur(6) < GLi(w)}]. (2.2)

Thus, the consistency of this bootstrap-based fusion procedure is a direct conse-
quence of the theorem below. Let F),(.) denote the joint distribution of {T,, x, k =
1,...,K} under Hy, and F}(.|X}) denote their joint bootstrap distribution,
namely, the joint distribution of {7,k = 1,...,K}, calculated using the
bootstrap samples derived from X7, as described above.

Theorem 1. Suppose Conditions (C1)—(C3) in the Appendix hold. Then,

K

sup | Fu(ty, ... tx) = P| (J{Tur(2) < tk}l | =o(1),
tiytk€R k=1
K

sup |Fr(ty,...,tx|X]) =P m{Tnk(Z) Stk}H = 0,(1),
ti stk €R k=1

where Z ~ N(0,%%) denotes the multivariate normal distribution with mean zero
and covariance matriz X~ and T, 1. (Z) is as defined in (2.1]), with 6, replaced
with Z.

Remark 1. |Chernozhukov, Chetverikov and Kat| (2019) discuss testing H, based
on the supremum statistic, where its null distribution is also approximated using
an empirical bootstrap, with the only difference being that the same sample
ﬁn, instead of its bootstrapped version, is used to standardize the bootstrapped
sample mean, that is, 6() is defined as n'/2(D,)~/2(X® — X,,). The second
identity in Theorem 1 about the bootstrap distribution still holds in this case;
nevertheless, a simulation study indicates that doing so tends to incur larger

type-I errors; see [Kong et al.| (2022]).

3. Two-Sample Mean Comparison

Suppose p-dimensional random vectors X,...,X,, are independent copies
of X ~ Py(.), with mean ¥ and variance ©*, and Y,...,Y, are independent

copies of Y "% Py(.), with mean p* and variance X¥. The null hypothesis of
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interest is Hy : u* = p¥', which is referred to as the two-sample location model
in Kock and Preinerstorfer| (2019). The procedure and the main results in this
section are stated for equal sample sizes, that is, m = n. A brief discussion is
given at the end of this section on how the method can be adapted to the samples
of unequal sizes.

As in the one-sample case, nearly all existing statistics for testing H, are
based on the sample-mean difference §,, = X,, — Y,; see, for example, Xue and
Yao| (2020), |Cai, Liu and Xia| (2014)), and Zhang, Guo and Cheng (2020). For
any k = 1,...,K, let T, (6,) be as defined in (2.1), and reject Hy if T, 4(d,)
is too large. For any of these tests to be consistent, valid approximations to its
null distribution are essential. Xue and Yao (2020) use an empirical bootstrap
to determine the critical values for the supremum statistic. A different option
is to use the permutation method. Chung and Romano (2016) prove that for
a multivariate two-sample mean comparison, certain statistics are proper, in
the sense that its permutation distribution function converges (uniformly) to
its null distribution. The permutation method is also popular in practice; see,
for example, Nettleton, Recknor and Reecy| (2008), |Chang and Tian| (2016), and
Efron and Tibshirani (2007). Its theoretical properties are examined in Kong et
al.| (2022)) for the problem of a high-dimensional two-sample mean comparison,
and it is shown to outperform the bootstrap method by a significant margin.

In the present context, the permutation procedure for fusing the sequence
of statistics {1, x(0,),k = 1,..., K} goes as follows. Following the notation
used in |Chung and Romano| (2016)), write N = 2n and the pooled-sample ZV =
{Zy,...,Zy}, where Z; = X;, fori=1,...,n,and Z,; =Y;, for j =1,...,n.
Thus, X,, can be interpreted as the average of the first half of the sample, {Z, .. .,
Z,}, and Y, is the average of the second half of the sample, {Z, 1,..., Zx}.

Let Gx denote the set of all permutations of {1,...,N}. For any 7 =
(m(1),...,7(N)) € Gy, let ZY denote the rearranged ZV through permutation 7,
and ZJ,), fori =1,..., N, be the ith entry of Z. Recompute X, and Y, for ZV,
and denote the difference between them as 8,,(Z2 ). Note that we use the notation
8,(ZY) to highlight its dependence on the permutated sample Z~, whereas the
simple J,, is reserved for the sample mean difference calculated for the original
(unpermutated) sample. For any k = 1,..., K, let T, ,(ZY) denote the value
of T, 4(.), as in (2.1)), when evaluated for §,(ZY); its marginal (permutation)
distribution of T;, 1 (ZY) conditional on Z¥ is thus

. 1
FuitlZ™) = 5 3 J{Tn,k(zjy) gt}, teR. (3.1)

. TeGN

In this case, U, of (L.3) is given by U, = maxe_1_ g Fpi(Thr(0,)]ZY). We
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reject Hy if

— I{ max Fn,k(Tn,k(ZN)) < Un} >1-—o. (3.2)

As aresult of (2.2)), the consistency of the above procedure (3.1]) and (3.2)) is a
direct consequence of the next theorem. Let F,,(.) denote the joint distribution of

{T x(6,),k =1,..., K} under Hy, and F*(.|Z") denote their joint permutation
distribution, that is,

1
Fi(ty,... tg|ZN) = i oI

TEGN

K
ﬂ{Tn,k(erv)gtk}]a tl?"'atKERa
k=1

the joint distribution of {7, x(ZY),k = 1,..., K} calculated for the randomized
sample derived from Z% (via permutation 7 uniformly distributed on Gy ).

Theorem 2. Suppose Conditions (C1)—(C3) in the Appendiz hold and that the
same set of conditions also hold when (Y, XY) replaces (X, %~). Then,

sup  |Fr(ty,...,tx|ZY) = F,(t1,...,tx)| = 0, in probability.  (3.3)

Remark 2. Similarly to Section 2, we can also consider cases where the test
statistics {1, x(0,),k = 1,..., K} are evaluated for marginal-standardized ¢,
that is, 6, = n'/2(D,)"%(X, —Y,), where D,, = diag(3,), the diagonal matrix
consisting of the diagonal elements of

N 1 & _ 1 & _ _
o= i=1
In this case, D, is recomputed for each permutated sample, and Theorem 2

continues to hold if D,, is accurate enough, as per Assumption (A6) of Kong et
al| (2022).

Remark 3. When the two samples are of unequal sizes (m # n), Kong et al.
(2022) prove that the limit of the permutation distribution of the statistics, be
it T, 1(0,) or its marginally standardized version, does not coincide with their
respective (null) distributions, unless ¥* = ¥¥. One solution is to apply the
binning procedure in [Kong et al.| (2022) to obtain pseudo samples of equal sizes,
and then proceed as before. If m/(m + n) = ¢ + O(N~Y/2), for some ¢ € (0,1),
then similarly to Theorem 2, we can prove the consistency of the fusion procedure

(3.1) and (3.2]) based on these pseudo samples.
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4. Test of Vector Independence

Let X and Y stand for random vectors of dimension p and ¢, respectively,
with Dy and Dy as their respective domains. Suppose we have n independent
copies {(X;,Y;)}, of (X,Y), and we are interested in testing the null hypothesis
Hy: X and Y are independent. Write X7 = {X;,..., X, }and Y7 ={Y3,..., Y, }.
In the univariate case, DiCiccio and Romano| (2017)) consider the test of H
based on the sample correlation p,(.), and prove that its null distribution can be
approximated by random permutations of Y} or X7.

Compared with p,(.), the HHG statistic of Heller, Heller and Gorfine (2013)
is able to identify nonlinear association. The notion behind it is simple: suppose
dx(.) and dy(.) are two distance metrics, such as the Euclidean distance; if H
is false, then there must exist two distinct points (x1,y1), (X2,y2) € D = Dx X
Dy, so that the two binary random variables I{dx(X,x;) < dx(xi,X2)} and
Hdy(Y,y1) < dy(y1,y2)} are correlated. The HHG statistic is then based on
the Pearson’s correlation for the corresponding 2 x 2 contingency table:

_oapdin - ALA

T (%1, y1, X2, y2:dx (), dy (1)) = n TALAL) 2 (4.1)

where
A= A1,1(X17 Y1, X2, y2;dx (), dy (.))

— ii[{dx(Xi,Xl) < dX(Xl,Xg)}[{dy(Y;-,yl) < dY(Y17Y2)},

Ay = Ay (%1, x05dx (1)) = %ZI{dX(XuXﬂ < dX(X17X2)}a
A = Ai(y,yzdy()) = %ZI{dY(Ka}’l) < dY(YlayQ)}- (4.2)

In Heller, Heller and Gorfine (2013), the null distribution of the statistic is
approximated by random permutations of Y7'. This practice is intuitively correct,
but no theoretical justification has been provided yet. Because A; and A, the
two marginal terms in (4.1]), are both invariant to permutations (of YT), it is
the numerator, A;; — A; A, that determines the permutation distribution of
(4.1). Thus, henceforth, we do not discriminate between and its numerator.
Variations of , while retaining its contingency-table-derived form, can be
constructed by altering choices for the following two factors:

(i) values specified for (x;,y;) and (x2,y2). Apparently, the statistic (4.1)
associated with any specific values of (x;1,y1) and (X3,y2) is more sensitive
to dependency that occurs close to the specified locations. Violations of Hy
in locations further away might not be strong enough to yield significant
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changes. By combining statistics associated with varied choices of (x1,y1)
and (Xg,y2) scattered in D, we can gather evidence (of dependence) from
different locations.

(ii) types of distance metrics for dx(-) and dy(-). This factor, as noted in
Heller, Heller and Gorfine| (2013, could be designed to capture the localized
dependency between X and Y. For example, we could consider distance
metrics dx (-) that depend only on a certain sub-vector X5 of X, so that the
resulting statistic is more powerful against alternatives when the association
between (X,Y) is largely due to that between the sub-vector Xs and Y.

These variations of (4.1)), notwithstanding belong to a general class of statistics
of the following form:

n! Z{Q(Xi) —a, Hd(Y:) - d,}, (4.3)

where a(-) and d(-) are both square integrable functions, with d(-) being categor-
ical (i.e., taking only a finite number of possible values), and @, = n~' > a(X;)
and d,, = n~'>.d(Y;) are their respective sample averages. To see this is the
case, set

a(X) = I{dX(Xaxl) < dX(X17X2)}a d(Y) = I{dY(Yvy1) < dY(Y1aY2)}~

Then, (4.3 reduces to the numerator in (4.1)).
Without loss of gerality, suppose for & = 1,..., K, ax(-) and di(-) are
functions satisfying the requirements above specified for (4.3). Write

T,x(X7, YY) =072 an(Xy) — alPH{de (Vi) —dP}, k=1,... K, (44)

n
i=1

where, @a®) and d®), for k = 1,..., K, are the sample averages of a,(X;) and
di(Y;), respectively. In the language of Hajek, Sidak and Sen| (1999), a(X;)
is referred to as the coefficient, and dy(Y;) are the scores. We focus on the
combination of statistics of this general form using the fusion procedure, where
the resampling is done via random permutations of Y.

For any 7 € G,, let {m(1),...,7(n)} denote the rearranged {1,...,n}
through permutation 7, and Y"" = {Yz 1), ..., Yz }. Fork =1,..., K, evaluate
T, x(+) for the permuted sample as

T k(X7 YTT) =072 {ar(Xy) — alP Hd(Yey) — dY}, (4.5)
=1

with their marginal and joint permutation distributions given by
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B (tX0,YT) = Z I{ T, x (X2, YT < } teR, (4.6)
'TrEG
R K
By, oot X3, Y) 1= — Z I (4 nkX’f,Y”(")<tk}] (4.7)
'TrEG k=1

respectively. Let U, be as defined in (T.3)), with £, ,(.|X?,Y?) replacing F), ,(-),
for k = 1,..., K. Similarly to (3.2), we reject Hy if RY(U,|X7,YT?) > 1— q,

where

RU(u|X?,Y7) = ,ZI[H{FM T k(X7 ”(")!X?,Y")<u}] (4.8)

n: TeGy k=1
Let F,(-) denote the joint distribution of {T,, »(X7,Y7),k=1,..., K} under H,.

Theorem 3. Under H,, with probability one,

sup | Bty oot X3, YD) = Folty, .. tie)| = o(1). (4.9)

Based on Theorem 3, the consistency of the fusion procedure (4.6)—(4.8]) is a
straightforward result.

Corollary 1. Under Hy, with probability one,

sup |RY(u|X2,Y") —P(U, <u)| = o(1).

u€(0,1)
Remark 4. Based on Theorem 3 and the continuous mapping theorem, it is
straightforward to see that the fusion procedure f is also consistent
if the fusion statistic U,, of is replaced with any continuous function of
{T.r(-),k = 1,...,K}. For example, suppose {(xx,yx) : k = 1,...,K} is a
collection of (fixed) grid points in D. We could then consider the summation, or
the maximum, of the squared taken over these grid points; that is,

. K

U, > T2(xp, Y X, i dx (), dy (), (4.10)
k=1

U, = max X T2 (Xks Yis X0, Y15 dx (), dy () (4.11)

Note that is the Cramér—von-Mises-type of statistic studied in [Heller,
Heller and Gorfine (2013); Heller et al.| (2016)). Thus, as a byproduct, Theorem
3 also provides theoretical justifications for the practice in Heller, Heller and!
Gorfine (2013); Heller et al.| (2016]) of approximating the null distributions of
these aggregations numerically by using their permutation distributions.

For the same reason, the consistency of the fusion procedure f also
holds for the Kolmogorov—Smirnov-type statistic , or when 7,,(+) in (4.10))
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or (4.11)) is replaced by the G likelihood-ratio,

Al 1 Al 2 A2 1 A2 2
Aql : Al : Agql : Ayl :
boe (Al.A.1> Thaos (Al.A.Q T\ gpay ) T\ Ay )
(4.12)
where A, ;, A; , A ;,fori,j =1,2, are as given in (4.2)). These four fused statistics
can go through one more round of the fusion procedure, and the resulting test
procedure would still be consistent.

Remark 5. For the proof of Theorem 3, the permutation distribution is derived
based on the notion that when 7 is uniformly distributed on G,, 7(i) can be
interpreted as the rank of U;, for i = 1,...,n, where Uy, ..., U, are i.i.d. U(0,1).
In this sense, T, (X7, Y"") of falls into the category of simple linear rank
statistics (Hajek, Sidak and Senl |1999)). The theoretical tools currently available
are enough to derive the limiting distribution of individual rank statistics, but not
for their joint limiting distributions, as required in our case. It is for this extension
to the multivariate case that we require the function di(-) to be categorical.
Removing of such restrictions is left to future research.

5. Extensions

Engaging fusion statistics other than is perfectly possible. Indeed, the
results in Theorems 1-3 continue to hold if F,, x(-) in the definition of is
replaced with any monotone function.

As observed in Sections 2 to 4, the consistency of the fusion procedure (1.3])—
, depends on both the sequence of the test statistics {1, s,k = 1,..., K}
to be fused and the fusion statistic, U, itself. For the fusion statistic , the
fusion procedure is consistent as long as the joint bootstrap (or permutation)
distribution function of {7,k = 1,...,K} is a valid approximation of their
joint null distribution. Were we to consider a sequence of test statistics other than
those studied here, then the consistency of the fusion procedure needs to be re-
evaluated, because the bootstrap (or permutation) distribution is not necessarily
always a valid approximation of the null, even in the non-high-dimensional (fixed-
dimensional) setting; see, for example, (Chung and Romano (2013, [2016).

Having said that, certain variations (or extensions) of the proposed procedure
can be verified in a relatively straightforward manner. For example, F, () in
[T.2) or F,.(-) in can be replaced with an arbitrary monotone function,
and the results in Theorem 1, Theorem 2, and Theorem 3 will continue to hold.
Another possibility is to allow K, the number of statistics to be fused, to also
increase with n. For example, in the two-sample mean comparison problem of
Section 3, we do not known a priori the number of coordinates where pX and
pY differ from each other. Thus, T;, 1(d,) is calculated for as many k as possible,
hoping that one of these k-values is close to the true count. Without loss of
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generality, for k =1,...,s,(< p), define

we can then repeat the fusion procedure and with K replaced by s,,.
The proof of the consistency of the procedure is similar to when K is fixed, if the
rate at which s, — oo is slow enough. Specifically, if s,, is allowed to be as large
as p, then p is at most of order o(n'/7), rather than the exponential rate implied
by Condition (C3) in the Appendix.

we cannot make general recommendations for choosing between different
fusion statistics, because the existence of an optimal fusion statistic is, to the
best of our knowledge, still an open question. For the sequence of test statistics
of , a general form of the type of fusion statistic for which the consistency
of the corresponding fusion procedure still holds is

U, =F(fi(Thr),k=1,...,K), (5.1)

where F(-) : R¥ — R and f.(-) : R = R, for k = 1,...,K. For the overall
function to be convex, it is sufficient that either

e fi(-) are all convex; F'(-) is convex and nondecreasing in each argument, or
e fi(-) are all concave; F(+) is convex and nonincreasing in each argument.

As a result, we have for any u € R, there exists some s,-sparsely convex set
A C R? (Definition 3.1 of |(Chernozhukov, Chetverikov and Kato| (2017))), such
that

(U, <u) =1(5, € A).

Write T, = (T x(6,),k = 1,...,K), T = (T, ,(6®),k = 1,...,K). Under
certain regularity conditions, we can apply Proposition 3.2 of |[Chernozhukov,
Chetverikov and Kato (2017) and prove, similarly to Theorem 1, that

sup  |Pi(TP) € AIXT) —P(T, € A)| = 0,(1),
AEASP(s,)
where A°P(s,) denotes the class of all s,, sparsely convex sets in R?, and P (-|)
denotes the bootstrap distribution conditional on X7. An analogue of Theorem
2, and consequently the consistency of the corresponding fusion procedure, can
then be proved similarly.

Asymptotically the empirical version of the aforementioned Fisher’s com-
bined p-value of can be written in the form of . To see this, first
note that, based on Theorem 1, we have for any given k, T, (-) converges in
distribution to 7}, x(Z), which, as shown in the proof of Theorem 1, is equivalent
to the maximum of a Gaussian vector of dimension 2* (i) Second, Theorem
1 of |Cai, Liu and Xial (2014) states that under certain regularity conditions,
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the maximum of a p-dim Gaussian vector with unit variances has its limiting
distribution as the type-1 extreme value distribution, that is,

1 t2 — 2logp + loglog p
exp | — 7 %expl — )

2

Finally, it is easy to check that

£2 21 log 1
~log <1 exp ( g exp{ B ng2+ 0g ogp}))

is indeed convex in t.

6. Simulation Studies

In this section, we examine the performance of the fusion procedure (|1.3)—
, denoted by fused, when it is applied to the three testing problems discussed
in Sections 2—4.

We use the following notation: I,, the p x p identity matrix; N,(u, %), the
p-dim normal with mean p and covariance matrix ¥; and T,(k, u, X), the p-
dim ¢-distribution with & degrees of freedom, mean p, and covariance .. The
significance level « is fixed as 5%. Empirical sizes are calculated based on 5,000
repetitions, and the empirical powers are based on 1,000 repetitions. Within each
repetition, the bootstrap (or permutation) distributions are calculated based on
B(=10000) resampling via bootstrap (or permutation).

6.1. One-sample mean test

In testing Hy : p = 0, the performance of the fusion procedure is compared
with that of the individual test statistics, namely, T, ; and T, , of . Also
included in the comparison are the statistics of |Bai and Saranadasal (1996),
denoted by Tgg, and |Srivastava and Du | (2008), denoted by Tsp. These
two summation-type statistics were originally proposed for a two-sample mean
comparison, and are now adopted for the current purpose. Their p-values should
be decided based on their asymptotic distributions, but because these tend to be
over-inflated, we use the bootstrap.

The sample size is fixed at 100. We consider two designs for X: N, :=
N,(u, %) and T, = T,(5,u,%) with ¥ = DY2RDY? where D and R are
generated as follows:

Y1: D=1, R=(p;;), where p;; =1, and p; ; = 0.25, if i # j.
Yy: D = diag(o?), where 05,5 = 1,...,p, v U(2,3); R = (pi;) with p;; =
0.25°-41.

3. D is the same as in Y,; R is the same as in X;.
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Table 1. Empirical sizes(%) of different tests.

(Dist.,X) p Tha Tnp fused Tps Tsp
100 488 4.88 508 512 560

200 520 470 514 492 5.46

(Np:¥1) 500 540 550 524 550 6.06
1,000 4.98 490 486 506 5.60

100 348 416 3.66 422 478

200 336 426 3.66 434 4.76

(Tp: 1) 500 336 432 3.90 4.38 5.00
1,000 3.08 4.30 358 450 4.92

100 488 488 496 530 530

200 534 534 544 576 5.76

(NpsX2) 500 544 544 556  6.06 6.06
1,000 4.84 484 488 514 514

100 522 494 532 516 558

200 528 488 512 502 5.64

(Np:X3) 500 562 544 554 550 6.02
1,000 528 4.68 488 4.86 5.42

The results for the empirical sizes, for different combinations of distributions,
> and dimension p, are given in Table 1. The size of fused is fairly close to
the nominal size in nearly all settings, and is relatively more stable than its
competitors.

Examples of alternatives are generated by specifying nonzero values for some
entries of p in the above examples. Specifically, for d = 0.1,0.5,0.9, |dp]
components of u are randomly selected and are independently assigned values
drawn from U(—s, s), for some s > 0, and the other entries of i remain zero. Here,
d controls the sparsity of the signal, and s determines the signal strength. Table 2
reports the empirical power for p = 1000, different combinations of distributions
(Dist), ¥ and (d,s), for the four competing methods. What is immediately
obvious is that the fused statistics enjoy universally higher power than when
using 7T, ; or T, , alone. It also significantly outperforms both Tps and Tsp.

6.2. Two-sample mean comparison

In this section, in addition to 7,,; and T, ,, we compare the proposed fusion
procedure with the statistics considered in Xu et al. (2016 and |Chen, Li and
Zhon| (2019)), referred to as T'xpw and T¢rz, respectively. The statistics studied
in |/Aoshima and Yata, (2018), Chen and Qin/ (2010)), and [Zhang, Guo and Cheng
(2020) are similar to Tz in definition, require similar assumptions, and show
similar performance, and thus are excluded from the comparison. Simulation
examples are taken from Xu et al.| (2016]), where the two p-dim random vectors
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Table 2. Empirical powers(%) of different tests.

(Dist.,x) (d, s) Tw1 Tnp fused Tps Tsp
(0 1, 0.31) 89.7 9.9 92.1 10.2 11.7

(N, %) (0.5,0.22) 827 42.7 929 45.1 53.0
(0.9,0.19) 772 852 94.3 87.3 91.0

(0 1, 0.41) 89.2 10.1 92.7 9.9 11.8

(T,,%1) (0.5,0.28) 78.0 434 87.8 39.8 494
(0.9, 0.25) 76.2 84.7 91.4 81.7 88.3

(0.1,7.20) 928 44 936 50 50

(N, £2) (0.5,6.50) 94.8 54 949 59 6.2
(0.9,6.20) 935 7.0 93.5 7.1 7.3

(0.1,0.75) 90.0 95 921 9.7 11.0

(Np, ¥3) (0.5, 0.55) 87.8 50.1 96.8 45.6 59.4
(0.9, 0.45) 773 752 91.6 70.5 83.0

X and Y are generated according to

X =), Y=m0"v)+u" =, 0);

here, ¢!, n' are both of length p/2, both with entries being independent U(—1, 1),
and £2 and n? are independent T},2(3, 0, X), with ¥ = (0.6/°"7). When evaluating
empirical sizes, u] = 0; for the empirical power comparison, with any given
B € (0,1) and s € (0,1), po = min(|p?|,p/2) components of u} are randomly
selected and set to equal s, so that s is an indicator of the signal strength, and
the sparsity of the signals is controlled by .

With n = 100, Table 3 shows the results for the empirical sizes of the
various methods for different p. The two columns labelled 7%, ,,, and T&; ,
are the empirical sizes of Txrpw and T¢pz, respectively, when the critical value
is obtained based on the theoretical asymptotic null distributions, with plugged-in
parameter estimates, as given in Xu et al.| (2016) and |Chen, Li and Zhon/ (2019),
respectively. Obviously, empirical sizes obtained in this manner are unduly high,
but if the critical values are approximated using permutations, then the results for
Txrpw and T¢pz and the other three statistics are all fairly close to the nominal
5%. Note that the computation times required by the first three methods are
much shorter than those of Tx;pw and Tz, especially when p gets larger.

With p = 500 and g € {0.9,0.8,0.6,0.5,0.4,0.2}, the empirical power of each
method versus the signal strength s is as depicted in Figure 1. For Txrpw and
Tcrz, because of their aforementioned unduly high type-I errors induced by the
asymptotic distributions, we only report their power when the critical value is
obtained using the permutation distribution. The general pattern is that as the
degree of sparsity increases, the best method switches from T;, , to 7}, ;. This is in
line with the observation we made at the beginning of Section 2. In comparison,
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Table 3. Size(%) (computation time in seconds) of different tests.

D Tha Thp  fused Txppw Terz T%ipw  Térz
526 526 578 5.22 532 740  7.02
100 0.04) (003 (0200 (157)  (1.91)  (0.66) (0.001)
528 496  5.18 5.22 472 707 6.94
2000 005) (0.05) (0.43)  (5.33)  (6.36)  (2.56) (0.01)
470 5.06  4.92 4.50 466 993  T.65
500 (0.10) (0.09) (0.93) (31.70)  (39.68) (15.55) (0.04)
516 478  5.18 5.24 462 1481 7.42
LOOO 919y (0.16) (1.79) (127.73) (164.40) (91.34) (0.24)

fused is always among the top two best methods, regardless of the sparsity of
the signals.

6.3. Independence test of random vectors

The code developed by |Heller, Heller and Gorfine|(2013) calculates four HHG-
type statistics: hhg.sc of , hhg.mc of , hhg.sl, and hhg.ml. The
first two are defined as in (4.10) and (4.11), respectively, and the last two are
also defined according to and , but with T2 replaced with the G
likelihood-ratio of . Also included in the comparison is fused of these
four statistics, the corresponding testing procedure based on which, as noted in

Section 4, continues to be consistent. Among the existing tests of independence,
we select the two popular methods, namely, the Hilbert—Schmidt independence
criterion (HSIC) of Pfister et al.|(2018) and the distance correlation (DC) of [Huo
and Székely | (2016), for comparison.

Observations of X and Y are generated according to the following models,
some taken from [Zeng, Xia and Tong| (2018). M1-M4 are univariate, and M5 and
M6 are multidimensional.

MO (Independent). X ~ N,(0,I) and Y ~ N,(0,I) are independent.
M1 (Linear with additive noise). ¥ = X + 2.6¢, where X, e ‘<’ N(0,1).

M2 (Circle with additive noise). X = sin(276) + 0.35¢, Y = cos(276) +
0.35¢, where €, "~ N(0,1), 6 ~ U(0,1).

M3 (Quadratic with additive noise). Y = (X — 0.5)2 + 0.76¢, X,e '~°

U0,1).

M4 (Cloud with contaminated noise). (X,Y) = Zx{0.2u+0.2(e1,e; + 0.5) }+
(1—Z)(eq,€2), where Z = 1 or 0 with probability 0.82 and 0.18, respectively,
w is evenly selected from {u; = (0,0),pu2 = (2,0),u3 = (4,0),ps =
(171)7M5 = (37 1)7”6 = (072)7M7 = (272>7M8 = (4ﬂ2>7ﬂ9 = (173)7 Hio =
(3

,3)}, €1,€2,61, 69 c5 U(0,1), and are independent of y and Z.
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Figure 1. Power against signal strength s with different sparsity d and dimension p = 500:
—e— for 1, , —M— for T}, ,, —+— for fused, —A— for T'xppw, —4— for Tcrz.

M5 (Multivariate conditional variance). X = (X;,...,X,)and ¢ = (¢4,...,
¢,) are independent N,(0,I,); with p; = |0.7p], Y; = ¢;(X; +0.6),5 =
].,...,pl7 Yj :gf)j,j =Pi1y.-.,5D-

M6 (Multivariate cloud with additive noise). ¢ = (¢y,...,¢,) and ¢ =
(¢1, ..., 1,) are independent N, (0, I,). With p; = [0.8p| and p as specified
in (M4), (Xjayj) = [+ 0.2(¢j,¢j)7 J=1...,p1, (vai/}) - (ijvl/}j)v J=
pr+1,...,p.
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Table 4. Empirical sizes (%).

(,p) O ®© ©® @ O® H#HsIC DC
(100, 1) 508 448 492 468 478 506 554
(200,1) 364 380 426 402 430 336 472
(100,4) 532 492 372 458 410 580  5.42
(100,12) 502 476 492 526 552 512 5.22
(100,20) 358 332 512 572 424 514 492

@, e @ represent the statistics hhg.sc, hhg.sl, hhg.mc, and hhg.ml, respectively. @N@ represents
the fusion of statistic @ to statistic @

Table 5. Empirical powers (%).

np M O @ & ® @O@W H#HSIC DC
1 707 695 382 360 622 94.6 659
9 499 545 533 516  53.6 64 536
(100, 1) 3 517 496 431 516 524 247 333
4 42 38 294 282 240 0.0 00
1 966 963 731 750 943 1000 944
2 936 946 87.6 89.7  OL7 164 938
(200, 1) 5 908 905 884 957 947 62.6 729
4 606 594 937 959 938 06 06
5 897 878 531 462  85.7 184 254
(100,4) 6 599 413 881 879 852 00 00
5 921 907 410 428 878 204 201
(100.12) ¢ 183 110 60.6 87.6  7AT 0.0 00
5 919 908 405 418 865 245 205
(100,20) 6 904 100 637 963 915 00 00

@, e @ represent the statistics hhg.sc, hhg.sl, hhg.mc, hhg.ml, respectively. @N@ stands for the
fusion of statistics @ to statistic @

For Model MO, where X and Y are independent, Table 4 contains the
empirical sizes of all test statistics. All methods maintain reasonable control
over the type-I error. For Models M1-M6, their power is given in Table 5. In
the univariate case, the fused statistic based on (1)~(4) consistently delivers high
power across all four models, whereas each of its six competitors has strengths
and weakness; for example, both HSIC and DC are powerless in detecting
the dependency in M4. As for the multivariate case, HSIC and DC become
unreliable for M6. As for the four HHG-type statistics, the two maximum-
type statistics, (3) and (4), perform better with M6 than with M5, and vice
versa for the two summation-type statistics (1) and (2). Again, our fused of
the four HHG statistics, that is, (1)~(4), maintains satisfactory power for both
models, supporting our claim that when testing against an unknown alternative,
the fused statistic is, in general, a better choice than any individual statistic.
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7. Real-Data Examples

Genome-wide association studies (GWAS) identify risk genetic variants for
major human diseases by genotyping millions of single nucleotide polymorphisms
(SNPs) in large cohorts. With data collected by the Wellcome Trust Case Control
Consortium (WTCCC), we apply the two-sample mean comparison procedures
of Section 3 to analyze the association between the SNPs and two diseases: type-
2 diabetes (T2D), and rheumatoid arthritis (RA). In the case of T2D, there are
1,952 observations with 307,089 SNPs, and for RA, there are 1,969 observations
with 305,394 SNPs. For either disease, the data are split into two groups:
individuals with the disease (X), and individuals without the disease (Y). If
the means of these two groups are different, then this indicates an association
between the said disease and the SNPs. The p-values of the existing methods
mentioned in Section 3 are all highly significant, suggesting an overwhelmingly
strong association that it could be picked up by any valid tests, regardless of
whether the test is sparse or dense sensitive.

In order for the data to be suitable for assessing the competitiveness of
different tests, we need to first reduce the strength of the signals by thinning
out the SNPs. This is realized through the following steps. First, calculate the p-
value of each SNP, as in the case of a univariate mean-comparison problem, and
rank the SNPs according to their p-values in ascending order. The now ordered
SNPs are then divided into 1,000 roughly equal-sized groups, with about 300
SNPs in each group. Randomly select one SNP from each group to obtain a total
of 1,000 SNPs. Finally, calculate the p-values of all competing methods using
data on these 1,000 randomly selected SNPs. Repeat this procedure 200 times.
The boxplot of the 200 p-values for each method is depicted in Figure 2, with the
left panel occupied by those related to T2D, and the right panel by RA.

The first thing revealed by these plots is that the pattern related to the power
of the various methods is largely in line with what we have seen in the simulation
studies. These plots also highlight the potential use of the fusion statistic to
choose between recommendations made by different testing methods. Specifically,
for example, in the case of T2D, with a significance level set anywhere between
5% and 1%, the two statistics T, ; and T, , make opposite recommendations for
a majority of of the 200 occasions, with 7;, , recommending rejection, and 7, ;
suggesting otherwise. In these occasions, the fused statistic can then be used to
decide which recommendation is more likely to be correct.

Appendix: Assumptions and Proofs

A.1. Further notations and regularity conditions for Sections 2 and 3

For any v = (vy,...,v,) € RP, let |v|o denote the supremum norm and
vy = (Jo1] + -+ + |vp|)/p, the L; norm.


https://www.genome.gov/genetics-glossary/Genome-Wide-Association-Studies
https://www.wtccc.org.uk/
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Figure 2. Boxplots of p-values for different statistics; the horizontal gray dashed line is
the significance level.

For ease of exposition, suppose there exists some sequence of constants
B, > 1, such that |X|, < B,, i = 1,...,n, k = 1,...,p, with probability
one. Moreover, for any p—dim vector with at most s, nonzero elements being
either 1 or —1, standardize it so that it has unit L; norm; let C(p, s,,) denote the
collection of all such p—dim vectors, obviously with a cardinality no more than

(2p)°n.

(C1) The diagonal elements of %% are bounded both from below and above.
The minimum eigenvalue of ¥¥ is bounded from below by some constant
c3 > 0.

(C2) There exist finite constants ¢, ; > 0 such that for any v € C(p, s,,),

v X] Ty |2+k k
EX exp <2, E{lv' X|""}<cn,, k=1,2. (A.1)

cn,l
(C3) s, = o(p), and B,s, logp = o(n'/7).

Conditions (C1)—(C3) could be found in |Chernozhukov, Chetverikov and Kato
(2017) so that the high-dimensional central limit theorem holds for simple convex
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sets; see also Kong et al.| (2022). Among them, (C3) dictates how large s, and
P could get relative to n.

A.2. Proof of Theorem 1

Let D = diag(X) = (07);=1....p, where 07 = Var(X’). For a random variable
Z,and any r > 0, let |Z|, = {E(|Z|")}'/", and its Orlicz norm be defined as

|Z]y = inf{C’ >0: E@b(’g‘) < 1}, where 9(t) = e’ — 1.

A useful inequality is that | Z], < r!|Z],. Condition (C2) implies that | X7|, < c¢,1,
for all j =1,...,p. Then by Lemma 2.2.2 of van der Vaart and Wellner | (1996),
77777 » X7y < ¢pilogp, and
based on Lemma D.3 of Chernozhukov, Chetverikov and Kat| (2019), we have for
any c € (0,1),

|max;—, ., X’y < cnilogp. Consequently, | max;_;

.....

0j

whence a,, = sup; |6,; — 0;] = 0,{(logp)~'}. Let 6, = D~'/2X, . Then for any
e>0,and k=1,..., K,

P(Lu(0) <) S PLLX) <49 +P(Iez 5). (A2
P(T4(6,) < 1) > P(T,(X,) <t — o) —I—P<|Xn!oo > ;) (A.3)

Note that I(T,1(X,)) < t) & I(n'/?X,, € A), for some m — generated set A,
namely a set generated by the intersection of m—half spaces (Chernozhukov,
Chetverikov and Katol 2017)), where the half spaces are defined via vectors
belonging to C(p, s,), whence m < (2p)*". To see this is case, note that for
any p—dim vector p, T, (1) < t is equivalent to: for any v € C(p,s,), u'v < t,
i.e. the intersection of half-spaces defined via vectors in C(p, s,,).

The terms on the RHS of and concerning T, n,k(Xn) could then
be dealt with through similar arguments used in proving Theorem 3 of |Kong
et al. (2022)), mostly involving high-dimensional Gaussian approximation, i.e.,
Proposition 2.2 of (Chernozhukov, Chetverikov and Kato| (2017), followed by
anti-concentration inequalities. The probability to the RHS of or
concerning | X, | is 0,(1), and could be similarly proved by making use of the
fact that a,, = o0,{(logp)~*}.

The bootstrapped sample has mean X,, and variance matrix 3, =nt > (Xi—
X,)(X; — X,)7. Thus the convergence of the bootstrap distribution could
be proved through similar arguments in conjunction with Proposition 4.3 of
Chernozhukov, Chetverikov and Katol| (2017).
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A.3. Proof of Theorem 2

Similar to the arguments below (A.3)), with T}, x(-) as defined in (2.1)), we
have

I

(K]{Tn,k(zjf) < tk}l = I{n'?5,(Z7) € A},

where A C RP is some m — generated set with m < (2p)*». Through arguments
similar to those used in proving Theorem 3 of Kong et al.| (2022), we have

sup |P*{n'/?5,(ZY) €} — P{N(0,5* + ¥¥) € A}| — 0, in probability
A

sup [P{n'/?5,(Z") € A} —P{N(0,=% +X¥) € A}| — 0,
A

where the supremum is taken over all m — generated set with m < (2p)*,
while the probability P* is taken conditional on ZV, with respect to 7 uniformly
distributed on Gy.

A.4. Proof of Theorem 3

Leta= (ar,k=1,...,K)",d= (dp,k=1,...,K)", where a, = F{ax(X)},
d, = E{d(Y)}. @, = (@™, k =1,....,K)"; and d,, = (dW,k = 1,...,K)".
Let (Z1,...,2Zy) ~ N(0,%), the K—dim Gaussian with covariance matrix ¥ =
[Uk,lsk,l]7 where Ok, = Cov(ak(X),al(X)), Skl = COV(dk(Y), dl(Y))

The proof of Theorem 3 is broken down into the following two lemmas, which
deals with the (joint) null distribution and the joint permutation distribution,
respectively.

Lemma 1.

max _sup |F, x(tx) — P(Zr < ti)] = o(1),
~~~~~ Kyi.er

sup Fn(tl,...,tsn)—P(ﬂ{Zkgtk}>‘:o(l),

k=1

Proof of Lemma 1. For fixed K, the assertion is simply the multivariate CLT.
Here, we prove these two statements under a more general set-up where K = s,
the number of statistics, is allowed to grow as m increases, while the function
ap(X) and di,(Y),k =1,...,s,, could be any measurable functions satisfying the
moment conditions (A1)-(A3) below.

(A1) infy_i,. E[{an(X)ds(Y)}?] > 0.

.....

(A2) There exists some sequence of constants B, > 1, possibly growing to
infinity as n — oo, such that foralli=1,...,n,and k=1,...,s,,

E[exp{m(Xl);wH <2, E{lap(X)de(Y)*T"} < Bl, 1=1,2. (A4)

n
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(A3) B3{log(ns,)}"/% = o(1).
For ease of exposition, write T}, , := T,, x (X7, Y7), and

Tt = Sps — '@l — ar) () — di), Spp=n"""? Z(asfz)' — ap)(d) — dy).

For any t, e R,k=1,...,s,,and e > 0

P(T <t) <P(Spi <t+€)
+P{n!?|(@, — a)lw > n'/4e} + P{n'?|(d, — d)]o > n'/*e},  (A5)
P{n1/2|(l_1n o a)|oo > n1/46}

— P(Wilw > nte) + o(1) = o{””“(lzg Sn)”Q} +o(1), (A.6)

P(n1/2|(czn —d)|eo > n1/4e)
—1/4(10g Sn)1/2
€

= P(|Walse > n''*e) +0(1) = O{n } +o(1), (A.7)

sup |[P(Spp <t+€) —P(Z, <t+€%)| = O(n_l/QBf’L/Q) (A.8)
teR
where W, (or W) is s,,—dim zero-mean Gaussian vector with covariance matrix
identical to that of n'/?a, ( or n*/2d,), while Zj, is N(0, 0} 15%.); here and
follow from Proposition 2.1 of (Chernozhukov, Chetverikov and Kato, (2017,
Lemma D.3 of |Chernozhukov, Chetverikov and Kato| (2015) and the Chebyshev
inequality, while is a result of the Berry-Esseen Bounds and .
Reverse the direction of the inequality in , we have

P(T i < 1) > P(S,y <t — ) — P{n'/?|(a, — )| > n'/*e}
—P{n'?|(d, — )| = n'e};

for the three terms to the RHS, results parallel to (A.6)—(A.8) could be similarly
proved. Thus

,nax  sup |P(Thr <t)—P(Z, <t

=1,..., Sn tER

~1/4(] 1/2
:O{€2+7’L_1/2B2/2+n (O)gsn) }+O(1),
€
where the right hand side is o(1), if n='/4(log s,,)'/? = o(1). This proves the first
assertion on the (null) marginal distribution.
As for the joint (null) distribution, first note that similar to (A.6]),

P( (T < tk}> < P( (V{Sur <t+ 62}> +P{n'?|(a, — a)|s > n'/*e}
k=1 k=1

+P{n1/2|(dn —d)|oo = n1/4e}.
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We could then again apply Proposition 2.1 of |(Chernozhukov, Chetverikov and
Kato (2017) and Nazarov’s inequality (Nazarovl 2003) to see that

sup R‘P(i{sn,k < m}) - P(ﬁ{zk < tﬂ)’

1oty

2 7 1/6
:O{Bnlogn(nsn)} (1),

Sn

sup__ ‘P( ﬁ{zk < tk}> - P( ﬁ{zk <t + })‘ < Ce?(log s,)'2.

b1yt k=1 k=1

The proof is thus complete if € could be chosen such that € = o{n~"*/4(log s,,)*/?}
and € = o{(log s,,)"*/*}.

Lemma 2. With probability one,

sup

K
Ro(ty, .. tx|XT,YT) — P( ({2 < tk}> ‘ =o(1).
k=1

Proof of Lemma 2. For ease of exposition, the conclusion will be proved for
the case where {d®)(-),k =1,..., K} are all binary. The proof could be trivially
adapted for the more general cases, where k = 1,...,K, d*)(.) is categorical
taking a finite number of values.

Fork=1,...,K,and i =1,...,n, write

a)) = (X)), el =n" (0] —ad), d,] = d"(Y)).

Re-arrange the n observations {(X;,Y;) : ¢ = 1,...,n} via the following steps:

firstly, move the rows with dﬁ}i = 0 ahead of those rows with dgi = 1; secondly,
for rows with the same value of dﬁ}i, sort them according to the value of {dﬂ,z =
1,...,n} (again in ascending order); repeat this process until the last step where
flkz, forall k =1,..., K—1, are sorted according
to their respective value of dﬁj?. To illustrate, in the case of K = 3, there are
eight possibilities for the rows of n x 3 matrix, and they are arranged in the

following order:

the rows with the same value of d

(1)000](5) 100
(2)001|(6) 101
(3)010|(7) 110
(4)011((8) 111

(k)

n,i

For the re-arranged observations, without loss of generality, we still use ¢

and d™) i = 1,...,n,k=1,..., K, to denote the corresponding ‘coeflicients’ and

n,:

‘scores’. As a result of the strong law of large numbers (SLLN), there exist square
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integrable functions ¢ (-),k =1,..., K, on (0,1), such that

1 5 2
sgp/U {on(w) —dl) ) du=0, k=1, K (A.9)

For illustration purposes, here we only give the specific forms for ¥, () and 15 (-);
the explicit form of other ¢ (-) could be derived through similar arguments. Let
By ={ye R :d(Y)=0} By={yeRi:dY) =0}, q =Pr(Y € B,

=Pr(Y € By), ¢12 =Pr(Y € By N By). Then #;(-) and »(-) could be defined
as:

0, u e (O Q1 2)
O,UG (07q1) l,uE [Ch 27q1)
u) = , u) =
Plu) {1,0-w- 2= 10,0 e [0, 00+ 2 — q1.2)
Lu€[g+ag —qol).

For these ‘score’ functions, it holds that for any k, 0l =1,..., K,

~ 1 1
Yy = / Yr(u)du =1 — q, / o) (u)du=1—qe — @+ qui, k#1L
0 0

In view of (A.9)), when 7 is uniformly distributed on S, so that 7 (i) is the rank
of U;, with Uy, ..., U, i.i.d. U(0,1), we could apply Theorem 6.1 of Hajek, Sidak
and Sen (1999) and claim that for all k =1,..., K,

T (X7, YT Zcm " )—Zc(k) — e} +o0,(1). (A.10)

Thus conditional on (X7, Y?), {7, (X7, Y{"™),k=1,..., K} are jointly normal
with covariance matrix given by

Cov Z Cgfz)“/’k(Ui)a Z C;,l,)ﬂ/Jz(Ui) = Z C;,]fzcn?i(%,z — qkQ)-

%

Moreover, by SLLN, with probability one,

1
RORON k) _ )y, D _ (1)
LS (0t~ a) ), — ) > o,

nz nz nz
% %

and the proof is thus complete.
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