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Abstract: The threshold Ornstein–Uhlenbeck process is a continuous-time threshold

autoregressive process. It follows the Ornstein–Uhlenbeck dynamics when above or

below a fixed threshold, but its coefficients can be discontinuous at the threshold.

We discuss (quasi)-maximum likelihood estimation of the drift parameters, assum-

ing continuous and discrete time observations. In the ergodic case, we derive the

consistency and the speed of convergence of these estimators in long time and high

frequency. Based on these results, we develop a test for the presence of a threshold

in the dynamics. Finally, we apply these statistical tools to short-term US interest

rates modeling.
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1. Introduction

We consider the diffusion process solution to the following stochastic

differential equation (SDE):

Xt = X0 +

∫ t

0

σ(Xs) dWs +

∫ t

0

(b(Xs)− a(Xs)Xs) ds, t ≥ 0, (1.1)

with a piecewise constant volatility coefficient, possibly discontinuous at r ∈ R,

σ(x) = σ+1{x≥r} + σ−1{x<r} > 0, (1.2)

and a similarly piecewise affine drift coefficient

b(x) = b+1{x≥r} + b−1{x<r} and a(x) = a+1{x≥r} + a−1{x<r}. (1.3)

The strong existence of a unique solution to (1.1) follows from the results of

Le Gall (1985). Separately on (r,∞) and (−∞, r), the process follows the

Ornstein–Uhlenbeck (OU) dynamics, which, in the context of interest rate

modeling, is referred to as the Vasicek model. Following this nomenclature,

Decamps, Goovaerts and Schoutens (2006) refer to (1.1) as the self–exciting
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threshold (SET) Vasicek model, and Su and Chan (2015, 2017) refer to it as the

threshold diffusion (TD) or first-order continuous–time threshold autoregressive

(TAR) model (see also Tong (1990)).

The process is ergodic if the drift pushes the process up when the process

reaches large, negative values, and down when it reaches large, positive values.

Note that if a− > 0, the drift points toward b−/a− when Xs is below the threshold

r, and if a+ > 0, it points toward b+/a+ when Xs is above r. Here, we allow a

null linear part, and if a− = 0, we need b− > 0 to push the process up when very

negative, and if a+ = 0, we need b+ < 0 to push it down when very positive. Based

on these considerations, we can easily check for ergodicity (see condition (2.1)).

In Section S3 of the Supplementary Material, we also consider a multi-

threshold version of (1.1), where we allow for d discontinuity levels r1 < · · · < rd.

In this case, ergodicity is determined by the same conditions, checked on the

values of the coefficients on the intervals (−∞, r1) and [rd,+∞).

In this paper, we discuss the asymptotic behavior of maximum likelihood

estimators (MLE) and quasi-maximum likelihood estimators (QMLE) for the drift

parameters (a−, a+, b−, b+), from both continuous and discrete time observations.

Let N be the number of observations, TN be the time horizon, and ∆N be the

largest interval between two consecutive observations. In the ergodic case, if

TN → ∞ and TN∆N → 0 as N → ∞, we prove a central limit theorem (CLT)

in which the estimators converge with speed
√
TN to the real parameters, that

is, asymptotic normality (see Theorem 2). To the best of our knowledge, this is

the first result of this kind for TDs (SDEs with discontinuous drift and diffusion

coefficients). The discontinuity in the coefficients makes it difficult to pass from

discrete-time to continuous-time observations. Indeed, a precise analysis of the

error hinges on the behavior of certain discretizations of the local time of the

diffusion at the threshold. We also prove, for a fixed time horizon, that the

discrete (Q)MLE based on N equally spaced observations converges in high

frequency to the continuous (Q)MLE, with speedN1/4 (see Theorem 3). This slow

convergence of the discrete (Q)MLE to the continuous (Q)MLE follows from the

slow convergence, with speed N1/4, of the discretization of the local time. Based

on these results, we provide a test to decide whether a threshold is present in the

dynamics. Finally, we use these tools to analyze short-term US interest rates.

Literature review. Su and Chan (2015, 2017) study the asymptotic behavior

of the continuous-time QMLE of a TD with drift as in (1.3) and piecewise regular

diffusivity. In particular, they construct a hypothesis test to decide whether the

drift is affine or piecewise affine.

Lejay and Pigato (2018) estimate the volatility parameters σ± in (1.1) from

high-frequency data, and Lejay and Pigato (2020) examine the drift estimation

in the case a± = 0. In the purely linear drift case b± = 0, Kutoyants (2012)

studies the problem of identifying the threshold parameter r, and Dieker and

Gao (2013), among others, consider similar models with r = 0 (so that the drift
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function is continuous) in a multidimensional setting. The (related) problem of

drift estimation in a skew OU process is considered by Xing, Zhao and Li (2020).

In this study the coefficients are discontinuous and the behavior at r

is difficult to handle; for high-frequency observations, we do so using the

discretization results of Mazzonetto (2019). The convergence in high frequency

and long time for estimators of discretely observed diffusions have been discussed,

for example, in Kessler (1997), Ben Alaya and Kebaier (2013), and Amorino and

Gloter (2020), but to the best of our knowledge, ours is the first such result in

the case of discontinuous coefficients.

Yu, Tsai and Rachinger (2020) numerically study an approximate MLE

(AMLE) from discrete-time observations simultaneously for threshold, drift,

and diffusion coefficients of threshold diffusions, including the OU process and

the Cox-Ingersoll-Ross (CIR) model. They compare their AMLE with the

QMLE, showing numerical evidence of consistency. Hu and Xi (2022) consider a

generalized moment estimator for a TD that is observed discretely, with a fixed

time lag.

TAR models in discrete time were introduced by H. Tong in the early 1980s

(Tong (1983, 2011, 2015)). Within this class, self-exciting TAR (SETAR) models

rely on a spatial segmentation, with the dynamics changing according to the

position of the process, below or above a threshold, and can be viewed as a discrete

analogue of the TD; see Chan (1993), Rabemananjara and Zakoian (1993), Yadav,

Pope and Paudyal (1994), Brockwell and Williams (1997), and Chen, So and Liu

(2011), and the references therein, for this class of econometric models and related

inference problems.

Diffusion processes are widely used to model interest rate dynamics: see, for

example, Vasicek (1977), Cox, Ingersoll and Ross (1985), Hull and White (1990),

and Black and Karasinski (1991). These models are designed to capture the

fact that interest rates are typically mean reverting (Wu and Zhang (1996)), but

do not capture nonlinear effects (e.g., multi-modality). Ait-Sahalia (1996) shows

that mean-reversion for interest rates is strong outside a middle region, suggesting

the existence of a target band. This is similar to what is observed in exchange

rates (Krugman (1991)), and can be explained by policy adjustments in response

to changes in such rates. There is evidence of a “normal” low-mean regime and

an “exceptional” high-mean regime and, in general, bi-modality (or even multi-

modality) in interest rate dynamics, which we can model using a TD (1.3). In

general, nonlinearities and regime changes in short-term interest rates are widely

documented, and several discrete-time and continuous-time threshold models

have been proposed; see Gray (1996), Pfann, Schotman and Tschernig (1996),

Ang and Bekaert (2002a), Ang and Bekaert (2002b), Kalimipalli and Susmel

(2004), Gospodinov (2005), Ang, Bekaert and Wei (2008), Archontakis and Lemke

(2008a), and Archontakis and Lemke (2008b). See also Decamps, Goovaerts and

Schoutens (2006) and the references therein for a thorough discussion of SET
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diffusions in interest rate modeling. TDs have recently been used in several

aspects of financial modeling, such as option pricing (Lipton and Sepp (2011);

Gairat and Shcherbakov (2016); Dong and Wong (2017); Lipton (2018); Pigato

(2019)) and time series modeling (Ang and Timmermann (2012); Lejay and

Pigato (2019)). TD models for interest rates are considered in Pai and Pedersen

(1999), Decamps, Goovaerts and Schoutens (2006), Su and Chan (2015), and Su

and Chan (2017). In this study, we focus on (Q)MLE estimators of such models.

In particular, we examine estimators from high-frequency observations and their

convergence to continuous-time estimators, as well as their convergence in long

time to the real values of the parameters.

In Section 2, we present our main results on the convergence of drift

estimators for a threshold OU. In Section 3, we implement the estimators, discuss

threshold estimation, and apply our work to US interest rate data. Proofs are

collected in Section 4 and in the Supplementary Material.

2. (Quasi) Maximum Likelihood Estimation

Equation (1.1), where W is a Brownian motion and X0 is independent of W

(e.g., X0 is deterministic), with coefficients as in (1.2) and (1.3), admits a unique

strong solution. Let X be such a process. We show in equation (4.3) that X is

ergodic if

{(a+ > 0 and b+ ∈ R) or (a+ = 0 and b+ < 0)}
and {(a− > 0 and b− ∈ R) or (a− = 0 and b− > 0)}.

(2.1)

See Section S3 of the Supplementary Material for the analogous condition in the

multi-threshold case.

2.1. MLE and QMLE from continuous-time observations

In this section, we observe a process on the time interval [0, T ], for T ∈ (0,∞).

For T ∈ (0,∞), m = 0, 1, 2, and ± ∈ {−,+}; we define

M±,mT :=

∫ T

0

Xm
s 1{±(Xs−r)≥0} dXs and Q±,mT :=

∫ T

0

Xm
s 1{±(Xs−r)≥0} ds,

(2.2)

and take as the likelihood function the Girsanov weight

GT (a+, b+, a−, b−)

= exp

(∫ T

0

b(Xs)− a(Xs)Xs

(σ(Xs))2
dXs −

1

2

∫ T

0

(b(Xs)− a(Xs)Xs)
2

(σ(Xs))2
ds

)
.

(2.3)

We also consider the quasi-likelihood defined in Su and Chan (2015),
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ΛT (a+, b+, a−, b−) =

∫ T

0

b(Xs)− a(Xs)Xs dXs

−1

2

∫ T

0

(b(Xs)− a(Xs)Xs)
2 ds. (2.4)

Theorem 1. Let ± ∈ {+,−}.

i) For every T ∈ (0,∞), provided that Q−,0T > 0 and Q+,0
T > 0, the MLE and

QMLE are given by

(
α±T , β

±
T

)
=

(
M±,0T Q±,1T −Q±,0T M±,1T

Q±,0T Q±,2T − (Q±,1T )2
,
M±,0T Q±,2T −Q±,1T M±,1T

Q±,0T Q±,2T − (Q±,1T )2

)
. (2.5)

Assume now that the process is ergodic (i.e., (2.1) is satisfied).

ii) The following law of large numbers (LLN) holds: (α±T −a±, β±T −b±)
a.s.−−−→
T→∞

0,

that is, the estimator is consistent.

iii) The following CLT jointly holds for the positive and negative sides:

√
T
(
α±T − a±, β±T − b±

)
stably−−−→
T→∞

N± =
(
N±,α, N±,β

)
,

where (N+,α, N+,β) and (N−,α, N−,β) are two independent two-dimensional

Gaussian random variables, independent of X, with covariance matrices

σ2
+Γ−1

+ and σ2
−Γ−1
− , respectively, where

Γ± :=

(
Q
±,2
∞ −Q±,1∞

−Q±,1∞ Q
±,0
∞

)
, (2.6)

and Q
±,i
∞ , for i ∈ {0, 1, 2}, are real constants such that limt→∞Q±,it /t

a.s.
= Q

±,i
∞

(explicit expressions for such constants are given in Lemma 2; further details

on the stable convergence are provided in Remark 1).

iv) The local asymptotic normality (LAN) property (see Le Cam and Yang

(2000)) holds for the likelihood evaluated at the true parameter θ := (a+, b+,

a−, b−), with rate of convergence 1/
√
T and asymptotic Fisher information

Γ =

(
σ−2

+ Γ+ 0R2×2

0R2×2 σ−2
− Γ−

)
.

This means that there exists a random vector AT ∈ R4 such that for all small

perturbations ∆θ := (∆a+,∆b+,∆a−,∆b−), the quantity

log
GT (θ + (1/

√
T )∆θ)

GT (θ)
−
(

∆θ ·AT −
1

2
∆θ · Γ∆θ

)
(2.7)
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converges to zero in probability as T →∞.

Remark 1. The notion of stable convergence was introduced by Rényi (1963),

and is discussed in detail by, among others, Jacod and Shiryaev (2003) or Jacod

and Protter (2012). Here, we simply mention that this notion of convergence is

stronger than convergence in law, but weaker than convergence in probability.

We use the following crucial property: for random variables Yn, Zn (n ≥ 1), Y

and Z,

if Zn
stably−−−→
n→∞

Z and Yn
P−−−→

n→∞
Y, then (Yn, Zn)

stably−−−→
n→∞

(Y, Z). (2.8)

Remark 2. Considering continuous-time observations may seem in conflict with

observed empirical time series, which always consist of “digital” data. However,

it is common practice to compute the counterpart to continuous-time quantities

from discrete data, for example approximating the integrals in (2.2) using the

Euler–Maruyama scheme or Riemann sums; see Su and Chan (2015, 2017). This

is usually better justified when the process is observed in high frequency, a closer

setting to the continuous-time idealization. In the present study, continuous-

time Theorem 1 can be applied using this strategy. Theorem 1 also serves as

an intermediate step in the proof of Theorem 2, its discrete-time high frequency

version.

2.2. Drift estimation from discrete observations

In this section we observe the process on a discrete time grid 0 = t0 < t1 <

· · · < tN−1 < tN = T , for N ∈ N, T ∈ (0,∞), and set ∆N = maxk=1,...,N{tk −
tk−1}. We define Xi :=Xti with i = 0, . . . , N .

The discrete versions of (2.2) are defined as follows: for m = 0, 1, 2 and

± ∈ {−,+}, let

M±,mT,N :=
N−1∑
k=0

Xm
k 1{±(Xk−r)≥0}(Xk+1 −Xk), and

Q±,mT,N :=
N−1∑
k=0

Xm
k 1{±(Xk−r)≥0}(tk+1 − tk).

(2.9)

We refer to the discretized likelihood (corresponding to (2.3)) as

GT,N(a+, b+, a−, b−)

= exp

[
N−1∑
i=0

(
b(Xi)− a(Xi)Xi

σ(Xi)2
(Xi+1 −Xi)−

ti+1 − ti
2

(b(Xi)− a(Xi)Xi)
2

σ(Xi)2

)]
,

and to the discretized quasi-likelihood (corresponding to (2.4)) as
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ΛT,N(a+, b+, a−, b−)

=
N−1∑
i=0

[
(b(Xi)− a(Xi)Xi)(Xi+1 −Xi)−

ti+1 − ti
2

(b(Xi)− a(Xi)Xi)
2

]
.

For N ∈ N, T ∈ (0,∞), let

(
â±T,N , b̂

±
T,N

)
=

(
M±,0T,NQ

±,1
T,N −Q±,0T,NM

±,1
T,N

Q±,0T,NQ
±,2
T,N − (Q±,1T,N)2

,
M±,0T,NQ

±,2
T,N −Q±,1T,NM

±,1
T,N

Q±,0T,NQ
±,2
T,N − (Q±,1T,N)2

)
. (2.10)

Theorem 2. Let (TN)N∈N be a sequence in (0,∞). For all N ∈ N, let

â±TN ,N , b̂
±
TN ,N

be defined as in (2.10).

i) For every N ∈ N, provided that Q−,0TN ,N
> 0 and Q+,0

TN ,N
> 0, the vec-

tor (â+
TN ,N

, b̂+
TN ,N

, â−TN ,N , b̂
−
TN ,N

) maximizes both the likelihood GTN ,N(a+, b+,

a−b−) and the quasi-likelihood ΛTN ,N(a+, b+, a−b−).

Assume now that the process is ergodic, that is, (2.1) is satisfied, and that X

is the stationary solution to (1.1), that is, X0 follows the stationary distribution

(see (4.2)). Moreover, assume

lim
N→∞

TN =∞ and lim
N→∞

∆N = 0.

ii) The following LLN holds: (â±TN ,N , b̂
±
TN ,N

)
P−−−−→

N→∞
(a±, b±) (the estimator is

consistent).

iii) If limN→∞ TN∆N = 0, the following CLT jointly holds for the positive and

negative sides:√
TN
(
â±TN ,N − a±, b̂

±
TN ,N

− b±
)

stably−−−−→
N→∞

N± =
(
N±,α, N±,β

)
,

where (N+,α, N+,β) and (N−,α, N−,β) are as in Theorem 1.

iv) If limN→∞ TN∆N = 0, the discretized likelihood satisfies (2.7) (with T = TN).

Remark 3. If the largest time lag ∆N = O(TN/N), the conditions in Theo-

rem 2 become limN→∞ TN = ∞ and limN→∞ TN/N = 0 for consistency, and

limN→∞ TN =∞ and limN→∞ T
2
N/N = 0 for asymptotic normality.

The next result states that, for fixed a time horizon, in high frequency, the

estimator from discrete observations converges with an “anomalous” speed toward

the estimator from continuous observations. Let Y : Ω × [0,∞) → R be a semi-

martingale, r ∈ R, and T ∈ [0,∞). Then, we recall that

LrT (Y ) = lim
ε→0

1

2ε

∫ T

0

1{−ε≤Ys−r≤ε}d〈Y 〉s (2.11)

is the symmetric local time of Y at r, up to time T .
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Theorem 3. Let T ∈ (0,∞) be fixed.

i) For every N ∈ N, provided that Q−,0TN ,N
> 0 and Q+,0

TN ,N
> 0, the

likelihood GT,N(a+, b+, a−b−) and the quasi-likelihood ΛT,N(a+, b+, a−b−) are

both maximal at (â+
T,N , b̂

+
T,N , â

−
T,N , b̂

−
T,N), given in (2.10).

ii) Assume the observations are equally spaced (tj = jT/N , j = 0, . . . , N). It

holds that (â+
T,N , b̂

+
T,N , â

−
T,N , b̂

−
T,N)

P−−−−→
N→∞

(α+
T , β

+
T , α

−
T , β

−
T ) and

N1/4
(

(â+
T,N , b̂

+
T,N , â

−
T,N , b̂

−
T,N)− (α+

T , β
+
T , α

−
T , β

−
T )
)

stably−−−−→
N→∞

√
4
√
T

3
√

2π

σ2
− + σ2

+

σ− + σ+

(
Q+,1
T − rQ+,0

T

Q+,0
T Q+,2

T − (Q+,1
T )2

,
Q+,2
T − rQ+,1

T

Q+,0
T Q+,2

T − (Q+,1
T )2

,

− Q−,1T − rQ−,0T

Q−,0T Q−,2T − (Q−,1T )2
,− Q−,2T − rQ−,1T

Q−,0T Q−,2T − (Q−,1T )2

)
BLrT (X), (2.12)

with B a Brownian motion independent of X, and LrT (X) the symmetric

local time of X at r, up to time T (see (2.11)).

Remark 4. The right-hand side of (2.12) has the same law as

√
4
√
T

3
√

2π

σ2
− + σ2

+

σ− + σ+


(

Q+,2
T −Q+,1

T

−Q+,1
T Q+,0

T

)−1 (
0 0

0 0

)
(

0 0

0 0

) (
Q−,2T −Q−,1T

−Q−,1T Q−,0T

)−1



−r
1

r

−1


√
LrT (X)B1.

Remark 5. Theorem 1 and 2 are given as long-time limits, so that it is clear

that as T → ∞ the process visits both [r,∞) and (−∞, r). On the contrary,

in Theorem 3 one needs to have observations of the process above and below

the threshold before (the fixed) time T . If this is not true, say for example the

process does not visit [r,∞) before time T , then the estimators (α+
T , β

+
T ) are not

defined, even in the high-frequency limit N →∞.

Remark 6. One usually expects such discretizations to converge with speed√
N . In this case, the lower speed of convergence is due to the discontinuity

in the coefficients, and appears in connection with the local time. Indeed, the

asymptotic behavior of the estimators is intrinsically related to that of the local

time of the process at the threshold. More precisely, the difference M±,mT,N −M±,mT ,

for m = 0, 1, ± ∈ {−,+}, can be rewritten involving the terms LrT,N − LrT (X),

where LrT,N is the following approximation of the local time from discrete-time

observations:

LrT,N := 2
N−1∑
i=0

1{(XiT/N−r)(X(i+1)T/N−r)<0}|X(i+1)T/N − r|, (2.13)
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for N ∈ N (see equation (S2.6) in the Supplementary Material for a more precise

statement).

Remark 7 (The skew OU process). Consider the solution to the SDE invol-

ving the local time

Yt = Y0 +

∫ t

0

σ̄(Ys) dWs +

∫ t

0

(
b̄(Ys)− ā(Ys)Ys

)
ds+ β̄Lr̄t (Y ), t ≥ 0, (2.14)

with β̄ ∈ (−1, 1), and some piecewise constant functions σ̄, ā, and b̄ possibly

discontinuous at the threshold r̄ ∈ R, as in (1.2) and (1.3).

Xing, Zhao and Li (2020) assume β̄ and σ̄ are known, and estimate the drift

parameters of Y , based on discrete observations, for constant σ̄, ā, b̄ coefficients

and local time at zero. In this setting, Y is referred to as a “skew OU process”

(see also Feng (2016)).

Consider now the more general case of σ̄, ā, b̄ in (1.2) and (1.3). If we assume

that only β̄ is known, the results in Section 2 for the drift estimation of X all

hold similarly for the drift estimation of Y . This follows from the fact that a

simple transformation allows us to reduce the skew OU to a threshold OU with

threshold at zero, getting rid of the local time in the dynamics.

Remark 8 (The threshold CIR process). Su and Chan (2015, 2017) and Yu,

Tsai and Rachinger (2020) consider diffusion processes with drift as in (1.3), with

more flexibility on the diffusion coefficient σ(·), so that their analysis also apply

to the process in (1.1), with

σ(x) = σ+

√
x1{x≥r} + σ−

√
x1{x<r}. (2.15)

We refer to this process as the threshold CIR process. In the aformentioned

works, the proposed estimators are always QMLE, maximizing (2.4), which does

not depend on the diffusivity σ(·). Here, with our (more restrictive) piecewise-

constant choice for the diffusivity, we show that the considered estimator is a

genuine MLE. In our setting, we expect a result analogous to Theorem 1 to

apply to the QMLE for the threshold CIR as well, but with a less explicit limit

Gaussian law in the CLT; see also Su and Chan (2015). On the other hand, the

proof of the discrete-time Theorem 2 uses bounds on the hitting times for the OU

process. The corresponding result for the threshold CIR process is not a trivial

extension.

3. Threshold Estimation, Testing and Interest Rates

We simulate the threshold OU process using the Euler scheme (Bokil et al.

(2020)) (an alternative approach is to discretize space instead of time; see Ding,

Cui and Wang (2020)), and use the estimator based on discrete observations.
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Table 1. Simulations parameters.

r b− b+ a− a+ σ− σ+

0.01 −0.002 0.003 0.1 0.11 0.011 0.01

Figure 1. CLT in Theorem 2(iii), with parameters as in Table 1. We plot the density of
the theoretical distribution of the estimation error (dashed line) and compare it with the
distribution of the error on n = 103 trajectories, with T = 103 and N = 106 observations
on each trajectory.

The implementation is performed using R, and the parameters are as in Table 1.

Figure 1 shows an example of the CLT in Theorem 2. In Table 2, we

show the mean, standard deviation, and mean squared error of the estimators

on simulated trajectories. Figure 2 shows an example of the convergence in

Theorem 3 with (2.12) rewritten as

N1/4

(
â±T,N − α±T

Q±,1T − rQ±,0T

,
b̂±T,N − β±T

Q±,2T − rQ±,1T

)√
3
√

2π

4
√
TLrT (X)

σ− + σ+

σ2
− + σ2

+

× {Q±,0T Q±,2T − (Q±,1T )2} stably−−−−→
N→∞

±B1, for ± ∈ {−,+}.
(3.1)

To estimate the local time LrT (X) and the occupation times Q±,iT , we use the

discrete-time approximations in (2.13) and (2.9), respectively.

To simulate a stationary version of process (1.1), we can simulate X0 using

the explicit stationary density (4.2), or run the process until a large time T , and

use XT as the initial condition. In Figure 3, we compare the empirical distribution

obtained in this way with the theoretical stationary density. This is an example

of a bi-modal stationary distribution (density) with two peaks, corresponding to

the two different mean reversion levels.



DRIFT ESTIMATION OF THE THRESHOLD OU PROCESS 323

Table 2. Mean, mean squared error (MSE), and standard deviation (simulated sd) of the
(Q)MLE estimators in (2.10), with parameters as in Table 1, on n = 103 trajectories,
with T = 103 and N = 106 observations on each trajectory. The “predicted sd” is the
sd predicted by the Gaussian CLT in Theorem 2.

parameter b− b+ a− a+

mean −0.00204 0.00318 0.105 0.119

MSE 5.10× 10−7 1.62× 10−6 0.000526 0.00130

simulated sd 0.000713 0.00126 0.0223 0.0349

predicted sd 0.000575 0.00122 0.0178 0.0317

Figure 2. Convergence in Theorem 3, with parameters as in Table 1. We compare the
empirical distribution on the left-hand side of (3.1) (on n = 100 simulated trajectories
on the time interval [0, 1], with initial condition X0 = r = 0 and N = 500 discrete
observations for each trajectory) with a standard Gaussian density (dashed line).

Figure 3. Theoretical invariant density in (4.2) versus the empirical distribution of XT ,
with T = 103 and N = 106 discretization steps in the Euler scheme, on n = 103

trajectories. The parameters are as in Table 1.
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Table 3. Estimated drift parameters corresponding to Figure 4. Note that in this case,
the threshold maximizing MLE and QMLE is the same (on the discrete grid we consider),
but this is not necessarily the case. With the same threshold, the estimates for a±, b±
are the same, as follows from Theorem 2(i). We also show the standard deviation of such
estimators using to the Gaussian CLT in Theorem 2.

parameter r b− b+ a− a+ b−/a− b+/a+

(Q)MLE 0.0109 −0.00222 0.00403 0.119 0.138 −0.0186 0.0292

sd 0.000649 0.00129 0.0218 0.0342

3.1. On threshold estimation

The estimation results in Section 2 suppose we have previous knowledge of

the threshold. In practice, this assumption is not realistic, and the threshold

r usually has to be estimated. In Su and Chan (2015), the threshold QMLE

from continuous observations is shown to be T -consistent. We implement the

analogous threshold MLE, anddirectly consider discrete observations starting

from the convergence results in Theorem 2.

Given N discrete observations of one trajectory up to time TN , we proceed

as follows. First, for a given threshold r, we compute (Q)MLE (â±, b̂±)TN ,N , and

denote this estimator as (â±, b̂±)rTN ,N . For each fixed r, we then compute the

quasi-likelihood function ΛTN ,N . We can also compute the likelihood function

GTN ,N , after estimating σ± using the quadratic variation estimators in Lejay and

Pigato (2018). We take c as the δ-percentile and d as the (1 − δ)-percentile of

the observed data (in the implementation we always take δ = 0.15 and vary r on

a discrete grid). Maximizing the (quasi-) likelihood function over r ∈ [c, d], we

obtain the (Q)MLE of the threshold, r̂. The estimator of all the drift parameters

is then (r̂, (â±, b̂±)r̂TN ,N).

We display a sample trajectory in Figure 4, together with the threshold

estimated on that trajectory and the mean reversion levels. The estimated

parameters are given in Table 3 (compare with the simulation parameters in

Table 1). Note that the MLE and QMLE give the same parameter estimates

once the threshold is fixed (Theorem 2(i)). However, when also maximizing

over the choice of the threshold, the MLE can account for a possible change in

the volatility, which may yield a different choice of threshold. The model with

different volatilities (SET Vasicek) is used by Decamps, Goovaerts and Schoutens

(2006). Su and Chan (2015, 2017) use the QMLE, thus their drift estimator does

not account for possible changes in volatility.

3.2. Testing for threshold

Here, we test for the presence of a threshold in the diffusion dynamics. Su

and Chan (2017) propose a test for the presence of a threshold based on the

quasi-likelihood ratio. Here, we derive a test from the CLT in Theorem 2(iii).
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Figure 4. A sample trajectory with parameters as in Table 1, T = 103 and N = 106

time steps, and the results of estimating both the threshold and the parameters, using
the MLE. On the left, we show the log-likelihood (on the x-axis) as a function of the
threshold (on the y-axis), to visualize threshold estimation procedure described in Section
3.1. On the right, we show the estimated versus actual threshold levels and the mean
reversion levels b−/a− and b+/a+.

Therefore, we suppose that its assumptions are satisfied. Moreover, we assume

that the threshold parameter r is given. In practice, a natural choice for r is

the (Q)MLE r̂. With a fixed threshold, we can estimate the drift parameters,

obtaining (â±TN ,N , b̂
±
TN ,N

). From Theorem 2(iii), if T 2
N/N goes to zero as N →∞,√

TN
(

(â+
TN ,N

− â−TN ,N)− (a+ − a−), (b̂+
TN ,N

− b̂−TN ,N)− (b+ − b−)
)

stably−−−−→
N→∞

N+ −N−,
(3.2)

which is a centered Gaussian vector with covariance matrix given by Σ := σ2
+Γ−1

+ +

σ2
−Γ−1
− , invertible from the Cauchy–Schwarz inequality. The inverse matrix Σ−1

can be expressed as a function of σ± and Q±,i∞ . Note that σ± can be estimated

from one observed trajectory using quadratic variation, as in Lejay and Pigato

(2018), and Q±,i∞ can be estimated by computing (1/TN)Q±,iTN ,N
as Riemann sums

on the observed trajectory, from (2.6). We denote Σ̂−1 as the estimate of Σ−1

obtained from these estimations.

To test for the presence of a threshold in the drift, we consider the hypothesis{
H0 : Null hypothesis (a+, b+) = (a−, b−)

H1 : Alternative hypothesis (a+, b+) 6= (a−, b−).
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Under the null hypothesis, the statistic

TN
(

(â+
TN ,N

− â−TN ,N), (b̂+
TN ,N

− b̂−TN ,N)
)

Σ̂−1

(
(â+
TN ,N

− â−TN ,N)

(b̂+
TN ,N

− b̂−TN ,N)

)

converges to a χ2 distribution with two degrees of freedom. We reject H0 if the

statistic is larger than qα, where qα is the quantile of a χ2 distribution with two

degrees of freedom, such that P(χ2
2 ≥ qα) = α.

To conclude, note that (3.2) allows us to test separately for the presence of

a threshold in a(·) or in b(·), that is, testing for the presence of a discontinuity in

the piecewise linear or in the piecewise constant, respectively, part of the drift.

3.3. Interest rate analysis

We consider the three-month US Treasury Bill rate, and examine the

time series of daily closing rates between January 4, 1960 and April 29, 2020

(source: Yahoo Finance). We perform quasi-maximum and maximum likelihood

estimation using (2.10), adopting the convention that the “daily” time interval is

dt = 0.046 months, with one month as the time unit. The number of observations

is N = 15057, and T ≈ 60 years. We choose δ = 0.15 as the percentile for the

search of the threshold, and we report both our MLE and QMLE parameters.

Figure 5 (bottom) shows that for the QMLE our result is consistent with

that of Su and Chan (2015), and the estimation identifies two regimes. The

first exhibits low rates, with negligible drift, so that the process is almost a

martingale. In the high regime, the drift ensures a stronger reversion to lower

rates when the rates are very high. In Figure 5 (top), we use MLE (with σ±
estimated using quadratic variation), and the estimation identifies a low regime

corresponding to the period of extremely low rates, with minimal fluctuations,

following the 2007-2008. Almost all of the remaining part of the time series is

in the high regime. The estimated volatilities are σ− = 0.186 in the low regime,

and σ+ = 0.453 in the high regime. To compute the standard deviations of

these estimates, we apply Lejay and Pigato (2018, Corollary 3.8), in the form of

Lejay and Pigato (2019, Prop. 3.1), with the same justification the latter. We

obtain a the standard deviation of 0.00472 for σ2
− and 0.0120 for σ2

+. Using this

MLE for the drift, the mean-reverting effect looks non-negligible, both above and

below the threshold. Note that the parameter estimates obtained using the MLE

and QMLE are substantially different. This is because of the different choice of

threshold, which, in the QMLE, does not depend on the behavior of the volatility,

but in the MLE, is influenced by the volatility as well. Thus, when using the MLE,

one of the two regimes isolated by the threshold consists only of the period of

extremely low and stable rates that followed the 2008 financial crisis.

In this analysis, following Su and Chan (2015, 2017), we estimated our model

parameters for the whole period 1960–2020. From an econometric perspective, it
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Figure 5. Three-month US Treasury Bill rate: time series of daily closing rates between
January 4, 1960 and April 29, 2020. In the top figure, we use the MLE, and in the
bottom figure, we use the QMLE. On the left-hand side, we show the log-likelihood and
quasi-likelihood as functions of the threshold. On the right-hand side, we show estimated
threshold levels (solid grey line), and the mean reversion levels b−/a− and b+/a+ (dashed
grey line).

Table 4. Estimated drift parameters corresponding to Figure 5, and corresponding
standard deviation for b± and a± from Theorem 2.

parameter r b− b+ a− a+ b−/a− b+/a+

MLE 0.919 0.0469 0.0492 0.284 0.0106 0.165 4.63
MLE sd 0.0223 0.0402 0.0757 0.00672
QMLE 6.73 0.00131 0.417 0.00115 0.0481 1.14 8.67
QMLE sd 0.0341 0.144 0.00877 0.0153

is natural to wonder whether it is reasonable to assume a stationary process on

such a long time interval. To address this issue, we consider five two-years time

windows, between 2010 and 2020, with daily observations as before. With this

choice, T 2 ≈ N , and therefore we expect from Theorem 2 that the discretization

error should be negligible, assuming that T ≈ 2 years is sufficiently large for the

theorem to apply.

At a 1% significance level, we do not reject the H0 hypothesis (absence of

a threshold in the parameters) only in the subperiod January 2018-December
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Figure 6. Three months US Treasury Bill rate: time series of daily closing rates for the
periods January 2010 to December 2012, January 2014 to December 2016, January 2018
to December 2020. The estimated threshold level and mean reversion levels are given by
the QMLE. Each time window consists of 24 months, with 22 observations per month.
Our test concludes that a threshold in the dynamics is present in every time window,
except for the period January 2018 to December 2020.

2019. In all other time windows (2010–2011, 2012–2013, 2014–2015, 2016–2017)

we conclude that a threshold is present. Figure 6 shows three examples of

estimations in such windows. In order to check whether this test is reliable

for time series with such sample sizes, we tried the same procedure (selection

of threshold and successive test with a 1% significance level) on simulated time

series, with parameters and sample sizes of the same order as the estimated ones.

We found that when no threshold is present (constant parameters), H0 is rejected

14% of the time, and when the threshold is present (non-constant parameters) H0

is rejected 96% of the time, which seems to confirm the validity of the procedure,

even in these smaller time windows.

4. Proofs and Technical Results

4.1. The regimes of the process

In this section, we establish the values of the coefficients (a±, b±) for which

the process X is (positively or null) recurrent or transient. Because X is a one-

dimensional diffusion, it is characterized by two quantities: scale function and

speed measure, denoted by S and m, respectively. Here, X is recurrent if and

only if limx→+∞ S(x) = +∞, and limx→−∞ S(x) = −∞, otherwise, it is transient.

Moreover, a recurrent process is positive recurrent if the speed measure is a finite

measure, otherwise it is null recurrent.

The scale function is continuous, unique up to multiplicative and additive

constants, and its derivative satisfies (up to a multiplicative constant) S′(x) =

exp [−
∫ x
r

2(b(y)− a(y)y)/(σ(y))2 dy]. We express the scale density explicitly as
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s±(x) := S′(x)1{±(x−r)≥0} = exp

[
−(x− r)

σ2
±

(2b± − a±(x+ r))

]
. (4.1)

It follows that X is recurrent if and only if {(a+ > 0 and b+ ∈ R) or (a+ = 0 and

b+ ≤ 0)} and {(a− > 0 and b− ∈ R) or (a− = 0 and b− ≥ 0)}. The complementary

leads to transience.

The density of the speed measure with respect to the Lebesgue measure is

given by m(x) := 2/[(σ(x))2S′(x)]. It is discontinuous if and only if σ2(·) is

discontinuous. If X is recurrent and the speed measure is a finite measure, then

X is positive recurrent and admits a stationary distribution, denoted by µ, which

is equal to the renormalized speed measure

µ(dx) =
m(x)∫∞

−∞m(y) dy
dx. (4.2)

In this case, we say that the process is ergodic. Lemma 1 states that the speed

measure is a finite measure when the following holds:

{(a+ > 0 and b+ ∈ R) or (a+ = 0 and b+ < 0)}
and {(a− > 0 and b− ∈ R) or (a− = 0 and b− > 0)}.

(4.3)

Under these conditions, the process is ergodic.

Lemma 1. The speed measure is finite if and only if condition (4.3) holds. More

precisely, let ± ∈ {−,+} and let

m± :=

√
π

σ±
√
a±

exp

(
a±
σ2
±

(
b±
a±
− r
)2
)

erfc

(
∓
√
a±

σ±

(
b±
a±
− r
))

. (4.4)

Then,

∫ ∞
−∞

1{±(y−r)≥0}m(y) dy =


+∞ if a± = 0 and b± = 0,

1
|b±| if a± = 0 and ∓ b± > 0,

m± if a± > 0 and b± ∈ R.

In the following lemma, we use the ergodic property of the process to compute

explicit expressions for the limits of suitably rescaled occupation times.

Lemma 2. Assume the process is ergodic. Let m− and m+ be given by (4.4),

b± = 1/|b±|, ± ∈ {−,+}, and µ be the stationary distribution of X. For all

i ∈ {0, 1, 2}, let Q
±,i
∞ be the constant such that Q

±,i
∞

a.s.
= limt→∞Qi,±

t /t ∈ R. We

have the following explicit formulae:
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• if a+ > 0, a− > 0, and b−, b+ ∈ R, then

Q
±,0
∞ =

m±

m+ + m−
, Q

±,1
∞ =

1

m+ + m−

(
b±
a±

m± ±
1

a±

)
, and

Q
±,2
∞ =

1

m+ + m−

((
b2
±

a2
±

+
σ2
±

2a±

)
m± ±

(
b±
a±

+ r

)
1

a±

)
;

• if a+ = 0, a− = 0, and b+ < 0, b− > 0, then

Q
±,0
∞ =

b±

b+ + b−
, Q

±,1
∞ =

b±

b+ + b−

(
r ±

σ2
±

2
b±

)
, and

Q
±,2
∞ =

b±

b+ + b−

(
r2 ± rσ2

±b± +
σ4
±

2
(b±)2

)
;

• if a+ > 0, b+ ∈ R, a− = 0, and b− > 0, then

Q
+,0

∞ =
m+

m+ + b−
, Q

−,0
∞ =

b−

m+ + b−

Q
+,1

∞ =
1

m+ + b−

(
b+

a+

m+ +
1

a+

)
, Q

−,1
∞ =

b−

m+ + b−

(
r −

σ2
−

2
b−

)
,

Q
+,2

∞ =
1

m+ + b−

((
b2

+

a2
+

+
σ2

+

2a+

)
m+ +

(
b+

a+

+ r

)
1

a+

)
, and

Q
−,2
∞ =

b−

m+ + b−

(
r2 − rσ2

−b− +
σ4
−

2
(b−)2

)
;

• if a+ = 0, b+ < 0, a− > 0, and b− ∈ R, then

Q
+,0

∞ =
b+

b+ + m−
, Q

−,0
∞ =

m−

b+ + m−

Q
+,1

∞ =
b+

b+ + m−

(
r +

σ2
+

2
b+

)
, Q

−,1
∞ =

1

b+ + m−

(
b−
a−

m− −
1

a−

)
,

Q
+,2

∞ =
b+

b+ + m−

(
r2 + rσ2

+b+ +
σ4

+

2
(b+)2

)
, and

Q
−,2
∞ =

1

b+ + m−

((
b2
−

a2
−

+
σ2
−

2a−

)
m− −

(
b−
a−

+ r

)
1

a−

)
.

4.2. Proof of Theorem 1

Proof of Item (i) of Theorem 1. Let θ := (a+, b+, a−, b−). It holds that

ΛT (θ)

=
∑

±∈{−,+}

(
b±M

±,0
T − a±M±,1T − 1

2

(
b2
±Q
±,0
T + a2

±Q
±,2
T − 2a±b±Q

±,1
T

))
.

(4.5)
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To find the maximum, we compute the derivatives with respect to a± and b±,

and observe that the gradient has a unique singular point given by (2.5), and

that the Hessian is negative definite.

Moreover, the fact that ∂a±ΛT = σ2
±∂a± logGT and ∂b±ΛT = σ2

±∂b± logGT

shows that the MLE for the drift parameters is the same as the QMLE, that

is, (2.5).

In order to study the asymptotic behavior of the estimator, we introduce a

different expression for the estimators in (2.5), based on the following notation.

Given T ∈ (0,∞) and i ∈ {0, 1}, let

M±,i
T =

∫ T

0

(Xs)
i1{±(Xs−r)≥0} dWs.

Observe that (1.1) yields, for i ∈ {0, 1},

M±,iT = σ±M
±,i
T + b±Q

±,i
T − a±Q

±,i+1
T . (4.6)

Lemma 3. Let T ∈ (0,∞). The MLE and QMLE can be expressed asα
±
T = a± + σ±

M±,0
T Q±,1

T −Q±,0
T M±,1

T

Q±,0
T Q±,2

T −(Q±,1
T )2

,

β±T = b± + σ±
M±,0
T Q±,2

T −Q±,1
T M±,1

T

Q±,0
T Q±,2

T −(Q±,1
T )2

,
(4.7)

which can be rewritten as(
α±T
β±T

)
=

(
a±
b±

)
+ σ±

(
−1 0

0 1

)(
Q±,2T Q±,1T

Q±,1T Q±,0T

)−1(
M±,1

T

M±,0
T

)
. (4.8)

Proof. Note that Q±,0T Q±,2T − (Q±,1T )2 is P-a.s. positive by Cauchy–Schwarz. This,

and replacing the equalities (4.6) in (2.5) completes the proof.

Proof of Item (ii) of Theorem 1. The proof follows from combining equa-

tion (4.7) in Lemma 3 with Lépingle (1995, Thm. 1, p.150) and Lemma 2.

Proof of Item (iii) of Theorem 1. The proof follows from Lemma 2, (2.6),

and Theorem 2.2 in Crimaldi and Pratelli (2005).

Proof of Item (iv) of Theorem 1. By (4.6), the following holds

log
GT (a++(1/

√
T )∆a+, b++(1/

√
T )∆b+, a−+(1/

√
T )∆a−, b−+(1/

√
T )∆b−)

GT (a+, b+, a−, b−)

=
∑

±∈{+,−}

(
1√
Tσ±

(
∆a±
∆b±

)
·A±T −

1

2Tσ2
±

(
∆a±
∆b±

)
· 〈A±, A±〉T

(
∆a±
∆b±

))
,
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where A±T :=

(
−M±,1

T

M±,0
T

)
. Note that 〈A±, A±〉T =

(
Q±,2T −Q±,1T

−Q±,1T Q±,0T

)
and 〈A+, A−〉T

= 0. Lemma 2 ensures that (1/T ) 〈A±, A±〉T
a.s.−−−→
T→∞

Γ±. This, and the same

argument as in the proof of Theorem 1(iii) show that

AT :=
1√
T

(
σ−1

+ A+
T

σ−1
− A−T

)
law−−−→
T→∞

N (0,Γ)

and 〈AT , AT 〉T = (1/T )

(
σ−2

+ 〈A+, A+〉T 0

0 σ−2
− 〈A−, A−〉T

)
a.s.−−−→
T→∞

Γ.

4.3. Proof of Theorem 2

The proof of Item (i) of Theorem 2 is analogous to the proof of Item (i) of

Theorem 1, and is therefore omitted. The proofs of Items (ii)–(iii) of Theorem 2

follow from Lemma 4. Specifically, for all N ∈ N,(
â±TN ,N − a±, b̂

±
TN ,N

− b±
)

=
(
â±TN ,N − α

±
TN
, b̂±TN ,N − β

±
TN

)
+
(
α±TN − a±, β

±
TN
− b±

)
.

The second term of the sum is handled using Theorem 1 (specifically, Item (iii)),

providing the desired limit distribution. The first term can be rewritten using

equations (2.5) and (2.10) as an expression that involves only terms of the kind(
Q±,iTN ,N

Q±,0TN ,N
Q±,2TN ,N

− (Q±,1TN ,N
)2
−

Q±,iTN

Q±,0TN
Q±,2TN

− (Q±,1TN
)2

)
M±,jTN

+
Q±,iTN ,N

(M±,jTN ,N
−M±,jTN

)

Q±,0TN ,N
Q±,2TN ,N

− (Q±,1TN ,N
)2
,

for j ∈ {0, 1} and i ∈ {0, 1, 2},
Combining Lemma 4 with Lemma 2 and Theorem 2.2 in Crimaldi and

Pratelli (2005) ensures the consistency of the estimator if ∆N → 0 as N → ∞.

Furthermore, if TN∆N → 0 as N →∞, then it also implies that√
TN
(
â±TN ,N − α

±
TN
, b̂±TN ,N − β

±
TN

)
P−−−−→

N→∞
0.

Lemma 4. Assume the process is ergodic. Let X be the solution to (1.1), with

X0 distributed as the stationary distribution µ in (4.2). In addition, let λ ∈ {1, 2}
be fixed, and let (TN)N∈N ⊂ (0,∞) be a sequence satisfying that, as N → ∞,

TN → ∞ and limN→∞ T
1−1/λ
N

√
∆N = 0, where ∆N := supk=1,...,N(tk − tk−1).

Then, for all m ∈ {0, 1, 2} and j ∈ {0, 1}, the following holds:
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lim sup
N→∞

T
−1/λ
N E

(
|Q±,mTN

−Q±,mTN ,N
|
)

= 0 and lim sup
N→∞

T
−1/λ
N E

(
|M±,jTN

−M±,jTN ,N
|
)

= 0,

where Q±,mTN
, Q±,mTN ,N

, M±,jTN
, and M±,jTN ,N

are defined in (2.2) and (2.9).

Proof of Item (iv) of Theorem 2. The proof is similarly to that of Item (iv)

of Theorem 1. The analogous version of A±T is

AN,±TN
:=
(
−M±,1TN ,N

− a±Q
±,2
TN ,N

+ b±Q
±,1
TN ,N

,M±,0TN ,N
− b±Q

±,0
TN ,N

+ a±Q
±,1
TN ,N

)
,

and Lemma 4 ensures that the asymptotic behavior of the latter quantity is the

same as that of the continuous-time analogue, given in Theorem 2(iv).

Supplementary Material

The online Supplementary Material contains proofs of Lemma 4 and

Theorem 3, and an extension of the results to the multi-threshold case in Section

S3.
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