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Abstract: In this work we investigate methods for modelling space-time nonsta-

tionary data. We combine the approaches based on spatial adapting and spectral

tempering of spectral densities with the desirable features of Archimedean function-

als. We propose a class of spectral densities whose elements are shown to have a

natural ordering with respect to the set of functionals, and some interesting closed

forms for the covariance functions obtained as Fourier transform of the elements of

this new class are shown. Finally, we show a new class of nonstationary space-time

covariance functions, that are additionally asymmetric in time, and related to this

methodology.
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1. Introduction and Setup

Nonstationarity is one of the most challenging problems in fields dealing
with the analysis of spatio-temporal phenomena: the environment, oceanography,
petroleum engineering, and ecology, for example. In the Geostatistical framework
where one considers the data as realisations of a space-time continuous random
field, popular assumptions on the process under study are those of Gaussianity,
stationarity and isotropy.

On the other hand, part of the recent literature (Christakos and Hristopulos
(1998), Christakos (2000) and Fuentes (2002, 2004)) reckons that stationarity can
be an unrealistic assumption with respect to the great majority of geostatistical
applications. Thus, it would be desirable to have covariance models that do not
depend exclusively on the separation vector between two points of the spatio-
temporal domain.

Unfortunately, few models for nonstationary spatial data have been pro-
posed. It should be stressed that nonstationarity can be modelled with respect
to either the deterministic trend component, or to the stochastic one, or even to
both. In particular, one can focus on (a) an appropriate representation of the
underlying process; (b) direct construction of the covariance function in the spa-
tial domain; (c) construction of a class of spectral densities and computation of
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the Fourier transform in order to (possibly) obtain a closed form for the resulting
covariance.

Examples of (a) can be found in Higdon, Swall and Kern (1999), Fuentes
(2001) and Fuentes and Smith (2001). As far as (b) is concerned, crucial con-
tributions can be found in Christakos and Hristopulos (1998), Christakos (2000)
and, more recently, in Paciorek and Schervish (2004, 2006) and Stein (2005b).
Possible drawbacks of this approach have been emphasised in several cases and
in simulation studies, as for example in Cressie (1985) and Zimmerman and Zim-
merman (1991). As pointed out in Gneiting (2002) and Furrer, Genton and
Nychka (2006), the use of compactly supported correlation functions could pro-
vide a good solution to these problems.

The work of Pintore and Holmes (2007) represents a novel and ingenious
approach to model nonstationarity by working in the spectral domain. The
authors refer to a spatially adaptive spectral density to denote the fact that a
parametric spectral density can be adapted by imposing the parameter vector to
be a smooth function of the spatial locations. Thus, they achieve nonstationary
spectral densities through factorisation of two spectral densities that are spatially
adapted at different locations. Another approach proposed by the same authors
regards the tempering of a parametric or nonparametric spectral density with
a latent, strictly positive, and continuous spatial process that possibly varies
smoothly over location.

In this paper we define a new class of functionals, dubbed Archimedean,
show some of its theoretical properties, and build a new class of spectral densi-
ties that are spatially adaptive or tempered, and that can be used for nonsta-
tionary space-time data sets. The elements of this class may admit a natural
ordering with respect to the parameter of their generators, which are completely
monotone functions defined on the positive real line. After some fundamentals
presented in Section 2, we explain, in Section 3, our methodology as well as the
theoretical properties of the Archimedean functionals. In Section 4 we present
the Archimedean class of stationary and nonstationary spectral densities, with
particular emphasis on the latter. Then, we discuss some properties of its ele-
ments and present some examples of nonstationary covariance functions obtained
with this method. In Section 5, we focus on the construction of Archimedean
space-time covariance functions that are nonstationary, adaptive in space, and
both adaptive and asymmetric in time. The paper ends with some discussion.

2. Fundamentals

We consider real-valued continuous Gaussian space-time random fields
{Z(s, t) : (s, t)∈Rd×R}, with covariance function C(s1, t1, s2, t2) = cov(Z(s1, t1),
Z(s2, t2)).
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Under the assumption of weak stationarity of the associated space-time ran-
dom field, i.e. C(s1, t1, s2, t2) = C(s1 − s2, t1 − t2,0, 0) for any s1, s2 ∈ Rd,
and any t1, t2 ∈ R, Bochner’s theorem (1933) established a one-to-one correspon-
dence between continuous covariance functions and Fourier transforms of positive
bounded measures F defined on Rd × R by

C(s1, t1, s2, t2) = C(h, u,0, 0) =
∫

Rd

∫
R

eiω′h+iτudF (ω, τ),

where (h, u) = (s1 − s2, t1 − t2) is the so-called space-time lag vector. If, in
addition, F is absolutely continuous with respect to the Lebesgue measure, then
the previous expression can be rewritten as

C(h, u,0, 0) =
∫

Rd

∫
R

eiω′h+iτuf(ω, τ)dωdτ,

where f is called the spectral density associated to the weakly stationary space-
time random field. Through Fourier inversion, assuming C absolutely integrable
on its domain, one can show that

f(ω, τ) =
1

(2π)d+1

∫
Rd

∫
R

e−iω′h−iτuC(h, u,0, 0)dhdu, (ω, τ) ∈ Rd × R.

Note that it is common to write C(h, u) instead of C(h, u,0, 0) (Cressie and
Huang (1999)).

The specialisation of Bochner’s representation to the spatial case is straight-
forward.

Completely monotone functions are infinitely differentiable nonnegative func-
tions ϕ defined in [0,∞) such that (−1)nϕ(n) is nonnegative for any natural
number n (in particular they are convex functions). Bernstein’s Theorem (see
Berg and Forst (1975)) states that completely monotone functions are Laplace
transforms of positive and bounded measures F , i.e.,

ϕ(t) := L[F ](t) =
∫ ∞

0
e−rtdF (r). (2.1)

For an extensive review on completely monotone functions we refer the reader
to the book of Widder (1941) as a general reference, and to Berg, Christensen
and Ressel (1984), and Berg and Forst (1975) for the use of completely monotone
functions in a more abstract setting.

3. Methodology: Archimedean Composition of Two Real Functions

Let Φ be the class of real functions ϕ defined on some domain D(ϕ) ⊂ R, ad-
mitting a proper inverse ϕ−1, defined in D(ϕ−1) ⊂ R, and such that ϕ(ϕ−1(t)) = t



276 EMILIO PORCU, PABLO GREGORI AND JORGE MATEU

Table 3.1. Examples of Archimedean compositions for some possible choices
of the generating function ϕ ∈ Φ.

ϕ(t) ϕ−1(t) Aψ(f1, f2)(ω) Remarks

exp(−t) − log t f1(ω)1/2f2(ω)1/2

f1, f2 : Rd → [0,∞)
log 0 := −∞
exp(−∞) := 0

1/t 1/t 2/[1/f1(ω) + 1/f2(ω)]
f1, f2 : Rd → [0,∞)
1/0 := ∞, 1/∞ := 0
0/0 := 0

M(1−t/M)+ M(1−t/M)+ f1/2 + f2/2
f1, f2 : Rd → [0, M ]
for some M > 0

(u)+ = max(u, 0)

− log t exp(−t) −log([exp(−f1(ω))+exp(−f2(ω))]/2) f1, f2 : Rd → R

for all t ∈ D(ϕ−1). Also, let Φc and Φcm be the subclasses of Φ obtained by re-
stricting ϕ to be, respectively, convex or completely monotone on the positive
real line.

Now, let us take the Archimedean class of functionals to be the class

A :=
{

ψ : D(ϕ−1) × D(ϕ−1) → R : ψ(u, v) = ϕ
(1

2
ϕ−1(u)+

1
2
ϕ−1(v)

)
, ϕ∈Φ

}
,

with Ac and Acm the corresponding subclasses of A when restricting ϕ to belong,
respectively, to Φc and Φcm.

If ψ ∈ A, then we should write ϕψ as the function such that, for u, v non-
negative, ψ(u, v) = ϕψ(ϕ−1

ψ (u)/2 + ϕ−1
ψ (v)/2). For ease of notation, we write ϕ

instead of ϕψ, whenever no confusion can arise.
For f1, f2 : Rd → R+ such that f1(Rd) ∪ f2(Rd) ⊂ D(ϕ−1) for some ϕ ∈ Φ,

take the Archimedean composition of f1 and f2 with generating function ψ, to be

Aψ(f1, f2)(ω) = ψ (f1(ω), f2(ω)) , ψ ∈ A, (3.1)

for all ω ∈ Rd. Throughout the paper, we refer to ψ ∈ A or to ϕ ∈ Φ as the
generating functions of Aψ. Observe that Aψ(f, f) = f for any function f and
generating function ψ.

Remark 1. Even when f1(Rd) ∪ f2(Rd) ⊂ D(ϕ−1) is violated, it is sometimes
possible, through conventions, such as are shown in Table 3.1, to define the
appropriate Archimedean composition of f1, f2.

3.1. Ordering relations for Archimedean compositions

Ordering relations can be found among the set of Archimedean compositions
of two fixed functions indexed by convex generating functions (a maximal element
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can also be found when both fixed functions are upper bounded). From now on,
we set AΠ(f1, f2) = f

1/2
1 f

1/2
2 , which is the Archimedean composition associated

to ϕ(t) = exp(−t). Further, let AΣ(f1, f2) = (1/2)(f1 + f2), the Archimedean
composition associated to ϕ(t) = M(1 − t/M)+ when f1, f2 : Rd → [0,M ], and
let AH(f1, f2) = 2/(1/f1 + 1/f2), the Archimedean composition associated to
ϕ(t) = 1/t.

We write h ≤ g whenever h(ω) ≤ g(ω) for all ω ∈ Rd. We have the following
results.

Proposition 1. For any pair of functions f1, f2 and arbitrary generating func-
tions ϕ,ϕ1, ϕ2 ∈ Φcm, corresponding to ψ,ψ1, ψ2 ∈ Acm, we have the following
pointwise order relations.

(i) If ϕ−1
1 ◦ ϕ2 is convex, then Aψ1(f1, f2) ≤ Aψ2(f1, f2).

(ii) If ϕ−1
1 ◦ ϕ2 is concave, then Aψ1(f1, f2) ≥ Aψ2(f1, f2).

(iii)Aψ(f1, f2) ≤ AΠ(f1, f2) ≤ f1+f2

2 (= AΣ(f1, f2) whenever f1 and f2 are
bounded).

(iv)AH(f1, f2) ≤ AΠ(f1, f2) ≤ f1+f2

2 (= AΣ(f1, f2) whenever f1 and f2 are
bounded).

Proof. Recall that completely monotone functions are strictly decreasing, con-
tinuous and have a proper inverse function. Then

Aψ1(f1, f2)(ω) ≤ Aψ2(f1, f2)(ω) iff

ϕ1

(
1
2
ϕ−1

1 (f1(ω)) +
1
2
ϕ−1

1 (f2(ω))
)

≤ ϕ2

(
1
2
ϕ−1

2 (f1(ω)) +
1
2
ϕ−1

2 (f2(ω))
)

iff

ϕ1

(
1
2
g(h1(ω)) +

1
2
g(h2(ω))

)
≤ ϕ2

(
1
2
h1(ω) +

1
2
h2(ω)

)
iff

1
2
g(h1(ω)) +

1
2
g(h2(ω)) ≥ g

(
1
2
h1(ω) +

1
2
h2(ω)

)
, (3.2)

where we take, with abuse of notation, h1 := ϕ−1
2 ◦ f1, h2 := ϕ−1

2 ◦ f1 and
g := ϕ−1

1 ◦ ϕ2.
For (i), when ϕ−1

1 ◦ϕ2 is convex, the last inequality of (3.2) holds, hence the
first inequality. For (ii), when ϕ−1

1 ◦ ϕ2 is concave, reverse the last inequality of
(3.2), then reverse the first one.

Since − log ϕ is a concave function for any completely monotone function
ϕ (see Widder (1941)), we get the first inequality of (iii). The second part of
(iii) and the inequalities of (iv) are the classical inequalities of the harmonic,
geometric and arithmetic means, as well as particular cases of (i) and the first
part of (iii).
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Table 3.2. Examples of ordering relations for Archimedean compositions for
some choices of the generating functions.

Generating functions Set Order relation
Φ1 = {ϕθ(t) = t−θ : θ > 0} {Aψθ

(f1, f2)}θ>0 Aψθ1
(f1, f2) ≤ Aψθ2

(f1, f2)
A1 = {ψθ : ϕθ ∈ Φ1} iff θ1≤θ2

Φ2 = {ϕθ(t) = exp(t−θ) : 0 < θ ≤ 1} {Aψθ
(f1, f2)}0<θ≤1 Aψθ1

(f1, f2) ≤ Aψθ2
(f1, f2)

A2 = {ψθ : ϕθ ∈ Φ2} iff θ1≤θ2

Φ3 = {ϕθ(t)=1−(1−e−t)−θ : 0<θ≤1} {Aψθ
(f1, f2)}0<θ≤1 Aψθ1

(f1, f2) ≤ Aψθ2
(f1, f2)

A3 = {ψθ : ϕθ ∈ Φ3} iff θ1≤θ2

When restricting to parametric families of generating functions, the pointwise
order between Archimedean compositions can coincide with the natural order
between parameters. In Table 2 we show three cases where this identification
can be done.

4. Nonstationary Covariance Functions via Archimedean Spatial
Adaptation of Parametric Spectra

4.1. Archimedean stationary spectral densities

As a direct consequence of Proposition 1 and (2.1), we can get the following
result.

Corollary 1. For any pair of spectral densities f1, f2 : Rd → R, and for any
generating function ϕ ∈ Φcm, the composition ω 7→ Aψ(f1, f2)(ω) defines a valid
class of stationary spectral densities defined on Rd.

This result can be rephrased by saying that for any choice of the generator
ϕ ∈ Φcm and for any pair of spectral densities f1, f2 : Rd → R+, there exists a
real-valued weakly stationary Gaussian random field whose covariance function
is exactly the Fourier transform of the Archimedean spectral density defined by
(3.1). Now, the variance of such random field is C(0) =

∫
Aψ(f1(ω), f2(ω))dω.

This implies that the natural ordering shown in Proposition 1 induces an ordering
into the variance of the associated weakly stationary Gaussian random fields.

The Matérn class of stationary and isotropic covariance functions (Matérn
(1960)) has been widely used in spatial statistics. Its equation, following the
Stein (1999, p.31) parametrisation, has the form

Cθ(s1, s2) =
πd/2

2ν−1Γ(ν + d/2)α2ν
Mν(α‖s1 − s2‖), (4.1)

with s1, s2 points of Rd, θ = (α, ν)′ ∈ R2
+, where α is a scaling parameter, ν gov-

erns the level of smoothness of the associated process, and Mν(t) = |t|νKν (|t|),
with t real and Kν the modified Bessel function of the second kind of order ν
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(Abramowitz and Stegun (1965)). The Matérn class is particularly important in
spatial modelling as it allows associated processes for any level of smoothness.
Its related spectral density has a rather simple form,

fθ(ω) ∝
(
α2 + ‖ω‖2

)−ν− d
2 , ω ∈ Rd. (4.2)

Here we show that (4.2) can be effectively used to build Archimedean spectral
densities that constitute a very general and rich class. In particular, if fi(·;αi, νi),
i = 1, 2, are Matérn spectral densities, the completely monotone generator ϕ(t) =
t−β , β > 0, leads to the Archimedean composition

Aψ(f1, f2)(ω) ∝
(

1
2

(
α2

1 + ‖ω‖2
)β1 +

1
2

(
α2

2 + ‖ω‖2
)β2

)−β

, (4.3)

with βi = (νi + d/2)/β. This class of spectral densities has an apparent analogy
with the important Stein class (2005a), that possesses desirable features in terms
of mean square differentiability of the associated Gaussian random field. This
new class will be reprised in detail when dealing with the nonstationary case.

4.2. Nonstationary Archimedean spectral densities for spatial data

Pintore and Holmes (2007) describe two methods aiming at the obtention of
nonstationary covariance functions, working with nonparametric or parametric
spectral densities. The first method involves parametric families of spectral den-
sities, say {fθ : θ ∈ Θ}, and smooth functions θ : Rd → Θ so that s 7→ θ(s) ∈ Θ.
They define respectively a spatially adaptive spectrum and the resulting nonsta-
tionary spectral density as

fs
NS(ω) ∝ fθ(s)(ω), (4.4)

f s1,s2
NS (ω) = fs1

NS(ω)
1
2 f s2

NS(ω)
1
2

∝ fθ(s1)(ω)
1
2 fθ(s2)(ω)

1
2 . (4.5)

In their second proposal, a parametric or nonparametric spectral density f
is tempered by either a strictly positive stochastic process or a strictly positive
spatial deterministic function η : Rd → R+, in the sense that

fs
NS(ω) ∝ [f(ω)]η(s). (4.6)

Then the resulting nonstationary tempered spectral density is obtained as

fs1,s2
NS (ω) = f s1

NS(ω)
1
2 fs2

NS(ω)
1
2 ∝ [f(ω)]

η(s1)+η(s2)
2 . (4.7)

Finally, they prove that the function

(s1, s2) 7→
∫

Rd

eiω′(s1−s2)f s1,s2
NS (ω)dω, (4.8)
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where fs1,s2
NS can be either defined by (4.5) or (4.7), is a (nonstationary) covariance

function if and only if, respectively, fθ(s) or |f(·)|η(s) are absolutely integrable for
almost all s ∈ Rd. The extension to the spatio-temporal setting is valid and
straightforward.

For the remainder of the paper, we deal only with compositions of parametric
spectral densities, whereas the tempering in (4.6) will be considered only with
respect to deterministic functions, thus being a special case of (4.4).

We are interested in finding a class of link functions that, whenever applied
to a spectral density adapted at two different locations, allow one to build valid
spectral densities.

Theorem 1. For any ψ ∈ Acm, and for f s
NS defined as at (4.4), the function

(s1, s2) 7→
∫

Rd

eiω′(s1−s2)Aψ

(
fs1

NS , f s2
NS

)
(ω)dω (4.9)

for (s1, s2) ∈ Rd×Rd, is positive definite if and only if fθ(s) is absolutely integrable
for almost all s ∈ Rd.

Proof. Let {ci}n
i=1 ⊂ R and {si}n

i=1 ⊂ Rd be, respectively, arbitrary families of
scalars and spatial locations, n ∈ N. Define CAψ

(·, ·) : Rd × Rd → R as at (4.9).
We have that

n∑
i,j=1

cicjCAψ
(si, sj)

∝
∫

Ω

n∑
i,j=1

cicjeiω′(si−sj)ϕ

(
1
2
ϕ−1

(
fθ(si)(ω)

)
+

1
2
ϕ−1

(
fθ(sj)(ω)

))
dω

=
∫

Ω

n∑
i,j=1

cicjeiω′sie−iω′sj

∫ ∞

0
e−r

h

1
2
ϕ−1(fθ(si)

(ω))+ 1
2
ϕ−1

“

fθ(sj)(ω)
”i

dF (r)dω

=
∫

Ω

∫ ∞

0

[
n∑

i=1

cieiω′sie−r 1
2
ϕ−1(fθ(si)

(ω))
][

n∑
j=1

cje−iω′sje−r 1
2
ϕ−1

“

fθ(sj)(ω)
”

]
dF (r)dω

=
∫

Ω

∫ ∞

0

∣∣∣∣∣
n∑

i=1

cieiω′sie−r 1
2
ϕ−1(fθ(si)

(ω))
∣∣∣∣∣
2

dF (r)dω ≥ 0,

where we have used the definition of CAψ
, the representation theorem for com-

pletely monotone functions, (2.1) (where dF is a nonnegative measure), the re-
lation zz̄ = |z|2 for complex z, and the assumption that the integral is finite. To
ensure the latter, we use the integral Minkowsky inequality and again the rep-
resentation theorem for completely monotone functions, followed by the integral
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Cauchy-Schwartz inequality, to get

|CAψ
(s1, s2)| ≤

∫
Ω

∫ ∞

0
e−

r
2
ϕ−1(fθ(si)

(ω))e−
r
2
ϕ−1

“

fθ(sj)(ω)
”

dF (r)dω

=
[∫

Ω

∫ ∞

0
e−rϕ−1(fθ(si)

(ω))dF (r)dω

] 1
2
[∫

Ω

∫ ∞

0
e−rϕ−1

“

fθ(sj)(ω)
”

dF (r)dω

] 1
2

=
[∫

Ω
fθ(si)(ω)dω

] 1
2
[∫

Ω
fθ(sj)(ω)dω

] 1
2

< ∞.

Now, for the converse, if CAψ
is a covariance function, the simple evaluation

∞ > CAψ
(s, s) =

∫
Ω

fθ(s)(ω)dω

completes the proof.

Some comments are in order. It can be easily seen that the approaches
in Pintore and Holmes (2007), as in equations (4.5) and (4.7), are particular
cases of Theorem 1 under the choice AΠ. This implies that Lemma 4.1 and
5.1 in Pintore and Holmes (2007) are special cases of Theorem 1. Furthermore,
note that the construction in Theorem 1 preserves the margins of the spatially
adaptive spectral densities, so that Aψ(fθ(s), fθ(s)) = fθ(s) for all s ∈ Rd.

The variance of the Gaussian random fields with Archimedean spectra at a
point s ∈ Rd is Var(Z(s)) = C(s, s) =

∫
Aψ(f s

NS(ω), f s
NS(ω))dω =

∫
f s

NS(ω)dω,
which is independent of the generator. Thus, nonstationary Gaussian random
fields with Archimedean spectral densities that are obtained with the same mar-
gins, but with different generators, have the same variance.

4.2.1 An example

The Matérn spectral density at (4.2) and the Archimedean class at (4.3)
can be effectively used in order to create classes of nonstationary Archimedean
spectral densities. The procedure can be summarised as follows: take α(·), ν(·) to
be smooth functions of the spatial location, α(s) to be bounded away from zero,
and ν(s) positive for all s. Use the completely monotone function ϕ(t) = t−β ,
β > 0, and apply (4.9) to get

Aψ(fθ(s1), fθ(s2))(ω) ∝

(
1
2

(
α(s1)2+‖ω‖2

) ν(s1)+ d
2

β +
1
2

(
α(s2)2+‖ω‖2

) ν(s2)+d
2

β

)−β

.

(4.10)
This adaptive class of spectral densities is analogous to well-known construc-

tions, such as those of Paciorek and Schervish (2004), Pintore and Holmes (2007)
and Stein (2005b), who obtain forms of localised Matérn covariance functions.
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Thus, consider a spatially adapted spectrum with respect to the parameter
α and impose the following setting: starting from (4.10) and letting ν(s) := ν =
β − d/2 for all s ∈ Rd, one can show that

Aψ(fθ(s1), fθ(s2))(ω) =
(
α2

s1,s2 + ‖ω‖2
)−ν− d

2 ,

with αs1,s2 = [(α(s1)2 + α(s2)2)/2]1/2. The resulting spatially adapted Matérn
covariance admits the equation

CAψ
(s1, s2) =

π
d
2

2ν−1Γ(ν + d
2)α2ν

s1,s2

Mν(αs1,s2‖s1 − s2‖), (4.11)

where Mν was defined at (4.1). Three adapted versions of well-known covari-
ance functions can be derived from (4.11): (a) the spatially adaptive covariance
function associated to the continuous spatial autoregressive process of the first
order or, as it is also known, the spatial isotropic Ornstein-Uhlembeck process
(Yaglom (1987)), for ν = 1/2; (b) the spatially adaptive Gaussian covariance for
ν → ∞; and (c) when ν = 3/2, one obtains

CAψ
(s1, s2) =

d

2
πdα−3

s1,s2e
−αs1,s2‖s1−s2‖ (1 + αs1,s2‖s1 − s2‖) .

The covariance function at (4.11) is the same as the one proposed by Paciorek
and Schervish (2004) under a different setting, and which is a particular case of
the Stein (2005b) class; a similar example is proposed by Pintore and Holmes
(2007). It should be stressed that, while the connection with Pintore and Holmes
is immediate, since their approach is a special case of Theorem 1, no similar
considerations can be made for Paciorek and Schervish (2004) and Stein (2005b).
In particular, it is easy to see that Stein’s (2005b) construction is obtained by
working directly on the spatial domain, and that it is very difficult to obtain a
general form for the Fourier pair associated to his class.

5. Archimedean Spatially Adaptive-Temporally Adaptive and
Asymmetric Covariances

Recent literature has been focused on the construction of nonstationary co-
variances in the spatial setting. The extension to the spatio-temporal setting
should be through methods based on simple procedures yielding closed forms
with straightforward computations. Such methods could be based on direct con-
struction in the spatio-temporal domain, or on the specification of a parametric
structure for a spectrum for which the computation of the Fourier transform is
feasible. It is worth remarking that the construction proposed for the spatial case
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can be directly extended to the spatio-temporal one, but the obtained classes are
analytically intractable. For the space-time setting, we propose an alternative
strategy, leading to the adaptive version of an important class of spectral densities
proposed by Stein (2005a).

Let fθ : Rd → R+ be a parametric spectral density, β : Rd → R an even
nonnegative Borel-measurable function, and φ : Rd → R an odd Borel-measurable
function, where t ∈ R denotes the temporal index. By Proposition 5 in Stein
(2005a), the Rd-Fourier transform of the function

f̃(θ;t)(ω) = exp (−|t|β(ω) − itφ(ω)) fθ(ω) (5.1)

gives a space-time covariance function that is asymmetric in time.
In this section we show that this function can be used in order to build co-

variance functions that are adaptive in space, and both adaptive and asymmetric
in time. To do this, consider the composition

g(ω; s1, s2, t1, t2) = AΠ

(
fθ(s1), fθ(s2)

)
(ω)

× exp
(
− 1

2
(γ(t1)β(ω; ξ(s1)) + γ(t2)β(ω; ξ(s2)))

− i

2
(t1φ(ω; ε(t1)) − t2φ(ω; ε(t2)))

)
, (5.2)

where the deterministic functions ξ(·) and ε(·) are nonnegative on their domains.
We assume that the function β(·; ξ(s)) is nonnegative and Borel-measurable for
almost every s ∈ Rd; φ(·; ε(t)) is Borel-measurable for almost every t ∈ R. Finally,
we assume that γ(·) is a univariate nonnegative intrinsically stationary variogram.

Following the arguments of Theorem 1, one can easily show that

C(s1, t1, s2, t2) =
∫

Rd

eiω′(s1−s2)g(ω; s1, s2, t1, t2)dω,

g as defined at (5.2), is a covariance function on Rd × R × Rd × R.
Thus, we can derive interesting examples by calculating the Fourier trans-

form of (5.2). For instance, let β(ω; ξ(s))=ξ(s) log(1+α−2‖ω‖2), with ξ a nonneg-
ative parameter that depends on the spatial location, α>0, φ(ω; ε(t))=ε(t)ω′z,
with z a unit vector of Rd and ε a positive function of time, and the Matérn-
type form for the parametric spectral density fθ(s)(ω) = (1+α−2‖ω‖2)−ν(s)−d/2,
s ∈ Rd. Using (5.2), one can show that the spatial spectral density adaptive on
both space and time, can be written as

e−iεtω′z
(
1 + α−2‖ω‖2

)−νsξ(s,t)− d
2 ,
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where (εt, νsξ(s,t))′ has εt = (1/2)(ε(t1)t1 − ε(t2)t2), νs = (1/2)(ν(s1) + ν(s2)),
and ξ(s,t) = (1/2)(ξ(s1)γ(t1) + ξ(s2)γ(t2)), and for which the associated adapted
Fourier transform is

C(s1, t1, s2, t2) =
πd/2αd

2νsξ(s,t)−1Γ(νsξ(s,t) + d/2)
M(νsξ(s,t))(α‖(s1−s2)−εtz‖), (5.3)

where Mν was defined at (4.1).
Observe that the spatial margin C(s1, 0, s2, 0) is of Matérn type and that

nonstationarity is induced via the adaptive smoothing parameter, as in Stein
(2005b). The adaptive parameters εt, νs and ξ(s,t) act, respectively, in time,
space, and both space and time. In particular, εt expresses a weighted difference
of instants t1, t2 with weights proportional to ε(t1), ε(t2). This parameter defines
the asymmetric structure of (5.3). The parameter νs governs the smoothness
of the associated spatial covariance, which is infinitely differentiable away from
the origin. Unlike εt, it is an unweighted average of the adaptive smoothing
parameters ν(s1), ν(s2). Finally, the space-time parameter ξ(s,t) can be seen as
a weighted average of the temporal variogram γ evaluated at points t1, t2 with
weights, respectively, proportional to ξ(s1) and ξ(s2). Observe that if the chosen
parametric variogram model does not have a nugget effect, then it is continuous
at the origin, where its value is zero. As far as the temporal margin is concerned,
it can be easily shown that it depends on the choice of the parametric temporal
variogram.

6. Discussion

This work has been devoted to methods of construction of a class of spatially
adaptive spectral densities that constitutes a nontrivial generalisation of the class
presented in Pintore and Holmes (2007). We have shown that this class presents
mathematical features having some implications on the variance of the associated
stationary or nonstationary Gaussian random field. Also, we have presented some
examples of families of adaptive spectra including, as a special case, the spatially
adaptive Matérn class. Finally, for space-time, we have built an extension of the
Stein’s (2005a) class to the spatially adaptive case, and discussed some interesting
closed forms that can be obtained through this procedure.
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